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Abstract—Uncorrectable memory errors are the major causes
of hardware failures in datacenters leading to server crashes.
Page offlining is an error-prevention mechanism implemented
in modern operating systems. Traditional offlining policies are
based on correctable error (CE) rate of a page in a past period.
However, CEs are just the observations while the underlying
causes are memory circuit faults. A certain fault such as a
row fault can impact quite a few pages. Meanwhile, not all
faults are equally prone to uncorrectable errors (UEs). In this
paper, we propose a fault-aware prediction-guide policy for page
offlining. In the proposed policy, we first identify row faults based
on CE observations as the preliminary candidates for offlining.
Leveraging the knowledge of the error correction code, we design
a predictor based on error-bit patterns to predict whether a row
fault is prone to UEs or not. Pages impacted by the UE-prone
rows are then offlined. Empirical evaluation using the error log
from a modern large-scale cluster in ByteDance demonstrates
that the proposed policy avoids several times more UEs than the
traditional policy does at a comparable cost of memory capacity
loss due to page offlining.

Index Terms—memory reliability, uncorrectable error preven-
tion, page offlining, row fault identification, uncorrectable error
prediction

I. INTRODUCTION

Dynamic random access memory (DRAM) is extensively
used in modern computing systems as the main memory for
fast data storage and retrieval. While we expect the data read
from DRAM to be the same as that stored, in reality it may
not. Various factors may contribute to the problem, e.g., the
faulty circuit, the leak-off of electric charges before getting
restored, unstable data transmission over bitlines, etc.

Error correction codes (ECCs) have been developed to detect
and correct errors. Errors corrected by ECC are referred to
as correctable errors (CEs). When more errors occur simul-
taneously, the error pattern goes beyond the error correction
capability of the ECC, but mostly still stays within the error
detection capability of the ECC. An uncorrectable error (UE),
or more precisely, a detected uncorrectable error, then happens,
typically leading to a system crash. Memory failures have
become one of the leading causes of hardware failures in
datacenters.

The alternative strategy to mitigate memory errors is to stop
using the faulty memory cells before a UE happens. Operating
systems (OSs) such as Windows, Linux, and Solaris [1]] provide
the mechanism of page offlining to avoid memory errors based
on predefined policies [1]-[5]. When the condition of page

offlining in a policy is satisfied, the OS copies the content of
the page to another location and stops using the original page.
The cost of page offlining is the loss of the memory capacity
of the pages offlined. The traditional policy is to offline a page
when it reaches X CEs in a past period of 71" hours (denoted
as X/T). The default configurations are 10/24 in Linux and
16/24 in Windows respectivelyﬂ Such a policy offlines a page
according to the CE rate in a page in a certain period.

However, the common page offlining policy based on CE
rate has two weaknesses.

e Memory errors are just the observations while the under-
lying causes are memory circuit faults. Faults such as a
row fault, a column fault, or a bank fault can impact a
few to a lot of pages. Counting CEs per page does not
comprehend the nature of the cross-page faults.

o Not all the faults (or the pages with the CE rate satisfying
a certain condition) are equally prone to future UEs. The
CE rate in the past period is not a good predictive indicator
of future UEs [6].

Suffering from the two weaknesses, only a few UEs can be
avoided using the traditional page offlining policy.

In this paper, we propose a new fault-aware prediction-guided
page offlining policy to overcome the two weaknesses. The
proposed policy takes the row fault type, the most appropriate
fault type, as the basis of page offlining. This is because that
unlike a column or a bank, a row maps only to a limited number
of memory pages, making the cost of memory capacity loss
acceptable. In the new policy, we first examine the locations
of the past CEs in a row to infer whether the row is faulty or
not. We next leverage the knowledge of the ECC to design a
predictor based on error-bit patterns observed in the CE history.
The predictor is then applied to the inferred faulty rows to
predict whether a row fault is prone to UEs or not. Pages
impacted by the UE-prone rows are offlined.

