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IBM launched the Autonomic Computing (AC) initiative in October of 2001 as a call to action to address the massive 
complexity of information systems. The thesis was that the rate of advance of information technology was increasingly 
challenged by the complexity of deploying and operating useful information systems. The irony is that it is a problem born 
out of success: exponential increases in processor power, storage density, and communication speeds over the prior two decades 
had enabled incredible price performance improvements which, in turn, increased the appetite and demand for information 
technology. The concern was validated by numerous studies that indicated data center managers were typically spending over 
70 percent of their budgets on maintenance and operations, severely limiting the ability to deploy new and better systems. The 
problem was simply stated as: “. . . the growing complexity of the I/T infrastructure threatens to undermine the very benefits 
information technology aims to provide”1 and the response required was “. . . to design and build computing systems capable of 
running themselves, adjusting to varying circumstances, and preparing their resources to handle most efficiently the workloads 
we put upon them.”

At the time, the initiative was met with great fanfare from the press and industry analysts as well as major technology companies 
and academia. The technical community developed key architectural paradigms, open standards, and models of autonomic 
behavior for components and subcomponents as well as distributed systems as a whole. Nowadays the term autonomic computing 
is rarely heard in information technology conferences, press, and analyst reports. Clearly, it is no longer the industry buzz word 
of the day, which raises the questions: Was it just hype? A passing fad?

The answer is a resounding “No!” Continued focus and achievement in autonomic computing is alive and well in both the 
information technology industry as well as academia. The discipline of AC is a key, underlying technology in a wide range 
of industry initiatives, from hardware to software and from components to vast distributed systems. Perhaps the most visible 
example is cloud computing whose very viability depends upon self-managing technologies that enable the massive scale and 
dynamic operations inherent in deploying cloud computing. Sustained focus on self-management, higher levels of automation, 
and attacking complexity remains critical for the ongoing advancement of information technology.

I can think of no better demonstration of the ongoing health of autonomic computing than this issue of the Intel Technology 
Journal. The core concept of AC asserts that the key principles must be applied at every level of systems, from low level circuitry 
to end-to-end systems. As a leading provider of processing and communications technology, Intel shows in these articles AC at 
work across its broad spectrum of technology with impressive results. Applications of AC as diverse as fault diagnosis in circuitry, 
energy and power optimization, automated mechanical controls, chip design, wireless communications, and workload and 
resource management are presented. As a major force in the world of technology, Intel’s continued commitment to this arena is 
welcome news for consumers of information technology, which really includes all of us.

Alan G. Ganek
Information Technology Consultant
Formerly:
    Chief Technology Officer, IBM Software Group
    Vice President, Autonomic Computing, IBM
May 2012

Foreword
Alan G. Ganek
Information Technology Consultant

1Autonomic Computing Manifesto, IBM Research, October 2001
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Increased integration, high speed interconnects, and new technologies like 
corrupt data containment are making fault diagnosis more challenging in Intel® 
Xeon® processor based server platforms. At the same time, users are expecting 
higher reliability, availability, and serviceability from Intel Xeon processor 
based systems. This article highlights some of these challenges in fault isolation 
and proposes an autonomic framework based on fault diagnosis capability of 
current and the future generations of the Intel server platforms.

Introduction
Autonomics is about components that manage themselves. The modern data 
center is a very complex, dynamic, and heterogeneous environment. Autonomic 
computing (AC) concepts have their roots in the biological systems and 
suggest a way to deal with such complexity. As a result, the concept of  
the autonomic data center generates lot of excitement in the industry. For 
example, automation is one of the three elements of Intel’s Cloud 2015 Vision[1] 
and autonomics is a key component of automation. A true autonomic data center 
would be one that could operate itself such that it would meet stated business 
goals. Such a data center must translate business goals into an expected state 
and monitor the system state. If the observed state does not match the expected 
state, it generates and executes remediation plans as needed. Self-managing data 
centers reduce operational costs by minimizing human intervention. Designing 
a true autonomic data center is a very ambitious undertaking and must be 
decomposed into smaller problems. Generally, autonomic systems are said to have 
the following four attributes: self-configuration, self-optimization, self-protection, 
and self-healing. The self-healing aspect covers fault diagnosis and appropriate 
recovery actions. This article focuses on the fault diagnosis aspect and autonomic 
infrastructure built around fault diagnosis.

A modern data center consists of thousands of compute nodes (servers) and 
storage units that are stitched together by a network fabric. These building 
blocks are also complex systems themselves. For example, a server system may 
contain multiple processors with several cores, gigabytes of memory, high 
performance I/O cards and many software components. The horizontal nature 
of the computer industry means that these hardware and software components 
are sourced from multiple vendors. It is virtually impossible to ensure that a 
system as complex as the data center will be error free. Much attention has 
been given to being able to predict failures[2,3], but even the best predictive 
failure analysis (PFA) cannot predict all failures in a modern data center. As a 
result, system reaction to a failure is very important. After an autonomic system 

“Self-managing data centers reduce 

operational costs by minimizing 

human intervention.”

Mahesh Natu 
Data Center and Connected Systems 
Group, Intel Corporation

Narayan Ranganathan
Data Center and Connected Systems 
Group, Intel Corporation

Anil Agrawal
Data Center and Connected Systems 
Group, Intel Corporation
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fails, it must be possible to correctly diagnose the fault and fault diagnosis 
must, therefore, be an essential part of data center automation. The sources of 
failures include hardware, software, and operator errors. Hardware errors can 
be attributed to design, production, environmental, or aging factors. Advance 
detection of errors when the system is operational can reduce the downtime by 
scheduling a preventive maintenance. While advance detection is important, it 
is also required that the analysis take into account the root cause (source) of the 
failure that may not be isolated during the observed warning or failure state.

Fault diagnosis generally consists of the following three essential tasks[4]:

•• Fault detection: Detection of the occurrence of faults in the functional 
units, which lead to undesired or intolerable behavior of the whole system

•• Fault isolation: Localization of the fault to, say, a component. In 
some literature, the terms fault isolation and fault diagnoses are used 
interchangeably.

•• Fault analysis or identification: Determination of the type, magnitude and 
cause of the fault. Determine whether the fault is transient or permanent. 
This phase also involves root cause.

Identification of a failing component allows timely recovery via replacement, 
either automated or manual. In autonomic computing parlance, this is an 
example of self-healing. Self-healing is the ability of a platform to effectively 
recover when a fault occurs. This self-healing can be either reactive or 
proactive. A reactive self-healing platform attempts to correct or isolate a fault 
once it has occurred. If a hard memory error can be isolated to a memory rank, 
a platform can map out the particular memory DIMM allowing the system 
to continue functioning or alert the data center administrator that the faulty 
DIMM needs to be replaced. Accurate fault diagnosis reduces the mean time 
needed for repair (MTTR) and thus increases system availability. The output 
of fault diagnosis can be utilized to drive changes to the design of the system or 
the failing component in a proactive manner. 

From an autonomic computing perspective, the modern data center calls for a 
hierarchical system model where the top level autonomic elements themselves 
are constructed from smaller autonomic elements and so on. A data center that 
is manageable relies on autonomic computing, server and networking building 
blocks that are able to perform fault isolation. These building blocks in turn 
require autonomic capabilities in their ingredients. Since Intel processors 
provide the brains for the majority of servers and storage units, Intel is 
embedding capabilities in these processors that improve fault isolation of these 
systems. This article covers autonomics embedded in Intel processors that aid 
in fault isolation.

Background
Autonomic computing provides a framework for self-configuration and 
self-healing. Fault diagnosis, specifically, in-field diagnosis, has received a 
lot of attention, such as, for example, Microsoft WHEA, APEI specification 

“While advance detection is important, 

it is also required that the analysis 

take into account the root cause.”

“Self-healing is the ability of a 

platform to effectively recover when a 

fault occurs.”
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as defined by ACPI industry standard[5], Oracle FMA, and various BIST 
techniques. This article attempts to connect autonomics techniques to fault 
diagnosis. Fault diagnosis capability is maturing and the second generation 
of Intel Xeon processors with integrated IBIST logic is being deployed 
now[6]. Higher core counts and a higher level of integration within the next 
generation of Intel processors continue to drive the need to build advanced 
autonomic fault diagnosis hooks. Such capabilities will help in improving 
the fault prediction capabilities and minimizing the time required for remote 
diagnostics.

Despite best efforts, hardware components do fail in the field. The objective of 
autonomic fault diagnosis is to establish the baseline (what is normal), monitor 
fault symptoms, detect errors, identify failed components, plan and execute 
service calls before an unplanned system failure occurs or to minimize service 
outage. 

