Visible to Intel only — GUID: mwh1410383638859
Ixiasoft
1.2.1. Timing Path and Clock Analysis
1.2.2. Clock Setup Analysis
1.2.3. Clock Hold Analysis
1.2.4. Recovery and Removal Analysis
1.2.5. Multicycle Path Analysis
1.2.6. Metastability Analysis
1.2.7. Timing Pessimism
1.2.8. Clock-As-Data Analysis
1.2.9. Multicorner Timing Analysis
1.2.10. Time Borrowing
2.1. Using Timing Constraints throughout the Design Flow
2.2. Timing Analysis Flow
2.3. Applying Timing Constraints
2.4. Timing Constraint Descriptions
2.5. Timing Report Descriptions
2.6. Scripting Timing Analysis
2.7. Using the Quartus® Prime Timing Analyzer Document Revision History
2.8. Quartus® Prime Pro Edition User Guide: Timing Analyzer Archive
2.4.4.5.1. Default Multicycle Analysis
2.4.4.5.2. End Multicycle Setup = 2 and End Multicycle Hold = 0
2.4.4.5.3. End Multicycle Setup = 2 and End Multicycle Hold = 1
2.4.4.5.4. Same Frequency Clocks with Destination Clock Offset
2.4.4.5.5. Destination Clock Frequency is a Multiple of the Source Clock Frequency
2.4.4.5.6. Destination Clock Frequency is a Multiple of the Source Clock Frequency with an Offset
2.4.4.5.7. Source Clock Frequency is a Multiple of the Destination Clock Frequency
2.4.4.5.8. Source Clock Frequency is a Multiple of the Destination Clock Frequency with an Offset
2.5.1. Report Fmax Summary
2.5.2. Report Timing
2.5.3. Report Timing By Source Files
2.5.4. Report Data Delay
2.5.5. Report Net Delay
2.5.6. Report Clocks and Clock Network
2.5.7. Report Clock Transfers
2.5.8. Report Metastability
2.5.9. Report CDC Viewer
2.5.10. Report Asynchronous CDC
2.5.11. Report Logic Depth
2.5.12. Report Neighbor Paths
2.5.13. Report Register Spread
2.5.14. Report Route Net of Interest
2.5.15. Report Retiming Restrictions
2.5.16. Report Register Statistics
2.5.17. Report Pipelining Information
2.5.18. Report Time Borrowing Data
2.5.19. Report Exceptions and Exceptions Reachability
2.5.20. Report Bottlenecks
2.5.21. Check Timing
2.5.22. Report SDC
Visible to Intel only — GUID: mwh1410383638859
Ixiasoft
2. Using the Quartus® Prime Timing Analyzer
The Quartus® Prime Timing Analyzer is a powerful ASIC-style timing analysis tool that validates the timing performance of all logic in your design using an industry-standard constraint, analysis, and reporting methodology. Use the Timing Analyzer GUI or command-line interface to constrain, analyze, and report results for all timing paths in your design.
Figure 37. Quartus® Prime Timing Analyzer GUI
Section Content
Using Timing Constraints throughout the Design Flow
Timing Analysis Flow
Applying Timing Constraints
Timing Constraint Descriptions
Timing Report Descriptions
Scripting Timing Analysis
Using the Quartus Prime Timing Analyzer Document Revision History
Quartus Prime Pro Edition User Guide: Timing Analyzer Archive