We perform empirical evaluation of the new approach on
the DRAM error log from a modern large-scale cluster in
ByteDance. While in the previous work page offlining policies
are evaluated in terms of the number of CEs avoided [2]—
[S], we are the first to present the evaluation in terms of the
number of UEs avoided. Experimental results indicate that at

ISee  for reference, |http://www.mcelog.org/badpageofflining.html
and https://docs.microsoft.com/en-us/windows-hardware/drivers/whea/
whea- pfa-registry-settings.
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Fig. 1: Simplified logical view of a DIMM.

the similar cost of memory capacity loss due to page offlining,
the proposed fault-aware prediction-guided policy is able to
avoid several times more UEs then the traditional policy does.

II. BACKGROUND

A dual in-line memory module (DIMM) contains a series of
DRAM integrated circuits. Each chip contains several banks
of two-dimensional arrays of cells. Each cell contains a set of
data bits and is addressed by the row index and the column
index in the array. Figure [T] shows a simplified logical view of
a DIMM. In each memory access, a 64-byte cache line is read
or written from the cells spanning over multiple chips. Each
chip only provides part of the data bits through several beats.

In the multi-channel memory architecture on modern server
systems, each memory controller in a processor governs several
memory channels. DIMMs are populated over those channels.
To accelerate memory access in parallel, a contiguous region of
memory addresses is typically interleaved over those DIMMs.
On a contemporary Intel SkyLake or Cascade Lake server, on
average a row can contain data from 48 4K-byte pages at most
(when the channels are fully populated as the worst case). In
contrast, a column contains data from a lot more pages, e.g.,
131,072 pages in a 32GB DIMM.

We refer to the underlying cause of a memory error as a fault.

We refer to non-reversible damages in hardware, e.g., cells of
stuck-at bits, as hard faults. Faults can get developed on the
low-level DRAM circuits with a large granularity such as rows,
columns, banks, etc. We refer to the observed symptom of a
fault as an error, e.g., after storing a bit of 0 to a cell of a
stuck-at bit of 1, a bit of 1 is read. We refer to errors from hard
faults as hard errors. Soft faults and soft error observations
are random, e.g., bit flips caused by particle strikes. A fault
may not necessarily trigger errors, e.g., storing a bit of 1 in
a stuck-at bit of 1, or storing a bit of 0 in it without further
accesses.

ECCs have been developed to detect and correct errors. For
example, the chipkill ECC [[7] is able to correct any number
of error bits in a single chip. If the error pattern goes beyond
the correcting capability of the ECC, e.g., the coincidence of

Algorithm 1 Traditional page offlining policy in OSs with the
predefined parameters of X and 7' = 24

procedure ONRECEIVINGCE(error Address)
error History. TRACKERRORSINTIME (error Address, T = 24)
page < GETPAGE(error Address)
errorCount < errorHistory.COUNTCESINPAGE(page)
if errorCount > X then
OFFLINEPAGE (page)

a hard error in a chip with a soft error in a second chip in
chipkill, a UE happens leading to a system crash.

Note that the occurrences of both CEs and UEs depend not
only on the faulty status of the hardware but also on the implicit
runtime context, e.g., memory access pattern, data content, etc.
In practice it is intractable to observe the hardware faulty
status (e.g., to which extent the hardware wears out), since an
offline comprehensive memory test is required to identify the
underlying faults, which is disruptive to the serviceability of
the servers. In practice it is also intractable to track the runtime
context (e.g., memory access pattern and data content), since
the overhead in collecting those details becomes prohibitively
high. As a result, memory errors are highly uncertain.

Page offlining stops the use of certain pages in the OS,
preventing the access to potential faulty cells in those pages
and consequently masking the memory errors caused by the
faults [T]-[5]]. Algorithm [T] shows the traditional page offlining
policy in OSs. We keep CEs in the past T" hours tracked in
the error history. Whenever a new CE is observed, we identify
the corresponding page and count the CEs in the page in the
history. If the count reaches X, the page offlining action is
triggered. The typical choice of T is 24E] The choice of X
is used to trade error avoidance with capacity loss in page
offlining. The default choice of X is 10 in Linux and 16 in
Windows.

III. WEAKNESSES OF THE TRADITIONAL POLICY

We re-examine the traditional page offlining policy and
demonstrate its two weaknesses through real examples.

Weakness 1: Memory errors are just the observations while
the underlying causes are memory circuit faults. Faults such as
a row fault, a column fault, or a bank fault can impact a few
to a lot of pages. Counting CEs per page does not comprehend
the nature of the cross-page faults.