Figures 1 and 2 illustrate this concept using the autonomic computing 
framework at two levels. Figure 1 represents a data center (or a server pool 
within a data center) view. A data center, especially a cloud, can be abstracted 
as a provider of multiple services with mutually agreed upon service levels. As 
a result, data center level monitoring often boils down to measuring the service 
levels and determining if they meet the goals. If the service level falls below 
expectations, the data center automation software can examine server health 
logs and software error logs to determine the potential cause and work around 
it; possibly by finding an unused server to host the service. In order to manage 
complexity, data center level software needs to treat much of the individual 
node as a black box. In other words, more efficient management is possible 
if data center automation software can presuppose that the individual servers 
have autonomic capabilities such as the ability to isolate faults to an individual 
Field Replaceable Unit (FRU). Such a server is represented in Figure 2. The 
monitoring phase makes use of extensive error detection circuitry in the 
processor and other components. The section “Error Detection and Reporting” 
describes this circuitry in detail. The analysis phase examines the contents of 
error log registers and diagnoses the fault. Diagnosis includes determining 
whether the fault is permanent or not. The section “Challenges” goes over some 
of the challenging fault diagnosis scenarios. The planning and execution phases 
can attempt to work around permanent failure by various methods. If the 
server contains redundancy, the failing component can be mapped out on the 
fly. If the server does not contain redundancy, it may be possible to map out 
the component by rebooting in a degraded mode. If neither option is available, 
the system can be brought offline until the failing part is manually replaced by 
a technician.

“Higher core counts and a higher 

level of integration within the next 

generation of Intel processors continue 

to drive the need to build advanced 

autonomic fault diagnosis hooks.”
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Figure 1: Autonomic foundation for fault diagnosis – data center 
context
(Source: Intel Corporation, 2012)
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Figure 2: Autonomic foundation for fault diagnosis – server view
(Source: Intel Corporation, 2012)
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Terminology
In order to expand further it is important to define a few key terms such as 
failure, fault, and error. We borrow this terminology from Salfner[2].

Failures are commonly defined as follows: a system failure occurs when the 
delivered service deviates from the specified service.

Failures are observable by the user, which can either be a human or another 
machine. Prior to observing a failure, things may go wrong inside the system, 
but as long as it does not result in corrupted output, there is no failure.

“A system failure occurs when the 

delivered service deviates from the 

specified service.”

“Failures are observable by the user, 

which can either be a human or 

another machine.”
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Faults on the other hand are the root cause of failures and are defined to be 
a defective (incorrect) state. Often faults remain undetected for some time. 
Once a fault has become visible it is called an error. Often errors are called a 
manifestation of faults. Figure 3 shows the relationship between faults, errors, 
and failures in the context of a managed server.

“Once a fault has become visible it is 

called an error.”

Figure 3: Relationship between fault, error, and failure
(Source: Intel Corporation, 2012)
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The key point is that faults are unobserved defective states. Faults can be made 
visible through any of the following three stages:

•• Auditing (CRC, parity, checksums of data structures)

•• Detection (various types of errors: corrected, recoverable, fatal) – Detection 
gets a lot closer to the source of a fault and is more precise in nature 
compared to symptoms.

•• Monitoring symptoms – Symptoms, by their very nature, provide hints 
and are much less precise than detection. Monitoring symptoms becomes 
important when the ability to observe raw error sources is limited. Intel 
Xeon processors strive to provide firmware and software with good 
detection capabilities and thus minimize reliance on symptoms monitoring. 

“Faults are unobserved defective states.”
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Such a design leads to better fault diagnosis. Due to this de-emphasis on 
monitoring, Figure 3 does not include a symptom monitoring block for 
clarity. However, there are error scenarios that are not handled by detection. 
For example, an ROB timeout (see the section “Instruction Retirement 
Watchdog Timeout”) can be indicative of a faulty interconnect or faulty 
hardware or a software bug.

A good example for this is memory fault: consider a fault where one of the 
DRAM devices on a DIMM has failed. If read/write operations do not access 
that DRAM device content, the fault remains unobserved. Auditing would 
make it visible. Memory patrol scrubbing in Intel Xeon processors is an 
auditing technique. The memory patrol scrubbing engine walks through the 
entire memory in the background. Scrubbing would bring the device failure 
to light. In absence of ECC, such auditing would result in an uncorrected 
error and a system failure would occur. If features such as ECC and Single 
Device Data Correction are implemented (self-healing capabilities), the 
system can work around a manifestation of this fault. In all these cases, Intel 
Xeon processors detect and log the error. Once several DRAM devices have 
failed, and an attempt is made to read data from it, an uncorrected error is 
detected. In the case of “Independent memory channel” mode, this would 
lead to system failure. In case features like mirroring are implemented (called 
a self-configuring feature), then the desired service of data delivery can still be 
fulfilled and hence no failure occurs.

Another interesting aspect of the precise definition of fault, error, and failure 
is that usually there is no one-to-one mapping among faults and errors: several 
faults may result in one single error or one fault may result in several errors. 
The same holds for errors and failures: some errors result in a failure and some 
errors do not. Even more complicated are cases where some errors only result in 
a failure under special conditions, and some faults may cause failures directly. 
Moreover, some faults remain inactive for the entire system lifetime. 

For this reason, two distinct areas of research have evolved: root cause analysis 
and failure prediction. Having observed some misbehavior by one of the means 
shown in Figure 3, fault diagnosis tries to identify the fault that caused an error 
or failure, while failure prediction tries to assess the risk that the misbehavior 
will result in future failures. Fault isolation is similar to root cause in that it 
attempts to localize the source of failure to a specific component or module in 
the system.

Fault Isolation Capabilities of Intel® Xeon® 
Processor Based Platforms
Since the launch of Intel® Xeon® processor 5500 family products (code 
name Nehalem), Intel has been leading the industry in delivering efficient 
performance (per watt and per dollar) and scalable platforms. Besides higher 
core count and innovative power management, another dimension of Intel 
innovation is a drive towards higher level of integration (such as integrated 

“Memory patrol scrubbing in Intel 

Xeon processors is an auditing 

technique.”

“usually there is no one-to-one 

mapping among faults and errors.”
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memory controller, graphic controller, and I/O module) within the same 
processor package. Besides the benefits of a higher level of integration, there 
is a challenge to overcome—a higher level of integration can lead to a higher 
probability of fault and reduced observability for platform debugging and fault 
isolation. Future process-shrink and operating voltage reduction will make 
the fault isolation even more challenging. In order to address this challenge, 
more sophisticated error handling capabilities will be required at the silicon 
level to improve the fault isolation capability, thus reducing the downtime and 
thereby improving the availability and serviceability. After successful launch 
of Nehalem product family, the Intel Xeon processor E7 product family was 
released with even more advanced RAS features addressing this challenge[7]. 
Intel has pursued a three-pronged strategy when it comes to fault isolation:

•• Enhancements in error detection and reporting – This covers machine 
check architecture, memory error reporting, and I/O error reporting. These 
capabilities allow software to capture detailed system state at the time of 
error. From this state, software can localize the fault to a component and 
attempt root cause analysis. This topic is covered under in the section 
“Error Detection and Reporting.”

•• Improvements in diagnostics capabilities – These include interconnect tests 
like IBIST. Software can trigger these on a failing system to get a more 
accurate diagnosis. The section “Interconnect Diagnostics” describes IBIST.

•• Drive new standards that enable multiple software components to interact 
and share knowledge – Platform firmware and the operating system 
have visibility into different parts of the system. Platform firmware has 
a better understanding of the physical aspects (for example, types of 
DIMMs), whereas the operating system has more knowledge of the logical 
aspect (memory page allocation). The Firmware First model[5] enables a 
hierarchical error detection model that benefits the system. The section 
“Error Handling Software Models” goes over these.

This section first provides a review of the error classification, then describes 
the various error handling capabilities that exist in current generation of Intel 
Xeon processors targeted for compute infrastructure (such as cloud computing, 
high performance computing, and mission critical computing). It also draws a 
parallel between the Intel Xeon and Intel® Itanium® error handling architecture 
and highlights a few key challenges faced by the Intel Xeon processor 
architecture as Intel drives towards a higher level of integration with every 
generation of process shrink.

