Visible to Intel only — GUID: GUID-2FC2966B-F0A6-4C4B-841B-F8FF84670023
Abs
AbsBackward
Add
AvgPool
AvgPoolBackward
BatchNormForwardTraining
BatchNormInference
BatchNormTrainingBackward
BiasAdd
BiasAddBackward
Clamp
ClampBackward
Concat
Convolution
ConvolutionBackwardData
ConvolutionBackwardWeights
ConvTranspose
ConvTransposeBackwardData
ConvTransposeBackwardWeights
Dequantize
Divide
DynamicDequantize
DynamicQuantize
Elu
EluBackward
End
Exp
GroupNorm
GELU
GELUBackward
HardSigmoid
HardSigmoidBackward
HardSwish
HardSwishBackward
Interpolate
InterpolateBackward
LayerNorm
LayerNormBackward
LeakyReLU
Log
LogSoftmax
LogSoftmaxBackward
MatMul
Maximum
MaxPool
MaxPoolBackward
Minimum
Mish
MishBackward
Multiply
Pow
PReLU
PReLUBackward
Quantize
Reciprocal
ReduceL1
ReduceL2
ReduceMax
ReduceMean
ReduceMin
ReduceProd
ReduceSum
ReLU
ReLUBackward
Reorder
Round
Select
Sigmoid
SigmoidBackward
SoftMax
SoftMaxBackward
SoftPlus
SoftPlusBackward
Sqrt
SqrtBackward
Square
SquaredDifference
StaticReshape
StaticTranspose
Subtract
Tanh
TanhBackward
TypeCast
Wildcard
enum dnnl_alg_kind_t
enum dnnl_normalization_flags_t
enum dnnl_primitive_kind_t
enum dnnl_prop_kind_t
enum dnnl_query_t
enum dnnl::normalization_flags
enum dnnl::query
struct dnnl_exec_arg_t
struct dnnl_primitive
struct dnnl_primitive_desc
struct dnnl::primitive
struct dnnl::primitive_desc
struct dnnl::primitive_desc_base
enum dnnl_rnn_direction_t
enum dnnl_rnn_flags_t
enum dnnl::rnn_direction
enum dnnl::rnn_flags
struct dnnl::augru_backward
struct dnnl::augru_forward
struct dnnl::gru_backward
struct dnnl::gru_forward
struct dnnl::lbr_augru_backward
struct dnnl::lbr_augru_forward
struct dnnl::lbr_gru_backward
struct dnnl::lbr_gru_forward
struct dnnl::lstm_backward
struct dnnl::lstm_forward
struct dnnl::rnn_primitive_desc_base
struct dnnl::vanilla_rnn_backward
struct dnnl::vanilla_rnn_forward
Visible to Intel only — GUID: GUID-2FC2966B-F0A6-4C4B-841B-F8FF84670023
Linear-Before-Reset GRU RNN Primitive Example
This C++ API example demonstrates how to create and execute a Linear-Before-Reset GRU RNN primitive in forward training propagation mode.
Key optimizations included in this example:
Creation of optimized memory format from the primitive descriptor.
/******************************************************************************* * Copyright 2024 Intel Corporation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. *******************************************************************************/ #include
#include <cmath> #include <iostream> #include <string> #include <vector> #include "dnnl.hpp" #include "example_utils.hpp" using namespace dnnl; using tag = memory::format_tag; using dt = memory::data_type; void lbr_gru_example(dnnl::engine::kind engine_kind) { // Create execution dnnl::engine. dnnl::engine engine(engine_kind, 0); // Create dnnl::stream. dnnl::stream engine_stream(engine); // Tensor dimensions. const memory::dim N = 2, // batch size T = 3, // time steps IC = 2, // src channels OC = 3, // dst channels G = 3, // gates L = 1, // layers D = 1, // directions E = 1; // extra Bias number. Extra Bias for u' gate // Source (src), weights, bias, attention, and destination (dst) tensors // dimensions. memory::dims src_dims = {T, N, IC}; memory::dims weights_layer_dims = {L, D, IC, G, OC}; memory::dims weights_iter_dims = {L, D, OC, G, OC}; memory::dims bias_dims = {L, D, G + E, OC}; memory::dims dst_layer_dims = {T, N, OC}; memory::dims dst_iter_dims = {L, D, N, OC}; // Allocate buffers. std::vector<float> src_layer_data(product(src_dims)); std::vector<float> weights_layer_data(product(weights_layer_dims)); std::vector<float> weights_iter_data(product(weights_iter_dims)); std::vector<float> bias_data(product(bias_dims)); std::vector<float> dst_layer_data(product(dst_layer_dims)); std::vector<float> dst_iter_data(product(dst_iter_dims)); // Initialize src, weights, and bias tensors. std::generate(src_layer_data.begin(), src_layer_data.end(), []() { static int i = 0; return std::cos(i++ / 10.f); }); std::generate(weights_layer_data.begin(), weights_layer_data.end(), []() { static int i = 0; return std::sin(i++ * 2.f); }); std::generate(weights_iter_data.begin(), weights_iter_data.end(), []() { static int i = 0; return std::sin(i++ * 2.f); }); std::generate(bias_data.begin(), bias_data.end(), []() { static int i = 0; return