Here we take a real example from a modern large-scale
cluster in ByteDance. A DIMM locates in slot 1, channel 0,
memory controller 1, CPU 1 on a server. There is a row with
ID 0x1A37C coming from bank 2, bank group 1 in the DIMM.
Table [I| shows the error history of 3 pages associated with the
row. 2 of the 3 pages have CEs in the history. Specifically,
the first page encounters 10 CEs in 6 minutes. In contrast, the
third page has no CEs in the history. Actually in this example,
all the CEs from the pages locate in the row. Not shown in
the table, there are other pages encountering CEs in the same

2A 24-hour period is also the common choice on contemporary server
platforms for the memory error tracking in firmware for predictive failure
analysis.



TABLE I: A real example of 3 pages in a row.

Page ID 0xF5B7912 0xF5b7937 0xF5B7936
Row ID 0x1A37C 0x1A37C 0x1A37C
CE occurrence 10 in 6 minutes 1 in the history 0

UE occurrence No No Yes

TABLE II: A real example of 2 rows from 2 servers.

Row 1  Row 2
CE number 908 128
Unique CE locations 52 20
Pages with CEs 19 6
Pages with 10 CEs in 24 hours 4 0
UE occurrence No Yes

row as well. Based on the CE observations, very likely the
row is faulty. Assuming that the fault is prone to future UEs,
all the pages associated the row are likely to experience future
UEs. However, if we only consider the CEs in the individual
pages, only the first page will be offlined with the default
Linux policy, but the third page will never be considered as a
candidate due to its 0-CE history. Unfortunately, a UE actually
occurs in the page with a 0-CE history.

Some other simplified policies are studied in [2[]-[4]. While
the details are different, those policies suffer from the same
weakness of examining the CEs in the individual pages only.
Those policies cannot correctly handle this example as well.

Weakness 2: Not all the faults (or the pages with the CE
rate satisfying a certain condition) are equally prone to future
UEs. The CE rate in the past period is not a good predictive
indicator of future UEs [6].

Here we take another real example from the same cluster.
In Table [II, we show two rows. The first row with ID 0x7F52
comes from bank 1, bank group 1, DIMM slot 1, channel 0,
memory controller 0, CPU 0 on a server. The row encounters
more than 900 CEs in the past. Those CEs spread over more
than 50 locations in the row as well as in many pages. 4 pages
reach the rate of no less than 10 CEs in 24 hours. In contrast,
the second row with ID Ox13AF1 comes from bank 2, bank
group 0, DIMM slot 0, channel 0, memory controller 1, CPU
0 on another server. The row experiences less CEs on less
unique locations as well as in less pages. None of those pages
reach the rate of no less than 10 CEs in 24 hours. However, no
UEs occur in the first row or in pages associated with the first
row while a UE occurs in a page associated with the second
TOow.

In [5]], a new page offlining policy is proposed to combine
the error statistics with a heuristic hint based on the prediction
of future CE occurrence in the page. However, the hint is based
on the likelihood of experiencing future CEs, but not future
UEs.

The weaknesses described above inspire us to develop a new
policy that comprehends both the underlying DRAM faults
and the likelihood of experiencing future UEs.

IV. FAULT-AWARE PREDICTION-GUIDED POLICY

In this paper, we propose a new fault-aware prediction-guide
policy for page offlining:

« Instead of counting the historical CEs in an individual
page, the new policy examines the historical CEs in a
row to infer whether a row is faulty or not. The pages
associated with those inferred faulty rows become the
preliminary candidates for page offlining.

o« We leverage the knowledge of the ECC to design a
predictor based on error-bit patterns observed in the CE
history. The predictor is able to predict whether future
UEs are likely to occur in the faulty rows or not. Pages
impacted by the UE-prone faulty rows are offlined.

In the next several subsections, we describe the details of
identifying faulty rows and predicting future UEs in the rows.
We then summarize the algorithm.