Error Classification
Errors can be classified within two broad categories: detected errors and 
undetected errors (Figure 4). Undetected errors are important because none 
of the error handling features would help in addressing such errors. Often 
undetected errors are classified as silent data corruption (SDC). One of the 
key objectives of a system designer is to minimize the SDC rate. As shown in 
Figure 4, not all undetected errors are critical; for instance, an undetected error 
within branch prediction logic may not impact the integrity of the computation. 

“Intel has pursued a three-pronged 

strategy when it comes to fault 

isolation.”
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Figure 4: Error classification
(Source: Intel Corporation, 2012)
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Once an error is detected, hardware will try to correct the errors, for example, 
memory single bit error (SBE) correction using ECC bits. This also includes 
the corrected errors that require firmware/software assistance, such as PCIe 
Link Layer Retry. In many cases, hardware/firmware/software may not be able 
to correct the errors; such errors are called as uncorrected errors (UCEs). Often 
uncorrected errors are classified as detected but uncorrected errors (DUEs). 
There are UCEs that may be recoverable with the help of system software and 
are classified as uncorrected recoverable errors (UCRs). The errors that are not 
software recoverable are called fatal errors since they prevent reliable system 
execution. Finally there are certain errors classified as catastrophic, where 
a system reset is required to bring system back to predictable state, such as 
processor internal errors (IERRs).

Error Detection and Reporting 
This section covers the various error detection and reporting capabilities in 
Intel platforms.

Machine Check Architecture
Beginning with the Intel® Pentium Pro processor, Intel incorporated Machine 
Check Architecture (MCA) and has continued to enhance the MCA feature in 
subsequent processor families such as Intel Xeon and P6 family processors[18]. 
The Intel Itanium processor family innovated further and incorporated 
advanced Machine Check Architecture[9]. The MCA feature provides a 
mechanism for detecting and reporting hardware (machine) errors, such as: 
system bus errors, memory errors, parity errors, cache errors, and Translation 
Look-aside Buffer (TLB)errors. It consists of a set of model-specific registers 
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(MSRs) that are used to set up machine checking and additional banks of 
MSRs used for recording errors that are detected. Figure 5 shows an example of 
MCA registers configuration.

Figure 5: Machine Check Architecture error reporting registers
(Source: Intel Corporation, 2012)
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Once MCA is enabled, it will always log an error as soon as an error  
is detected. However, MCA will signal an error based upon the settings  
of the MCA Control register (IA32_MCi_CTL) and the types of error. 
Signaling of an error typically involves interrupts and assertion of an  
external pin.

The processor signals the detection of an uncorrected machine-check error by 
generating a machine-check exception (#MC), which is an abort class exception. 
The implementation of the MCA does not ordinarily permit the processor to be 
restarted reliably after generating a machine-check exception (MCE). However, 
the MCE handler can collect information about the machine-check error from the 
machine-check MSRs. Starting with the Intel Xeon processor 5500 family, the  
processor can report information on corrected machine-check errors and deliver 
a programmable interrupt for software to respond to MC errors, referred to 
as a corrected machine-check error interrupt (CMCI). Starting with the Intel 
Xeon processor E7 family, the processors supporting machine-check architecture 
and CMCI may also support an additional enhancement, namely, support for 
software recovery from certain uncorrected machine-check errors. The MCA 
handler flows within the Intel Xeon processor family differs from that in the 
Intel Itanium processor family and these are briefly described in the section 
“Error Handling Software Models.”
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Memory Error Reporting
Intel Xeon offers the additional capability of logging and signaling memory 
corrected errors for BIOS/firmware use. BIOS/firmware can program a 
threshold for the corrected error count. Once exceeded, the processor issues 
an interrupt to the BIOS/firmware allowing it to take appropriate action. 
Such threshold-based implementation is very simple and power efficient; 
however, it has its own limitation. Since typical servers operate 24/7 for many 
years, even in a highly reliable design, a certain level of corrected errors are 
unavoidable and will accumulate over time, thus triggering a “false alarm.” In 
order to address this issue, the Intel Xeon processor has incorporated a more 
sophisticated algorithm known as the “leaky-bucket algorithm” (shown in 
Figure 6) where corrected errors are periodically decremented automatically 
by the processor. This leaky-bucket autonomic capability eases BIOS/firmware 
implementation of the memory failure prediction algorithm.

Figure 6: Memory-corrected error reporting using leaky-bucket algorithm
(Source: Intel Corporation, 2012)
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PCI Express* Advanced Error Reporting
The server platforms based on the Intel Xeon processor 5500 product family and 
Intel Xeon processor E7 product family used a dedicated chip called the IOH 
(Input Output Hub) for various input/output functions such as PCI Express* 
(PCIe) interconnects. This IOH chip incorporated advanced error reporting 
(AER) capability as per the PCI Express specifications. The IOH chip incorporated 
additional error logging capability above and beyond the errors defined in the 
PCI Express Specification. In addition to the PCI Express cluster, this chip also 
incorporated the Intel® QuickPath Interconnect (Intel® QPI) interface connecting 
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to the processor, cache structures for packet buffering and Intel® Virtualization 
Technology for Directed I/O (Intel® VT-d) functions. All these additional 
capabilities also required error detection and logging enhancements, which were 
also provided as part of the PCIe advanced error reporting. See Figure 7 for a 

Figure 7: PCI Express AER and additional local error reporting
(Source: Intel Corporation, 2012)
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high level block diagram of the advanced error reporting. Following is a high level 
summary of IOH error detection and reporting capability:

•• Detects and logs errors within coherency interfaces, PCI Express interfaces, 
ESI interface, IOH core logic, Intel VT-d, and miscellaneous.

•• Provides the capability to mask error detection and reporting at the 
individual error level

•• Local error reporting registers first log the status of corrected, nonfatal 
(recoverable), and fatal errors within these individual submodules.
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•• First and next error detection and logging for fatal and nonfatal errors. 
Additional header information is logged for the first reported error.

•• Allows flexible mapping of the detected errors to different error severity

•• Allows flexible mapping to various kinds of signaling: SMI, NMI, MCA, or 
ERROR_N[2:0]pins.

•• Incorporates PCI Express specifications–based advanced error reporting 
with following key features:

°	 Detects, logs, and signals errors received from the downstream devices. 
Signaling is done via Message Signaling Interrupt (MSI) at the local root 
port level. This is considered an architecturally defined error reporting 
mechanism and expected to be compatible with existing OS-based error 
handling software. Refer to Figure 8 for a list of errors detected. The 
processor is capable of reporting several additional internally generated 
errors. 

°	 Provides the capability to mask error detection, thus preventing further 
reporting to architecturally defined error handling software.

°	 Allows flexible mapping of the detected uncorrected errors to different 
error severity (nonfatal and fatal).

Figure 8: PCI Express specification–defined error types supported by Intel® Xeon® 
processors
(Source: Intel Corporation, 2012)
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•• AER error logging, signaling via SMI/NMI, subsequent error clearing, and 
rearming of the error logging logic attempts to accomplish following:

°	 Coalesce multiple errors of the same type, severity, and from the 
same submodule to issue a single interrupt thus preventing multiple 
interrupts for same kind of error event

°	 Prevent missing any interrupt due to an error from a different 
submodule, or of a different type and different severity.

°	 Allows clearing of logged errors and simultaneously logging any new 
error thus preventing loss of any valid errors

In addition to implementing PCI Express specification defined error types, 
Intel Xeon platform IOH (Input Output Hub) incorporates logic to detect 
several additional errors types to improve the system serviceability. Figure 8 
shows the PCI Express specification–based error types available in Intel Xeon 
platform IOH.

Interconnect Diagnostics
The industry is moving to faster interconnects. These naturally pose many 
challenges due to reduced electrical margins and they also lead to increased 
probability of interconnect-related faults. For example, faster interconnects 
are generally more susceptible to lane-to-lane crosstalk. At the same time, 
traditional methods for fault monitoring (such as test points) can no longer 
be used because they greatly perturb the interconnects to be monitored. 
Interconnect Built-In-Self-Test (IBIST)[6] enable detection of interconnect-
related faults. At the highest level, IBIST is an on-die feature (integrated into 
Intel processors and chipsets) that enables chip-to-chip interconnect testing. 
It uses a finite state machine (FSM) to produce precise, deterministic, and 
arbitrary patterns on the I/O bus for testing purposes. It addresses both the 
static and high frequency fault spectrum associated with high performance bus 
topologies. When applied to PCIe, this means IBIST bypasses 8b10b encoding, 
stressing the “raw bus” margin without 8b10b encoding protection. In 
addition, pattern depth (120 bits) and width (2 to 4 lanes) are picked based on 
empirical link analysis and prior Bit Error Rate Testing measurement standards. 
The pattern richness is based on a prior known worst-case pattern and Bit Error 
Rate Testing methodology. For example, it is customary during early test chip 
and PCI Express specification development to run 2-4 lanes with different 
random and deterministic patterns. When applied to Intel QPI, IBIST 
supports protocol redundancy features that include failover clock, slow mode to 
fast mode, and so on. When applied to DDR, IBIST supports advanced DDR 
DIMM training patterns that allow the user to create and measure stress on 
address lanes.

