Description
This document provides links to step-by-step instructions on how to leverage reference model docker containers to run optimized open-source Deep Learning inference workloads using Intel® Extension for PyTorch* and Intel® Extension for TensorFlow* on the Intel® Data Center GPU Flex Series.
Base Containers
AI Framework | Extension | Documentation |
---|---|---|
PyTorch | Intel® Extension for PyTorch* | Intel® Extension for PyTorch Container |
TensorFlow | Intel® Extension for TensorFlow* | Intel® Extension for TensorFlow Container |
Optimized Workloads
The table below provides links to run each workload in a docker container. The containers were validated on a host running Linux*.
Model | Framework | Mode and Documentation |
---|---|---|
DistilBERT | PyTorch | FP16 and FP32 Inference |
DLRM v1 | PyTorch | FP16 Inference |
EfficientNet B0,B3,B4 | TensorFlow | FP16 Inference |
EfficientNet | PyTorch | FP32 FP16 BF16 Inference |
FastPitch | PyTorch | FP16 Inference |
Mask R-CNN | TensorFlow | FP16 Inference |
ResNet50 v1.5 | PyTorch | INT8 Inference |
ResNet50 v1.5 | TensorFlow | INT8 Inference |
SSD-MobileNet v1 | TensorFlow | INT8 Inference |
Stable Diffusion | PyTorch | FP16 Inference |
Stable Diffusion | TensorFlow | FP32,FP16 Inference |
UNet++ | PyTorch | FP16 Inference |
Swin Transformer | PyTorch | FP16 Inference |
Wide and Deep | TensorFlow | FP16 Inference |
YOLO v5 | PyTorch | FP16 Inference |
Note:
- SSD-MobileNet v1 model is supported on older Intel® Extension for TensorFlow* v2.12 and Intel® Extension for PyTorch* 1.13.120+xpu versions.
- The other models in the list are validated on Intel® Extension for TensorFlow* v2.14 and Intel® Extension for PyTorch* 2.1.10+xpu versions.