A. Faulty Row Identification

Row faults can be caused by different reasons such as row
address decoding failure, circuit damage on a word-line or a
sub-word-line driver, etc. In our approach, we identify faulty
rows as the preliminary candidates for page offlining. We do
not try to identify faulty columns or faulty banks. This is
because that mitigating a column fault or bank fault with page
offlining results in a significant loss of memory capacity. For
example, in a 32GB DIMM, a column contains the content
from 131,072 4KB pages implying a capacity loss of 512MB
in offlining. In contrast, the number of pages impacted by
a row is limited. The actual number depends on memory
interleaving. On contemporary Intel SkyLake or Cascade Lake
server platforms, the worst case is that all the channels are
fully populated. Given a fully populated setting, a row contains
the content from 48 pages on average.

Memory errors are the observed symptoms of the underlying
faults of the hardware revealed by certain runtime context. One
may try to discover the latent faulty status from the historical
error observations. A scheme to identifying column faults has
been proposed in [6]]. In this paper we extend the scheme to
identify the row faults as follows. When the circuit of a row is
faulty, likely quite a few CEs will occur on different locations
in a row. If the CEs observed in a row in the past T = 24
hours scatter in a region spanning no less than a length of [,.,
and the unique error location numbe reaches a predefined
threshold 6,., we infer that the row is faulty. Figure [2] shows
an example of an inferred row fault.

Pages associated with the inferred faulty rows are regarded
as the preliminary candidates for page offlining. We use a
reverse address translation module to map the row to the pages.
Such a module is available in BIOS on contemporary Intel
server platforms.

3In [6], it is demonstrated that counting unique error locations is more
indicative than counting CEs.
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Fig. 3: Examples of (a) a fully correctable error-bit pattern;
and (b) a partially correctable error-bit pattern.

B. UE Prediction

Not all the inferred row faults are equally prone to future UEs.

The internal architecture of the DIMMs is among the highly
confidential information of the DIMM manufacturers and is
not shared even with the partners. Inferred row faults with
similar observations may actually come from circuit damages
on different sub-row components. Whether a certain fault may
lead to future UEs depends on how well the ECC can covers

the error bits revealed from the fault by the runtime context.

Leveraging the ECC knowledge but not the knowledge on
the DIMM internal architecture, we now design a predictor to
predict how likely a faulty row will experience future UEs.
Unlike the chipkill ECC, ECCs on contemporary Intel server
platforms do not guarantee a full coverage of all the possible
errors on data bits from an individual chip during a cache line
access. While the exact ECC algorithms are never exposed
(see., e.g., [8]), coarse-grained error-bit patterns that are fully
correctable or only partially correctable can be obtained, e.g.,
as the confidential information under certain non-disclosure
agreements. While here we cannot expose the details of the
confidential information, we use a publicly available example to
illustrate how we design such a predictor from those patterns.
We assume that a chip in a DIMM provides n xm bits of data
during a cache line access. The data bits are served through n
beats over m data pins. We visualize the n X m bits in a bitmap,
as is shown in Figure [3(a) or (b). Note that the visualization is
for illustrative purpose only. The actual architecture of the bit
storage depends on the design of the DIMM manufacturer and
can vary significantly from the visualization, which is unknown

Algorithm 2 Fault-aware prediction-guided page offlining
policy with the predefined parameters of [,., 0,., and Ogcc

procedure ONRECEIVINGCE(error Address, errorBits)
error History. TRACKERRORSINTIME (error Address, T = 24)
row <— GETROW(errorAddress)
rowErrorInfo < error History.GETERRORINFOINROW (row)
if rowErrorInfo.GETMAXLOCIDX() —
rowErrorInfo.GETMINLOCIDX() > I, and
rowErrorInfo.COUNTUNIQUELOC() > 6, then
row. faulty < True
if MATCHPARTIALLY CORRECTABLEPATT(error Bits) and
not MATCHFULLYCORRECTABLEPATT(error Bits) then
row.matched < row.matched + 1
if row. faulty and row.matched > 0pcc then
pages < row.GETPAGES()
for each page in pages do
OFFLINEPAGE(page)

to us. Patterns of a certain ECC apply only to the logical view
of the bitmap, but not to the actual architecture. In a certain
ECC implementation described in [9], if all the bits with errors
are bounded within the left half of the bitmap, i.e., the first %
data pins over the n beats as is shown in Figure [3(a), the error
pattern is fully correctable by the ECC. In contrast, if the bits
with errors exist in all the m data pins and also in all the the
first 5 beats, i.e., the upper half of the bitmap as is shown in
Figure [3[b), the error pattern is only partially correctable by
the ECC.