As opposed to traditional diagnostic approaches using debug probe points, 
the on-line diagnostics approach provides a layered approach to access on-die 
features. 

IBIST can greatly improve in-field diagnostics. Systems deployed at a customer 
location could fail due to interconnect-related faults, environmental stresses, 
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or silicon aging. Moving the failed system from the host environment to a 
service center may affect the reproducibility of the failure and may not be cost/
time effective. In-situ debug enables more effective and rapid fault diagnosis 
isolation and allows execution of appropriate healing techniques to remedy the 
failure if feasible. An efficient fault isolation mechanism reduces the No Defect 
Found (NDF) conditions by lowering the field returns of expensive parts like 
processors and memory DIMMs. In addition, IBIST hooks in Intel silicon can 
be leveraged to proactively monitor interconnect health and configure tests 
remotely. This improves the availability of the system and creates an efficient 
serviceability environment. In case of mission-critical systems, emergency 
response can be immediate and failures can be prevented without delay.

Error Handling Software Models
BIOS/firmware needs to be an integral piece of fault isolation because it 
carries knowledge about the specific hardware and has better visibility into 
the physical aspects of the server. On the other hand, the operating system 
manages allocation of compute resources to various applications and has 
better visibility and control into logical aspects of the server. Cooperation 
between these two entities leads to better fault diagnosis. As a result, Intel 
has been actively participating in definition of robust firmware–operating 
system interfaces[5,9]. Intel Xeon processor–based platforms and Intel Itanium 
processor–based platforms differ in their error handling firmware models. 
Intel Itanium processor–based platforms implement clearly defined hardware/
firmware abstraction layers allowing a streamlined Firmware First Model (FFM) 
for error handling[8]. However, since Intel Xeon processor architecture has 
evolved over time it carries several legacy implementations that create challenges 
in implementing a streamlined FFM model for error handling. This section first 
briefly describes the Intel Itanium processor family firmware model and then 
draws a parallel with that of the Intel Xeon processor family firmware model. 
We also highlight a few key challenges in developing a robust FFM model.

Intel® Itanium® Processor Family Firmware Model
The Itanium architecture defines three firmware layers: the Processor 
Abstraction Layer (PAL), the System Abstraction Layer (SAL), and the Unified 
Extensible Firmware Interface (UEFI) layer.

•• PAL encapsulates processor functions that are likely to change between 
processor implementations so that SAL firmware and operating system 
software can maintain a consistent interface to the processor. These 
include non-performance critical functions such as processor initialization, 
configuration, and error handling.

•• SAL is the platform-specific firmware component provided by OEMs and 
firmware vendors. SAL provides runtime services to the OS and provides a 
consistent implementation-independent interface to the operating system.

•• UEFI is the firmware layer that provides a legacy-free API interface to the 
OS loader for boot and runtime services. SAL and UEFI isolate the OS and 
other higher level software from implementation differences in the platform.
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PAL, SAL, and the OS work together to handle machine check aborts, 
processor corrected errors, and platform-corrected errors. Figure 9 provides an 
overview of how the firmware and OS interact for machine check handling.

Figure 9: Intel® Itanium® processor family error handling firmware model
(Source: Intel Corporation, 2012)
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Intel®Xeon® Processor Family Firmware Model
The Intel Xeon processor product family error handling firmware model is 
shown in Figure 10. The processor firmware layer essentially includes the 
built-in firmware that provides an interface for BIOS/firmware to access 
various MSRs (Model Specific Registers) and CSR (Configuration Specific 
Register). As shown in Figure 10, one key differentiating aspect of the Intel 
Xeon processor error reporting architecture is the parallel logging and signaling 
of corrected and uncorrected errors to BIOS/firmware and OS. While this 
approach fosters industry innovation and retains compatibility with legacy 
software, it also causes an issue when both OS and BIOS/firmware attempt 
to develop similar diagnostics features accessing the same information from 
the processor, such as predictive failure analysis using memory-corrected error 
logs. In order to build a robust error handling model, it is more appropriate to 
develop a streamlined Firmware First Model. Intel Xeon processor E7 product 
family takes a step in this direction by implementing logic where MCE 
signaling would always result in, first, issuing a System Management Interrupt 
(SMI) to the BIOS/firmware, thus allowing it to process error logs before 
subsequently allowing an OS-based MCA handler to handle the errors that 
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BIOS/firmware was unable to handle. A similar approach for corrected errors 
would also be desirable in the Intel Xeon processor families.

Figure 10: Intel®Xeon® processor family Error Handling Firmware Model
(Source: Intel Corporation, 2012)
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Challenges
Despite the extensive infrastructure that is described in previous sections, there 
remain certain challenges in the area of fault diagnosis. This section describes 
two such scenarios.

Instruction Retirement Watchdog Timeout
Processor instruction retirement watchdog timeout (also known as three-
strike timeout) is one example of a failure scenario that is notoriously hard to 
diagnose[10]. From the system standpoint, even though the processor generally 
supports out-of-order execution, instructions are retired in order to ensure 
correctness of program execution. If the processor is unable to retire an 
instruction in 10–15 seconds, the processor determines that it is not able to 
make forward progress, asserts the CATERR pin, and stops execution.

Fault isolation for this error case is challenging for several reasons:

•• Timeout is a symptom (see the “Terminology” section) and therefore less 
precise than detected errors. As with any symptoms, there is a chance that it 
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may not correspond to a real error. A large timeout value must be chosen so 
as to minimize false positives. 

•• Generally speaking, the time elapsed between a transaction failure and the 
corresponding error signaling is equal to the timeout value. Fault isolation 
involves walking backwards from the signaling point to the point of fault. 
In many cases, root cause analysis must consult the context prior to the 
fault; that is, capture transactions prior to the failing instruction. Since it 
is not possible to predict which instruction may timeout, proper analysis 
would require the system to keep a running log of transactions for the 
duration of the timeout. Since the processors and interconnect operate at 
GHz frequencies, it is generally not possible to keep such a running log. 
Moreover, such analysis might require visibility into the state of other 
internal structures (like internal queues) around the time of failure, which 
can be both challenging and difficult, if not impossible, to reconstruct at a 
later time.

•• Since the point of fault and signaling could be far apart in time, it is 
difficult to sort out component interdependencies. Empirical evidence 
shows that the source of the error is often outside the processor even 
though the processor is the one reporting the error. For example, it has been 
observed that an I/O card hang can manifest itself as a retirement timeout. 
When an I/O card hangs, the CPU instruction that accesses it (for example 
a load operation or I/O port read/write) will not complete and it triggers 
a retirement watchdog timeout. It is possible that the I/O card hang could 
be either the result of a hard error in the I/O card or buggy software that 
placed the card in a bad state or something else. This problem is mitigated 
by implementing a hierarchical timeout scheme that provides better insight 
at component boundaries.

•• Capturing system state at the signaling point itself may be challenging. The 
timeout is an unrecoverable error condition and may cause system pathways 
to be blocked. As a result, the error registers may either be inaccessible or 
the system may not be able to guarantee reliable access to the error log 
registers. This issue is often addressed by providing dedicated, sideband 
pathways to the error registers. If an I/O card hang is responsible for the 
failure, the error detection logic on the I/O card itself is also affected and 
may not log any event. A system reset can reopen sensor access, but a reset 
may destroy part of the system state and thus hamper fault diagnosis. 

•• Intel processors and chipsets contain various hooks that can be used for 
identifying faulty components in these cases. However, fault isolation and 
determining root cause often requires intimate knowledge of processor 
internals. These internal details often change from one generation of 
the processor to another. In many cases, Intel struggles with making 
such internal details of the chip available to external parties, even under 
nondisclosure agreement (NDA). In some cases, Intel customers may 
not have any interest and/or may not have the resources necessary to 
process these details. In addition, exposing raw data without any analysis 
and abstraction does not align well with the principles of an autonomic 
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computing system. An autonomic computing system is expected to 
perform and manage itself as much as possible and hide complexity from an 
external agent. Khanna et al. propose Diagnostics Hardware Abstraction[6] 
(DHA) as a solution. When applied to processors and chipsets, DHA 
can provide a generic set of APIs that provide platform manufacturers 
access to fault diagnosis primitives without having to worry about internal 
implementation details like registers. DHA enables portability across 
platforms and architectures and more accurate fault isolation. One example 
of a DHA API could be a function that examines the internal state of the 
processors upon an instruction retirement watchdog timeout and identifies 
the most likely source of the fault.

