Visible to Intel only — GUID: mwh1417734823782
Ixiasoft
1.2.1. Timing Path and Clock Analysis
1.2.2. Clock Setup Analysis
1.2.3. Clock Hold Analysis
1.2.4. Recovery and Removal Analysis
1.2.5. Multicycle Path Analysis
1.2.6. Metastability Analysis
1.2.7. Timing Pessimism
1.2.8. Clock-As-Data Analysis
1.2.9. Multicorner Timing Analysis
1.2.10. Time Borrowing
2.1. Using Timing Constraints throughout the Design Flow
2.2. Timing Analysis Flow
2.3. Applying Timing Constraints
2.4. Timing Constraint Descriptions
2.5. Timing Report Descriptions
2.6. Scripting Timing Analysis
2.7. Using the Quartus® Prime Timing Analyzer Document Revision History
2.8. Quartus® Prime Pro Edition User Guide: Timing Analyzer Archive
2.4.4.5.1. Default Multicycle Analysis
2.4.4.5.2. End Multicycle Setup = 2 and End Multicycle Hold = 0
2.4.4.5.3. End Multicycle Setup = 2 and End Multicycle Hold = 1
2.4.4.5.4. Same Frequency Clocks with Destination Clock Offset
2.4.4.5.5. Destination Clock Frequency is a Multiple of the Source Clock Frequency
2.4.4.5.6. Destination Clock Frequency is a Multiple of the Source Clock Frequency with an Offset
2.4.4.5.7. Source Clock Frequency is a Multiple of the Destination Clock Frequency
2.4.4.5.8. Source Clock Frequency is a Multiple of the Destination Clock Frequency with an Offset
2.5.1. Report Fmax Summary
2.5.2. Report Timing
2.5.3. Report Timing By Source Files
2.5.4. Report Data Delay
2.5.5. Report Net Delay
2.5.6. Report Clocks and Clock Network
2.5.7. Report Clock Transfers
2.5.8. Report Metastability
2.5.9. Report CDC Viewer
2.5.10. Report Asynchronous CDC
2.5.11. Report Logic Depth
2.5.12. Report Neighbor Paths
2.5.13. Report Register Spread
2.5.14. Report Route Net of Interest
2.5.15. Report Retiming Restrictions
2.5.16. Report Register Statistics
2.5.17. Report Pipelining Information
2.5.18. Report Time Borrowing Data
2.5.19. Report Exceptions and Exceptions Reachability
2.5.20. Report Bottlenecks
2.5.21. Check Timing
2.5.22. Report SDC
Visible to Intel only — GUID: mwh1417734823782
Ixiasoft
2.4.1.2.2. I/O Interface Clock Uncertainty Example
To specify I/O interface uncertainty, you must create a virtual clock and constrain the input and output ports with the set_input_delay and set_output_delay commands that reference the virtual clock.
When the set_input_delay or set_output_delay commands reference a clock port or PLL output, the virtual clock allows the derive_clock_uncertainty command to apply separate clock uncertainties for internal clock transfers and I/O interface clock transfers.
Create the virtual clock with the same properties as the original clock that is driving the I/O port, as the following example shows:
SDC Commands to Constrain the I/O Interface
# Create the base clock for the clock port create_clock -period 10 -name clk_in [get_ports clk_in] # Create a virtual clock with the same properties of the base clock # driving the source register create_clock -period 10 -name virt_clk_in # Create the input delay referencing the virtual clock and not the base # clock # DO NOT use set_input_delay -clock clk_in <delay value> # [get_ports data_in] set_input_delay -clock virt_clk_in <delay value> [get_ports data_in]