We design the predictor of predicting UEs on faulty rows
for server platforms with Intel SkyLake and Cascade Lake
architecture (the most recent server architecture from Intel)
as follows. We obtain the ECC knowledge of the platforms
in terms of fully correctable error-bit patterns and partially
correctable error-bit patterns. For each CEs in the row, we
get the detail error-bit information and match the error bits
against the patterns. We count the number of CEs that match at
least one of the partially correctable patterns but do not match
any of the fully correctable patterns. If the count reaches a
predefined threshold of gcc, the faulty row is predicted to
experience future UEs. A page offlining action is triggered to
offline the pages impacted by the row.

C. Algorithm and Overhead Analysis

Algorithm [2] shows the algorithm of the new fault-aware
prediction-guided page offlining policy. Different from the
traditional page offlining policy, the new policy requires the
additional input of error-bit information. The information is
available today on contemporary Intel platforms from the read
retry registers in the memory controller.

Both the traditional policy and the new policy are invoked
with a new CE observed. While the traditional policy groups
the historical CEs by pages, the new policy groups the historical
CEs by rows. The overhead from CE grouping is similar. The
additional execution overhead brought in by the new policy is
to calculate the CE statistics (i.e., unique locations with CEs
and the length of the spanning region) in a row and to match
the fully correctable and partially correctable patterns. We
accelerate the process of calculating the CE statistics in a row



through a simple refinement of the CE history tracking process.
For each row with historical CEs in the past 7" hours, we keep
a sorted set of unique locations with CEs along with their last
observed CE timestamps. Given a newly incoming CE, we
create or update the corresponding element and also remove the
earlier elements falling out of the past 7T-hour window. Note
that at the granularity of cache line accesses, the maximum list
size is at most 128 per row. Therefore the worst-case execution-
time overhead is no more than O(n) where n < 128 is the
maximum number of unique locations with CEs in a row in
the T-hour Window. While an optimized implementation using
a monotonic stack can ensure the average complexity of O(1),
here we regard that the simple implementation is good enough
given the small scale of the problem. Matching patterns with
error-bit information is trivial and is invoked once for a newly
incoming CE. The execution-time overhead is a small constant.
Overall, the execution-time overhead is small.

The new policy stores the CE history in unique CE locations
while the traditional policy stores the CE history in CEs. The
new policy is at least no worse than the traditional policy
in terms of the storage overhead. Note that the error-bit
information is consumed at the error time but is not stored.

V. EXPERIMENTS

We perform experiments to evaluate the performance of the
fault-aware prediction-guided policy on the DDR4 memory
error log collected from a modern large-scale cluster in
ByteDance. The dataset comes from around 10,000 of servers
running a mix of various workloads including, e.g., internet
services, online data feeding, offline data analytics, etc. All
the servers are with the SkyLake or Cascade Lake architecture,
i.e., the most recent server architecture from Intel. The DIMMs
on the servers come homogeneously from a major DIMM
manufacturer which we anonymize here due to the concern of
inappropriate information disclosure.

The CE data is collected through the Linux error detection
and correction driver. The data collection period spans from
Sept. 2020 to Feb. 2021. Neither hardware sparing technologies
(e.g., partial cache line sparing, row, bank, or chip sparing) nor
software sparing technologies (e.g., software page offlining in
OSs) are enabled during the period. Around 0.9 millions CEs
from more than 0.2 million unique memory address locations
are observed on more than 1,500 DIMMs from around 1,200
servers during the period. There are also 195 UEs recorded from
the machine check events with the error address information
on 195 servers.

A. UE Avoidance

We replay the error log and run the new fault-aware
prediction-guided policy in a trace-driven simulation. A policy
under evaluation takes the time series data of the CEs as the
input. Pages are offlined accordinglyﬂ If an UE arrives, we
check whether or not the UE locates in a page which has

“4Note that once a page is offlined, future CEs in the page are ignored during
the replay.
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Fig. 4: Number UEs avoided vs. memory capacity loss in KB
by the new policy and the traditional policy.

already been offlined. We are then able to determine whether
the UE is avoided.