Data Poison Forwarding
Data poisoning (known as Corrupt Data Containment) is a method for 
synchronously signaling an uncorrectable error with the data from a source 
of data to its destination. The data poisoning technique is commonly used 
in mainframes and high-end servers[8]. It is now finding its way into x86 
processors. Data poisoning generally provides two benefits[11]: (1) reduction in 
the number of false DUEs and (2) better error localization. Typically, the data 
poison indication is a bit per a certain granularity of data. The data granularity 
is implementation dependent. The source of the data, upon discovering an 
uncorrectable error on that data, would set the poison bit and this poison 
indication would travel synchronously with the data to its destination (the 
requester of that data). Upon receiving poisoned data, the onus of what to do 
is on the final consumer (receiver) of that data. As an example, the core, doing 
a load operation, is the final consumer of that data. The consumer has three 
options:drop the data and signal an error, drop the data without signaling an 
error, or consume the data without signaling an error. As an example, a core 
that gets poisoned data on a demand read should signal the error, whereas for a 
prefetch read, it may drop the data and not signal an error with no immediate 
consequences. As another example, a graphics device that gets poisoned data 
may consume the poisoned data since an error on a single pixel does not have 
to bring the whole system down.

When data poisoning is enabled, the producer of the data does not signal an 
uncorrectable error. It signals a lower severity, lower priority error and relies 
on the consumer to signal a high priority/high severity error. The poisoned 
packet may travel through one or more intermediate agents before it reaches 
the consumer. For example, the packet may travel over Intel QPI or may be 
temporarily stored in cache hierarchy. These intermediate agents are able to 
observe the poison bit but will not report a high severity error.

Even though data poisoning reduces false DUEs, it introduces challenges in 
implementing strong fault containment. Poisoned data can cross component 
boundaries and the detection may be deferred until it is consumed. Addition of 
sensors at key component boundaries can provide the missing data pieces, but 
connecting these pieces for fault diagnosis purposes remains challenging because 
it requires a deep understanding of how transactions flow inside of the processor. 
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For example, the entity performing the fault diagnosis may need to understand 
the complex caching policies and performance enhancements such as prefetching. 
A robust framework such as DHA is expected to address this challenge.

Future
Increased computing demand is driving the complexity of computing systems 
used in modern data centers. From the time these sophisticated computing 
systems are powered on, it is expected that these systems would operate 
24/7 for several years. During the whole lifespan, the state of the computing 
system changes dynamically. Classical reliability theory and conventional 
methods rarely consider the actual state of a system and are therefore not 
capable of reflecting the dynamics of runtime systems and failure processes. 
The distinction between “healthy” and “broken” is often indistinct and fuzzy, 
and often there is a gradual transition between these two states; a system 
often does not break down recognizably but deteriorates over time. Thus 
we can say there is a fuzzy zone, a degraded state, separating acceptable and 
unacceptable behavior of a system, which again depends on user preferences 
and environmental changes. To allow for the dynamic properties of modern 
computer systems, online failure prediction incorporates measurements of 
actual system parameters during runtime in order to assess the probability 
of failure occurrence in the near future in terms of seconds or minutes. 
Simultaneously, modern systems are often designed to be fault tolerant and 
include hooks to facilitate both manual and automatic reconfiguration and 
repair from events that cause the system to violate its requirements and 
functionality. Going forward, it is our intent to pursue areas like the ones 
outlined below to improve overall fault diagnosis, system reliability, and health.

Improved Fault Classification
Successful reconfiguration or repair largely depends on accurate fault diagnosis; 
that is, correctly identifying the modules exhibiting the observed erroneous 
behavior. Many algorithms, including those discussed in earlier sections of this 
article, exist for autonomic diagnosis. More importantly, merely identifying the 
hardware modules affected by or exhibiting the faulty behavior is not sufficient 
and it is desirable to further classify the faulty behavior as either permanent 
or transient or induced from another module. Further, the fault treatment 
for these cases often needs to be different. For example, with a transient fault, 
where a module might only momentarily be prone to behaving erroneously, 
one might choose to deal with it by allowing future use of the affected module 
after recovering any data error caused by the transient fault, but not so for a 
permanent fault. It is not uncommon for modules to be replaced as faulty but 
later proven to be free from permanent faults, when tested in the repair shop. 
Many vendors including processor vendors and DIMM vendors report that 
they cannot find any defects in the returned parts.

Treating transient faults as permanent can, thus, have a high cost. The cost 
of unnecessary component replacement includes the cost of the component 
itself, the labor cost, and indirect costs resulting from system downtime. 
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Customers are often not aware of these hidden costs and insist on replacing any 
component that has exhibited an uncorrectable error. 

Previous work in this space[12] suggests that in many computer systems, 
transient faults are often the cause of errors in a great majority of cases. 
Published measures of the ratio between the frequencies of transient and 
permanent faults can vary from 4 to 1000. However, discriminating between 
transient and permanent faults is often difficult. Designers have used several 
techniques, spanning from simple retry to thresholding. They count errors, and 
when the count crosses a preset threshold a permanent fault is assumed[13,14]. 
For channel errors, a retry is generally effective. Pizza et al. have proposed 
a procedure based on Bayesian inference and takes into account factors like 
test coverage and rate of occurrence of faults to achieve a more optimal fault 
classification[15]. More work is needed in this area before customers relax the 
current requirement to swap out any component with an uncorrected error.

Efficient Distributed Diagnosis
Probing is a mechanism that is commonly used to get information from the 
system in order to monitor its health. In order to achieve better system health 
monitoring and improved diagnosis of the system on-line, it is necessary to 
improve the observability of the system by deploying more and specialized 
probes, sensors, and diagnostic agents on system components. Given the highly 
interdependent nature of system components, it is extremely important to 
make these diagnosing agents work together with consistency and efficiency, 
or efficient distributed diagnosis. The general idea is to use sensor readings 
together with mathematical models of the system to predict the health of the 
system and generate real-time actionable information. 

Optimal Placement of Sensors
While it is generally desirable to have as many observation points as possible, 
there is usually an upper limit imposed due to impact on system cost, 
functionality, and performance. Hence, it is important to have an optimal 
placement of the available sensors and agents in order to maximize the ability 
to detect a failure as close to the error source as possible. One needs to identify 
what the key points in the system are for adding these sensors. This subject of 
optimal sensor placement (OSP) has been addressed extensively in literature 
for aerospace structures, process control industry, nuclear power plants, and 
physical infrastructure like bridges. It might be instructive to study the above 
in order to learn what might apply to computer systems. For example, as 
mentioned in the earlier poison forwarding discussion, optimally placing poison 
sensors at key component boundaries can help with better poison fault isolation.

Better Error Correlation and Analysis through Modeling Techniques
System components are largely interdependent. Hence, we need to employ 
modeling techniques that can represent and identify these interdependencies 
while isolating the faulty component. The predictability model should 
incorporate all components irrespective of the health coverage in order to 
predict the fault sequence and transitions. This can be done by creating the 
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model along with a profile that correlates the states based on observation 
points from covered components. Training then hardens the profile and 
evaluates missed and correct predictions. Many different models are possible 
and have been explored. Patterson-Hine et al. propose a coarse-grain, graphical 
dependency model in the context of an aviation subsystem[16]. In that case, 
the interfaces and dependencies between subsystems and their components 
were determined and modeled using multisignal flow graphs. The multisignal 
modeling methodology is a hierarchical modeling methodology where the 
propagation paths of the effects of a failure are captured in terms of a directed 
graph. Propagation algorithms convert this graph to a single global fault 
dictionary for a given mode and state of the system. This dictionary contains 
the basic information needed to interpret test results and diagnose failures 
reported by the monitoring system. Multisignal modeling allows the modeler to 
hierarchically describe the structure of a system and then specify its functional 
attributes via signals. This is ideally suited for building accurate low-cost models 
that can be used by a reasoner in real-time to interpret test results and assess 
system health. Khanna et al. proposed use of models like HMM (Hidden 
Markov Model) to correlate the system test-point observations, mortality 
characteristics, and state transitions to predict the most probable hidden fault 
state sequence[17]. Such a modeling scheme consists of creating the HMM 
components comprised of observed states, hidden states, and HMM profiles. 
Observed states are created using the RAS indicators or observation points (for 
example, BIT Errors per PCI Express transactions). Hidden states are created 
by identifying the clusters of failure-prone components that can be inferred by 
the observed state probabilities. An HMM profile that consists of transition 
probabilities and observation symbol probabilities is created by training using 
initial data and re-estimation with the system usage on multiple systems. HMM 
is found to be more sensitive to change detection than pure discriminative 
methods and also increases the quality of the model by constantly updating the 
temporal correlations. Key steps involved in HMM modeling are:

•• Creating observed states that are analytically or logically derived from the 
RAS indicators. These RAS indicators are test-points spread all over the 
system. For example, there are BER sensors for interconnects, thermal 
sensors for sockets, voltage sensors, and so on. 