std::tanh(float(i++)); }); // Create memory descriptors and memory objects for src, bias, and dst. auto src_layer_md = memory::desc(src_dims, dt::f32, tag::tnc); auto bias_md = memory::desc(bias_dims, dt::f32, tag::ldgo); auto dst_layer_md = memory::desc(dst_layer_dims, dt::f32, tag::tnc); auto src_layer_mem = memory(src_layer_md, engine); auto bias_mem = memory(bias_md, engine); auto dst_layer_mem = memory(dst_layer_md, engine); // Create memory objects for weights using user's memory layout. In this // example, LDIGO (num_layers, num_directions, input_channels, num_gates, // output_channels) is assumed. auto user_weights_layer_mem = memory({weights_layer_dims, dt::f32, tag::ldigo}, engine); auto user_weights_iter_mem = memory({weights_iter_dims, dt::f32, tag::ldigo}, engine); // Write data to memory object's handle. // For GRU cells, the gates order is update, reset and output // gate except the bias. For the bias tensor, the gates order is // u, r, o and u' gate. write_to_dnnl_memory(src_layer_data.data(), src_layer_mem); write_to_dnnl_memory(bias_data.data(), bias_mem); write_to_dnnl_memory(weights_layer_data.data(), user_weights_layer_mem); write_to_dnnl_memory(weights_iter_data.data(), user_weights_iter_mem); // Create memory descriptors for weights with format_tag::any. This enables // the lbr_gru primitive to choose the optimized memory layout. auto weights_layer_md = memory::desc(weights_layer_dims, dt::f32, tag::any); auto weights_iter_md = memory::desc(weights_iter_dims, dt::f32, tag::any); // Optional memory descriptors for recurrent data. // Default memory descriptor for initial hidden states of the GRU cells auto src_iter_md = memory::desc(); auto dst_iter_md = memory::desc(); // Create primitive descriptor. auto lbr_gru_pd = lbr_gru_forward::primitive_desc(engine, prop_kind::forward_training, rnn_direction::unidirectional_left2right, src_layer_md, src_iter_md, weights_layer_md, weights_iter_md, bias_md, dst_layer_md, dst_iter_md); // For now, assume that the weights memory layout generated by the primitive // and the ones provided by the user are identical. auto weights_layer_mem = user_weights_layer_mem; auto weights_iter_mem = user_weights_iter_mem; // Reorder the data in case the weights memory layout generated by the // primitive and the one provided by the user are different. In this case, // we create additional memory objects with internal buffers that will // contain the reordered data. if (lbr_gru_pd.weights_desc() != user_weights_layer_mem.get_desc()) { weights_layer_mem = memory(lbr_gru_pd.weights_desc(), engine); reorder(user_weights_layer_mem, weights_layer_mem) .execute(engine_stream, user_weights_layer_mem, weights_layer_mem); } if (lbr_gru_pd.weights_iter_desc() != user_weights_iter_mem.get_desc()) { weights_iter_mem = memory(lbr_gru_pd.weights_iter_desc(), engine); reorder(user_weights_iter_mem, weights_iter_mem) .execute( engine_stream, user_weights_iter_mem, weights_iter_mem); } // Create the memory objects from the primitive descriptor. A workspace is // also required for Linear-Before-Reset GRU RNN. // NOTE: Here, the workspace is required for later usage in backward // propagation mode. auto src_iter_mem = memory(lbr_gru_pd.src_iter_desc(), engine); auto dst_iter_mem = memory(lbr_gru_pd.dst_iter_desc(), engine); auto workspace_mem = memory(lbr_gru_pd.workspace_desc(), engine); // Create the primitive. auto lbr_gru_prim = lbr_gru_forward(lbr_gru_pd); // Primitive arguments std::unordered_map<int, memory> lbr_gru_args; lbr_gru_args.insert({DNNL_ARG_SRC_LAYER, src_layer_mem}); lbr_gru_args.insert({DNNL_ARG_WEIGHTS_LAYER, weights_layer_mem}); lbr_gru_args.insert({DNNL_ARG_WEIGHTS_ITER, weights_iter_mem}); lbr_gru_args.insert({DNNL_ARG_BIAS, bias_mem}); lbr_gru_args.insert({DNNL_ARG_DST_LAYER, dst_layer_mem}); lbr_gru_args.insert({DNNL_ARG_SRC_ITER, src_iter_mem}); lbr_gru_args.insert({DNNL_ARG_DST_ITER, dst_iter_mem}); lbr_gru_args.insert({DNNL_ARG_WORKSPACE, workspace_mem}); // Primitive execution: lbr_gru. lbr_gru_prim.execute(engine_stream, lbr_gru_args); // Wait for the computation to finalize. engine_stream.wait(); // Read data from memory object's handle. read_from_dnnl_memory(dst_layer_data.data(), dst_layer_mem); } int main(int argc, char **argv) { return handle_example_errors( lbr_gru_example, parse_engine_kind(argc, argv)); }