To evaluate how well the policy performs, we examine the
number of UEs avoided and the memory capacity loss due to
page offlining. While in the empirical evaluation using DRAM
error log in the previous work [2]-[5], page offlining policies
are evaluated in terms of CEs avoided, we are the first to
present the empirical study of page offlining performance in
terms of UEs avoided.

Both the number of UEs avoided and the memory capacity
loss may vary with respect to the thresholds of /,., 8,., and Ogcc
in Algorithm [2] With a set of more rigid thresholds, less pages
are offlined but less UEs are voided. We vary the thresholds
by gradually making them more rigid as (I,,0,,0gcc) €
{(g5Lr2,2), (55L+,3,3), (§5 Lr,5,5), (3 Ly, 10,10)} where
L, denote the length of a row. The performance metrics using
those different choices are reported.

We compare the performance of the new policy against that
of the traditional X/24 policy as the most appropriate baseline.
Since the performance of the traditional policy may also vary
with respect to different choices of X, here we use different
thresholds to see how the metrics vary accordingly.

Note that in both the traditional policy and the new policy,
we always configure 7" to 24, since tracking CEs in the past
24 hours is a universally-agreed choice in Windows, Linux,
and BIOS.

Figure [] plots the curves of the number of UEs avoided
versus the memory capacity loss due to page offlining by both
policies. As we can see from the figure, only a few UEs can
be avoided by the traditional policy with a reasonable cost of
memory capacity loss. The new fault-aware prediction-guided
policy consistently outperforms the traditional policy, avoiding
several times more UEs given the similar memory capacity
loss due to page offlining.

Table [[II] shows the numeric results of the default Windows
and Linux page offlining policies as well as some other policies
studied in [2]—[5]. In this table, we also introduce an auxiliary



TABLE III: Numeric results of the typical page offlining
policies.

Polic Memory capacity UEs Cost per UE
¥ loss (KB) avoided  avoided (KB)
1-error [2], [4] 724184 51 14200
2-error [2] 135244 40 3381
Repeat [2] 138436 28 4944
Proposed (g7 Lr,2,2) 17856 65 275
10/24 (Linux) 12740 11 1158
12/24+ [3] 12672 10 1267
Costa et al. 2014 3] 11644 15 776
Proposed (35 L, 3,3) 11616 59 197
16/24 (Windows) 7528 5 1506
18/24+ [3] 7560 5 1512
Proposed (75 Ly, 5,5) 8640 54 160

metric, cost per UE avoided in memory capacity loss, as a
measurement of efficiency in page offlining.

"1-error’ and ’2-error’ denote the simple policies of offlining
a page if 1 error or 2 errors have been observed in the page
[2], [4]. 'Repeat’ denotes the simple policy that offlines a

page once an address in the page experiences repeat errors [2].

Although those policies are able to avoid more UEs than the
default Windows or Linux page offlining policy does, the UE
avoidance is at the much higher cost per UE avoided, resulting
in a much lower efficiency of page offlining.

Furthermore, as long as a policy only considers the historical
CEs in an individual page, even if the pages are offlined in
the most aggressive manner using the ’1-error’ policy at an
extremely high cost per UE, it can only avoid 51 UEs at
most. The fault-aware prediction-guided policy examines the
historical CEs in a row that impacts multiple pages. Given the
additional visibility, the proposed policy is able to avoided 65
(27% more) UEs using the least rigid set of thresholds. At the
same time, the cost per UE avoided in page offlining is still
much lower than that by any of the other baseline policies.

In addition to the default policies used in Linux and Windows,
we also examine the performance of the X/24+ policy proposed
in [3]] which combines the error statistics with the hints from
prediction of future CE occurrences [[10]. However, the policy
still does not address the two weaknesses of the traditional
policy: 1) It only considers the CEs in the individual pages;
2) The hint comes from predicting future CEs, but not from
predicting future UEs. Table |l1If shows the performance of the
X/24+ policy with the appropriate parameters to reach the
similar cost of memory capacity loss to that by the traditional
X /24 policy. The performance is similar to that of X /24, much
worse than that of the new policy.