•• Creating hidden states by clustering the homogeneous behavior of single 
or multiple components together. These components are comprised of 
compute nodes, I/O nodes, memory devices connected by interconnects, 
power rails, switches, and so on.

•• Creating a hidden state transition probability matrix using prior knowledge 
or random data. This prior knowledge combined with long term temporal 
characteristics form an approximate probability of failed components 
transitioning from one failure state to another in the same component or a 
different component.

•• Creating an instantaneous observation probability matrix that indicates the 
probability of an observation, for a given hidden state.
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Controlling how much power server machines draw has become increasingly 
important in recent years. The accuracy and agility of three types of actions 
are critical in power governance: (1) selecting which hardware elements must 
run at what rates to meet performance needs of software, (2) assessing how 
much power must be expended to achieve those rates, and (3) adjusting the 
power outlay in response to shifts in computing demand. Observing how 
variations in a workload affect the power drawn by different server components 
provides data critical for analysis and for building models relating quality of 
service expectations to power consumption. This article describes a process of 
observation, modeling, and course corrections that is successful in achieving 
autonomic power control in an Intel® Xeon®E5-2600 server machine meeting 
varying response time and throughput demands during the execution of a 
database query workload. The process we describe in the article starts with 
fine-grained power-performance observations permitted by a distributed set 
of physical and logical sensors in the system. These observations are used to 
train models for various phases of the workload, with accuracy between 97 and 
98.5 percent. Once trained, system power, throughput, and latency models 
participate in optimization heuristics that redistribute the power to maximize 
the overall performance/watt of the server.

Introduction
It has become vital to sharply curtail the power that servers consume during 
periods of low utilization. The volume of information that must be processed 
in real time has been growing geometrically[18] over the past few years, requiring 
peak processing capabilities to rise in concert. Despite superior performance 
per watt that newer platforms deliver, handling peak loads continues to 
require higher power delivery and heat dissipation capacities per cubic 
meter in enterprise IT and datacenter facilities, with 63 percent of the total 
cost of ownership going towards powering, cooling, and electricity delivery 
infrastructure[15]. In contrast to the traditional focus on delivering the highest 
throughput or lowest response time unconstrained by power, these realities 
have made it a more compelling proposition to minimize the amount of 
energy consumed in relation to computational work performed while meeting 
responsiveness targets. In particular, dynamically conserving power when some 
machines do not need to be at full utilization translates directly into cost savings 
and creates greater allowance for other, more power-constrained, servers. 

We use the term power optimization to describe the act of targeting and 
achieving high levels of power normalized performance at the application level. 
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For a software application, such as a business transactions service or a content 
retrieval service, the performance metrics that are significant are the numbers 
of requests serviced (throughput) and the turn-around delay (response time) 
per request. The unqualified use of the term performance in this article will be 
about these application level qualities-of-service metrics. 

Optimizing power entails multiple dynamic tradeoffs. Typically, a system can 
be represented as a set of components whose cooperative interaction produces 
useful work. These components may be heterogeneous or be presented with 
heterogeneous loads, and vary in their power consumption and power control 
mechanisms. At the level of any component—such as a processing unit or a 
storage unit, power needs to be increased or decreased on an ongoing basis 
according to whether that component’s speed plays a critical role in the overall 
speed or rate of execution of programs. In particular, different application 
phases may have different sensitivity to component speeds. For example, a 
memory bound execution phase will be less impacted by CPU frequency 
scaling than a CPU bound execution phase. Under execution reordering that 
most modern processors employ, the degree to which a program benefits from 
out-of-order execution varies from one phase to another. Moreover, the rate at 
which new work arrives in a system changes, and as a result, the overall speed 
at which programs have to execute so that they can meet a given service level 
expectation varies with time. Thus the power-performance tradeoffs that are 
needed have to occur on a continuous basis.

Arguably, given the self-correcting and self-regulating aspects common in most 
systems today, software driven power-performance should be unnecessary. 
For example, Rotem et al.[26] present power control algorithms that transition 
CPUs and DRAMs into lower frequencies or into ultra-low power modes 
during low activity periods. While the circuit level self-regulation is highly 
beneficial in transitioning components to low power states, software needs to 
wield policy control over when and which activity should be reduced in order 
to facilitate transition of hardware into power saving modes, as discussed next.

Harnessing power savings on less busy servers is a delicate task that is hard 
to delegate to hardware based recipes. Servers are typically configured for 
handling high rates of incoming work requests at lowest possible latencies; 
and therefore it is not uncommon for them to have many CPUs and large 
amounts of physical memory over which computations and data remain widely 
distributed during both high and low demand periods. Due to the distributed 
nature of activities, slowing down a single CPU or a single DRAM can have 
unpredictable performance ramifications; thus it can be counterproductive 
to push some part of a server into ultra-low power operation[19]. At the other 
extreme, when power approaches saturation levels, hardware is ill-positioned 
to determine or enforce decisions about which software activities can tolerate 
reduced performance and which ones must continue as before. Thus software 
must share with hardware the responsibility of determining when and in which 
component power can be saved.
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In this article, we propose an autonomic solution for fine-grained control over 
power performance tradeoffs for server configurations. The solution, as we 
describe in the section “Monitoring and Data Refining” and sketch in Figure 1,  
consists of ingredients to observe, analyze, plan, and control the dynamic 
expenditure of power in pursuance of an application level performance 
objective that is specified as a Service Level Agreement (SLA). As described in 
section “Experimental Setup and Results,” we use a time-varying database 
query workload running on a recent generation Intel® Xeon® server, which is 
an E5-2600 class machine[22]. We simultaneously change the power allocation 
to CPUs and DRAM, and gather performance and power readings through 
a set of distributed physical and logical sensors in the server. Using these 
observations, we train models for various phases of the workload. Based on 
our models, we implement an optimization heuristic that redistributes the 
power to maximize the overall performance/watt of the server. Experimental 
measurements show that our heuristic improves performance and power as 
needed or as permitted by performance objective. The article is organized as 
follows: the following section, “Related Work” summarizes and compares the 
related work. The next section, “Background,” explains the modeling and 
optimization planning approach. This is followed by the section “System 
Architecture for Autonomic Power-Performance Control.” “Experimental Setup 
and Results” describes the experimental results, and the article concludes with 
“Summary and Future Work.”

Figure 1: Architectural elements of autonomic control
(Source: A Vision for Platform Autonomy: Robust Frameworks for Systems 
(Intel Press, ISBN 978-1-934053-25-6))
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Related Work
A vast body of research examines relationships and tradeoffs between processor 
performance, power, and thermal events. We classify the work related to this 
contribution as follows: 

Platform performance events and power consumption: Several researchers examine 
the usage of performance event and activity counts for predicting power 
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consumption. For example, Bircher et. al.[10] identifies a set of microprocessor 
performance events to estimate total system power. Bellosa et al.[11] demonstrate 
strong correlations among performance events and power consumption for 
Pentium® II. David et al.[12] utilize activity counters to predict DIMM power 
and use the prediction to control DIMM power budget with a Runtime 
Average Power Limiting (RAPL) approach. Economou et al.[13] correlate 
AC power measurements with user-level system utilization metrics. Kang 
et al.[14] show the use of optimized search algorithms and machine learning 
techniques in a processor design exploration problem to reduce time needed 
for determining the best configuration. Our work extends such approaches 
by considering quality of service (QoS) parameters (such as Throughput and 
Response Time) for an enterprise application.

•• Using SLAs to obtain power savings: Several approaches use QoS-based 
metrics to drive power management in different systems, including real-
time systems[6][3][8][9][5], web servers[1], and parallel processing systems[7]. 
Flautner et al.[3] modify the Linux kernel to save energy by delaying 
task execution, while ensuring that all tasks meet their deadlines. The 
implementation of such a mechanism, however, is based upon a priori 
knowledge of task executions (the deadlines are effectively a proxy for a 
module that provides performance feedback), while ours is a dynamic 
scheme. Workload consolidation has been explored as a means to obtain 
power savings while maintaining SLAs. For example, Sharma et al.[1] 
explore energy savings in web server clusters by consolidating load onto 
fewer servers, and turning off the remainder or keeping them in low-power 
states during low load conditions, so long as the SLAs are not violated. This 
approach is complementary to our work as Sharma et al.[1] save energy by 
limiting high activity to a few servers, while we target similar efficiency at 
the level of individual servers. Hayamizu et al.[4] implement an SLA-based 
hardware correction scheme that is similar to ours in principle. However, 
their tuning mechanism reactively adjusts the frequency of operation, 
resulting in some performance oscillations; in contrast, our mechanism is 
less volatile as it observes and learns from workload behavior, over a period 
of time. Other approaches supplement CPU performance feedback with 
cache miss rates (or metrics to track memory behavior); using the miss rates 
to build statistical dependence between frequency operating points and 
memory performance and power consumption[2][8][9].

Our work differs from the previous approaches in this aspect: we propose 
to use component energy metrics to show strong correlation between them 
and quality of service parameters such as Throughput and Response Time 
in an enterprise workload, using a machine learning approach. Many of 
the traditional workload analysis methodologies consist of building upon 
simulation results obtained from isolated components, involve manual 
alignment of telemetry data, and include off-line post-processing. These 
often result in long analysis times, over-corrections, suboptimal tuning and 
larger guard-bands. In our work we systematically address the issues related 
to the dynamic collection, processing, and analysis of time-series telemetry 
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data obtained in time aligned fashion from a variety of physical and logical 
sensors in the system. Furthermore, we propose exploiting that correlation 
to redistribute energy amongst the components on the basis of a machine-
learning model that is trained online.

Background
We will be concerned with identifying relationships between the total power 
expended (P   ), and two measures of performance: response time (R) and 
throughput (T    ). In this section, we describe the synthesis and optimization 
techniques used to build these relationships. Model synthesis uses the 
following:

•• Fine-grained and time-aligned power readings at multiple power rails of the 
primary components (CPU and DIMM).

•• System-level readings corresponding to three quantities, each averaged over 
a small time interval: (1) P, the total system power, (2) T, the application 
level throughput, and, (3) R, the response time experienced by requests. 

The power readings obtained are aligned with the {P, T, R } tuples, and this 
entire data collection is then used to divide the {P, T, R } space into classes 
(phases) so that within each class or phase, a linear function can relate P, T, 
and R to the power readings. These linear relationships are used in optimization 
planning, whose objective might be to minimize P (the total system power), or 
maximize T (the application level throughput), subject to R (the response time) 
not exceeding a specific threshold. Learning continues online and therefore 
as workload evolves or changes, the models adapt, and optimization planning 
adapts as well. The following two sections delve further into the model 
synthesis and optimization planning operations.

Model Synthesis: Support Vector Machines (SVM)
Support Vector Machines (SVM) technique may be employed to divide the  
{P, T, R} space into different phases and to obtain linear relationships 
governing the {P, T, R} variables in each phase. SVM is a computationally 
efficient and powerful technique invented by Boser, Guyon, and Vapnik[20] 
that is employed for classification and regression in a wide variety of machine 
learning problems. Given a data collection relating a set of training inputs to 
outputs, an SVM is a mathematical entity that accomplishes the following:  
(a) it describes a hyper-plane (in some higher dimension) whose projection into 
the input space separates inputs into equivalence classes so that the inputs in a 
given class have a linear function that maps them to outputs that is distinctive 
for that class, (b) the hyper-plane whose projection is the SVM, maximizes 
the distance that separates it from nearest samples from each of the classes, 
thus maximizing the distances between classes; subject to a softness margin 
described next, (c) a softness margin that allows a bounded classification error, 
whereby a small fraction of the inputs, that should be placed one side of the 
projection are instead placed within a bounded distance on the other side (and 
therefore misclassified); this margin allows a pragmatic tradeoff between having 
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a high degree of separation between classes (that is, better distinctiveness) and 
having too many outliers.

For our analysis in this article, we consider ten power readings obtained from a 
set of five sensors per processor, in our two processor machine. Equations (1)  
express each of {P, T, R} as linear functions of the five power readings per 
processor within each given class or phase. Of the five sensors per processor, three 
sensor readings (Vccp, Vtt, and Vsa) yield power going into three broad groupings 
of functions on the processor, while two sensor readings, both referred to as 
Vddq measure power in DIMMs that are connected to and controlled from the 
processor. The explanations of the various subscripts associated with these sensor 
readings are deferred to Table 1, in the section “Monitoring and Data Refining.” 
Variable J represents a given class; and {PJ (t), RJ(t), TJ(t)} represents a tuple from 
sample numbered t in the training set; and the various power readings associated 
with that sample are represented by V *(t) in equations (1) below: 
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where the phases J, constants, K*P , K*R, K*T  , and the coefficients a*
*
 and b *
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are all estimated through SVM regression technique. The use of RAPL[12] 
technique can allow us to simplify equations (1) as we explain further in the 
section “Experimental Setup and Results”:
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where VRAPL(t) equals the sum, Vccp + Vtt + Vsa, of the power spent in processor 
activities.

Optimization Planning
Energy and performance models have a number of degrees of freedom and 
conflicting objectives that are difficult to optimize collectively. For example 
consider the following objectives: (a) best performance/watt (b) staying within 
a power limit (c) response time <= an SLA threshold. Conflicts can manifest 
among these objectives, for example, with considerations such as:

•• How to obtain a given throughput within a system power budget?

•• How to obtain a given throughput under a response time threshold ? 
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In the common case P (total system power) is affected by both performance 
targets: throughput and response time. Also in the general case, performance is 
affected by both the power spent in processors and in DIMM modules. Thus 
optimization planning must grapple with meeting a compound objective: 
one in which power expended towards one objective may, in general, come 
at the cost of another. As described later, our experimental setup escaped this 
particular complexity. However, for completeness, in the next paragraph we 
sketch how variant objectives can be targeted simultaneously.

Multi-Objective Optimization (MOP): A good introduction to MOP can 
be found in David et al.[27], and the reader can skip this paragraph without 
loss of continuity. Once the coefficients of the linear estimation model 
for power, throughput, and response time are synthesized, multi-objective 
optimization can proceed with an adaptive weighted genetic algorithm 
(AWGA). In a genetic algorithm, a successful outcome is defined to be one 
that that redistributes power in such a way that power, response time, and the 
reciprocal of throughput are all meeting the viable limits. More generally, a 
set of fitness functions {   fn

  
} one per objective n, determines the optimality of a 

candidate setting (that is, a vector describing the distribution of power among 
components) for each of the objectives. In AWGA, for a population f of 
candidate settings {x}, 

 
f n

max = max( fn (x)|x ∈f) and f n
min = min(     fn (x)|x ∈ f) 

compute respectively the fitness bounds for each of a set of n=1,2,…,N 
objectives, where  each x in f is a vector whose fitness function represents a 
feasible power distribution among components such as CPUs, DIMMs, and so 
on. One may then choose an N-objective fitness function F that evaluates an 
aggregate fitness value. For example, in case of AWGA, F can be chosen as
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An evolutionary algorithm selects parents from a given generation of f (usually 
employing elitism) from which to produce power-feasible offspring as new 
candidates for the next generation. In the space of objectives, Fn

min  and Fn
max  

represent extreme points that are renewed at each generation. As the extreme 
points fitness bounds {(Fn

min, Fn
max )|n=1,2,..N} are renewed at each generation, 

the contribution (weight) of each objective is renewed accordingly.

System Architecture for Autonomic Power-
Performance Control
Achieving power-efficient performance and abiding by power and performance 
constraints calls for real-time feedback control. As Figure 1 depicts, an 
autonomic system implements continuous feedback-based course corrections 
with following provisions: 

•• Monitoring infrastructure, to sample or quantify physical and logical 
metrics, such as power, temperature, activity rates, and, to obtain statistical 
moments of the metrics. 

“Also in the general case, performance 

is affected by both the power spent in 

processors and in DIMM modules.”

“Achieving power-efficient 

performance and abiding by power 

and performance constraints calls for 

real-time feedback control.”
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•• Analysis modules to distill relationships among monitored quantities—such 
as between power and temperature and performance, and to determine 
whether one or more operational objectives are at risk.