The policy proposed in [3]], denoted as *Costa et al. 2014°,
examines both the repeat CEs on the same location and the
time interval between the last two CEs. The policy targets at
avoiding chipkill CEs with page offlining. While a chipkill CE
likely indicates a severe hardware wear-out, avoiding chipkill
CEs is far from equivalent to avoiding UEs. The policy is not
aware of row faults and is not predictive of UEs. As a result,
though with a slightly better performance, it still performs
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Fig. 5: Number UEs avoided vs. memory capacity loss in KB
by the fault-aware only policy.

much worse than the proposed policy does.

In summary, comparing with the traditional policies, the
proposed fault-aware prediction-guided policy is able to avoid
several times more UEs at the comparable cost of memory
capacity loss. Comparing with the brute-force baselines (such
as the "1-error’ policy), the proposed policy is able to avoid
considerably more UEs with a much lower (more than one
magnitude lower when comparing with the ’1-error’ policy)
cost.

B. How UE Prediction Helps

We now examine the role that the UE prediction plays in
the proposed policy.

We start with an ablation study. In the ablation study, we
evaluate a fault-aware only policy which is not guided with UE
prediction. The policy infers row faults from CE observations
and offlines the pages impacted by the inferred faulty rows, but
does not check whether the faulty rows are prone to future UEs
or not. Figure [5 plots the curve of the number of UEs avoided
versus the memory capacity loss due to page offlining by the
fault-aware only policy. For a lower number of UEs avoided,
a larger memory capacity loss is required by the fault-aware
only policy. This indicates that without UE prediction, some
unnecessary page offlining actions are performed for faulty
rows which are not prone to future UEs.

We next examine how well the UE predictor performs in
row level UE prediction. Here, the prediction problem is to
predict whether or not a future UE will occur in a specified
row based on the past CE history. Note that in the problem
setting we disregard whether an UE is actually caused by a row
fault or not. We derive a row level UE predictor from the fault-
aware prediction-guided policy. We measure its performance in
terms of the common metrics of precision and recall. Over the
rows predicted to experience future UEs, precision measures
the percentage of rows with actual UEs in the future. A
higher precision implies that more likely the page offlining
operation triggered by the policy will avoid an actual UE in
the future. Over all the rows with actual UEs, recall measures



TABLE IV: Performance of the row level UE predictor derived
from the new policy and that of the page level UE predictor
derived from the traditional policy.

Precision Recall
Row level UE predictor
(&LT, 2,2) 3495%  33.33%
(35Lr,3,3) 48776%  30.26%
(75Lr,5,5) 60.00%  27.69%
(gLr,10,10) 60.42% 14.87%
Page level UE predictor
6/24 0.22% 7.18%
10/24 0.35% 5.64%
16/24 0.27% 2.56%
22/24 0.36% 2.56%

TABLE V: Comparison with the previous work on UE
prediction.

Prediction Input Precision Recall
level
(TT]  Server ~ CES memory events, coq ocr  79,~31%
Performance counters
[6] DIMM Micro-level CE data 45%~49%  24%~35%
(2] by Microlevel CE daia, % 63%~80%
boot time, etc.
[13]) DIMM Micro-level CE data ~ 27%~75%  26%~64%
Ours Row Micro-level data 35%~60%  15%~33%

and error bits of CEs

the percentage of rows predicted to experience future UEs. A
higher recall implies that more likely an UE will get avoided
by the page offlining policy.

For reference, we also derive a page level UE predictor
from the traditional page offlining policy, X/24. The predictor
targets the problem at a different level, i.e., predicting whether
or not a future UE will occur in a specified page based on the
past CE history.

Table shows the performance of the row level UE
predictor derived from the new policy and that of the page
level UE predictor from the traditional policy. The row level
predictor derived from the new policy achieves much higher
recall scores than the page level predictor derived from the
traditional policy does. (Note that the row level UE predictor
is preconditioned with an inferred faulty row and therefore
cannot cover UEs caused by other fault types.) This explains
why the new policy is able to achieve a better coverage in UE
avoidance. At the same time, the precision of the row level
predictor is two magnitudes higher. Although many pages are
offlined after identifying a UE-prone row fault, the new policy
still enjoys a much lower cost per UE avoided, as is shown in

Table

UE prediction has been studied empirically in [6]], [[1 L[|-[13].
The problem formulations in different studies are different.

Table [V] summaries the prediction levels, the input to the
predictors, and the performance reported in those studies for a
comparison with ours. Even though the UE prediction in this

TABLE VI: Discriminating the UE-prone row from the two in

Table

Row 1 Row 2
Row fault inferred Yes Yes
CEs with the right patterns 0 14
Predicted to experience future UEs No Yes
UE occurrence No Yes

paper is at the fine-grained row level, the predictor is able to
achieve a decent performance comparing with the other work
of UE prediction at the coarse-grained DIMM or server level.
(Note that UE prediction at the DIMM or server level does not
help for page offlining.) We attribute the decent performance
in such a challenging setting to the use of ECC knowledge
and error-bit information as well as the homogeneous dataset
with DIMMs from a same manufacturer.

In summary, UE prediction is an important component in
the new policy. The decent performance in UE prediction is
critical to the decent performance in avoiding UEs with a small
cost in page offlining.

C. Case Studies

We now re-examine the two real examples demonstrating the
weaknesses of the traditional policy in Section [III] to illustrate
how the new policy overcomes the weaknesses.

In the first example in Section [[TI] in row 0x1A37C, there
are more than 20 unique locations encountering CEs. The
locations span over a region with the length large than %Lr.
Even if we limit our focus on CEs in a time window of 24
hours, there are enough CE observations to infer that the row is
faulty. Furthermore, the number of CEs with a certain partially
correctable pattern matched but without any fully correctable
patterns matched also reaches the threshold 8. As a result,
in the new policy, before the occurrence of the UE, all the
pages associated with the row are offlined including the third
page shown in Table [] (i.e., the one with a 0-CE history).
Consequently the UE is avoided. This case study shows that
the new policy identifies the cross-page fault. It offlines a
page with a 0-CE history by properly comprehending the CE
information from other related pages to successfully avoid the
UE.

In the second example in Section [[II} row faults are inferred
on both the two rows based on their CE history, as is shown
in Table In the second row, 14 CEs match certain partially
correctable patterns but do not match any fully correctable
patterns based on the ECC knowledge. In contrast, in the first
row, none of the CEs is with a right pattern. As a result, the
second row is both faulty and UE-prone, and is offlined by
the new policy, but the first row is preserved without page
offlining. By predicting future UE occurrences, the new policy
does not waste the memory capacity loss on pages impacted
by a row which is not prone to UEs. Consequently it reduces
the cost in UE avoidance.

In summary, the two case studies demonstrate how the new
policy overcomes the weaknesses of the traditional policy



through inferring the underlying fault and predicting the
likelihood of future UE occurrences.

VI. OTHER RELATED WORK

Empirical studies on memory errors in clusters and data-
centers have been performed in, e.g., [2], [4]], [14]-[18]. The
observations from those studies on the dominance of hard
errors and the faults on micro-level DRAM circuits form the
basis of our work.

Predicting future memory failures (see, e.g., (6], [L1]-[13])
provides the opportunities to mitigate UEs, e.g., through
proactive DIMM replacement. Specifically, in [6] and more
recently in [13]], fault identification mechanisms are proposed
as the basis for UE prediction at the DIMM level. However,
error-bit information is not used in [6], [13]]. We enhance the
UE prediction with the error-bit information, extend the UE
prediction to the fine-grained level of rows in DIMMs, and use
that as the guidance of page offlining, a different mitigation
approach not explored in [[6], [[11]-[13].

In addition to software page offlining, hardware sparing
mechanisms can be employed to avoid memory errors such as
partial cache line sparing (see, e.g., [19]]), sparing at the row
or column level (see, e.g., [20]]), sparing at the bank or chip
level (see, e.g., [21]), etc. We believe that it is straightforward
to extend the proposed approach to a policy for hardware row
sparing.

VII. CONCLUSION

In this paper, we have proposed a new fault-aware prediction-
guided policy for page offlining. In the new policy, we use
the CE observations to infer the faulty status of a row. We
also examine the error-bit information of the CEs and leverage
the ECC knowledge to predict how likely a faulty row will
experience future UEs. The pages impacted by those UE-prone
faulty rows are offlined. Experimental results indicate that the
new policy outperforms the traditional policy significantly.
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