•• A planning element to formulate a course of action such as suspending, 
resuming, speeding up, or slowing down various parts of a system, in order 
to effect a specific policy choice—for example, to limit power or energy 
consumed or to improve performance.

•• A capability to execute the formulated plan, and thereby to control the 
operation of the system.

The section “Background” discussed the analysis and planning ingredients 
listed above. Usually, a knowledge base supplements analysis and planning. The 
knowledge base may be an information repository that catalogs the allowable 
actions in each system state, or it may be implicit in the logic of the analysis, 
planning, and control capabilities. In a system designed for extensibility, the 
knowledge base would typically incorporate an adaptive mechanism that tracks 
and learns from prior decisions and outcomes. The next section, “Monitoring 
and Data Refining,” discusses the monitoring ingredients, and “Power Control 
Mechanism” discusses the control ingredients, by using our system setup as an 
example implementation to draw upon.

Monitoring and Data Refining
Fine-grained and lightly intrusive power-performance monitoring is a key 
element of an adaptive power management infrastructure. While our setup has 
a rich external capability for plumbing component power as we will detail next, 
modern processors and platforms such as the E5-2600 series machines provide 
internal logical sensors that can be used to estimate component power with 
requisite accuracy. The data produced by raw monitoring is refined and then 
used as feed for analysis and planning described earlier. We will describe the 
refinement procedures alongside monitoring detail in this section.

The ideal monitoring mechanism operates in real time (that is, reports as recent 
data as possible) and is not subject to the behavior(s) being monitored. In our 
setup, logical sensors at the OS and software levels provide a near real-time 
information stream consisting of rates at which common system calls, storage 
accesses, and network transfers proceed. These logical sensors are supplemented 
with power sensing through physical sensors. We use two externally powered 
capabilities: 

•• A Telemetry bus is used to collect data from physical (hardware) and logical 
(software) sensors and send it to a monitoring agent. In particular, power 
sensing is accomplished by sensing four types of voltage regulator (VR) 
outputs at each processor chip, as summarized in Table 1.

•• The Monitoring agent, to which the telemetry data is sent processes the 
data, organizes it as a temporally aligned stream of power and performance 
statistics, and transmits the stream to a remote machine for further storage 
or analysis.

“Modern processors and platforms 

such as the E5-2600 series machines 

provide internal logical sensors that 

can be used to estimate component 

power with requisite accuracy.”

“A Telemetry bus is used to collect 

data from physical (hardware) and 

logical (software) sensors and send it to 

a monitoring agent.”
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Signal Description
VCCP For each multi-core processor socket, the sum of the power 

drawn into that processor’s cores.
VSA For each multi-core processor socket, the power drawn by a 

system agent, an entity responsible for power distribution and 
control to the rest of the socket.

VTT For each multi-core processor socket, the power drawn for socket 
level caching and data movements which include power taken up 
in I/O and shared L3 cache.

VDDQ Each multi-core processor socket has several DRAM interfaces. 
VDDQ measures the power drawn for memory attached to these 
interfaces. Two signals per processor, each covering one pair of 
channels at that processor sum up to provide power expenditure 
for DRAM that the processor controls.

Table 1: Power Sensing Capabilities
(Source: Intel Corporation, 2012)

The monitoring infrastructure in our system provides us with the ability to 
obtain five distinct power readings per multi-core processor. The first three are 
described in the first three rows in Table 1, and they together add up to the 
total power consumed by each processor. The three readings do not include 
the power for the memory ranks that are controlled by the processor. Each 
processor controls four memory channels with multiple DIMMs per channel; 
each pair of memory channels furnishes one VDDQ signal as shown in the fourth 
row of Table 1; summing those two VDDQ readings gives the power expended in 
memory subsystem at each processor.

The data collected by these sensors is refined through successive 
transformations as shown in Figure 2, and described below:

•• Sensor Hardware Abstraction (SHA) Layer: This layer interacts with the 
sensors and communication channels. It uses adaptive sampling so 
that measurements are only as frequent as needed, and it eliminates 
redundancies.

•• Platform Sensor Analyzer: This layer removes noise, and, isolates trends, 
which makes it easier to incorporate recent and historical data as inputs in 
further processing.

•• Platform Sensor Abstraction: This layer provides a programming interface 
for flexible handling of analyzed sensor data by control procedures 
implemented above it.

•• Platform Sensor Event Generation: This layer makes it possible to generate 
signals. Signals facilitate event-based conversations from control 
procedures, thereby allowing further control to be hosted in a distributed 
set of containers (such as local or remote controller software, OS modules, 
and so on).

“The monitoring infrastructure in our 

system provides us with the ability to 

obtain five distinct power readings per 

multi-core processor.”



Intel® Technology Journal | Volume 16, Issue 2, 2012

Coordinated Optimization: Dynamic Energy Allocation in Enterprise Workload   |   41

Figure 2: Sensor network model: sensor network layered architecture 
(S1, S2 . . . Sn represent platform sensors: temperature, power, and so on)
(Source: A Vision for Platform Autonomy: Robust Frameworks for Systems 
(Intel Press, ISBN 978-1-934053-25-6))
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The successive refinements described above bridge the gap between the raw 
data that sensors produce and the processed, orderly stream of performance and 
power readings and alerts that software modules can receive and analyze further.

Estimation
While a machine can be readily upholstered with a metered power supply to 
sense total power, an instrumentation capability that yields the fine-grained 
decomposition of power as shown in Table 1 requires nontrivial effort. Besides, 
adding many physical power sensors in production machines is neither 
necessary nor practical in terms of cost. 

Event counting capabilities in modern machines provide a potent alternative 
means of estimating component power, when direct measurement is not 
practical. One simple yet accurate way of estimating the power draw for 
recent CPUs is to project it on the basis of utilization and P-state residencies, 
based on trained models. Such training can be made more accurate by 
including execution profiles that capture what fraction of instructions fall 
into each of a small set of categories (such as SIMD, Load/Store, and ALU). 
DRAM power can similarly be estimated on the basis of cache miss counts, 
or DRAM operations that are counted at memory controllers and tracked 
through processor event monitors. How accurately can one tie the power 
consumptions to such proxy measures of power is a question we take up as part 
of our future work; we note here that solutions such as the Intel® Intelligent 
Power Node Manager[24] or the Intel® Data Center Manager[25] can also 
provide measurements of power that we obtain through the added-in power 

“Event counting capabilities in 

modern machines provide a potent 

alternative means of estimating 

component power, when direct 

measurement is not practical.”
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and temperature sensors in our experimental setup. DRAM power estimation 
allows us to measure DRAM energy at DIMM granularity with sufficient 
accuracy, which enables efficient control of DRAM RAPL states. Efficient 
control of DRAM energy allows us to not only reduce the cost of hardware 
infrastructure, but also improves the energy efficiency by reducing guard-bands 
otherwise required to compensate for under-prediction. Furthermore, over-
prediction can also be reduced to avoid any performance degradation.

Power Control Mechanism
Once the desired power allocation among components is identified, the next 
step is to implement the allocation. The processor provides at least two ways by 
which privileged software can modify its power draw. The first is to change the 
P-states and C-states as described in [23]. The second, a less intrusive method, 
is to change the average power level using a control available in recent systems 
such as the E5-2600 series. This control is known as Runtime Average Power 
Limiting (RAPL) capability for CPUs and DRAM modules.

CPU RAPL provides interfaces to set a power budget for a certain time 
window, and let hardware meet the energy targets[21]. Specifying power limit 
as an average over a time window allows one to represent physical power 
and thermal constraints. Privileged software can use the RAPL capability by 
programming to an interface register the desired average level of power to 
which the hardware can guide the processor via its own corrective frequency 
adjustments[21] over a programmable control window. The window size 
and the power limit are selected so that either at a single machine level or 
at a data center level, correction in a machine’s power is driven quickly. In 
practice, the window size can vary between milliseconds and seconds; the 
former to satisfy power delivery constraints the latter to manage thermal 
constraints. Note that by setting window size to one, RAPL can be used to 
limit instantaneous power when necessary. The RAPL concept extends to 
memory systems as well[22], aided by the integration of the memory controller 
into each multi-core processor in several recent versions of Intel platforms. 
Although CPU and memory energy can be regulated individually, it is 
possible to build a coordinated approach where power regulation is a part of 
a joint optimization function. While more details of RAPL technology are 
beyond the scope of this article, Intel[21] and David et al.[12] may be consulted 
for more information.

Experimental Setup and Results
The workload used in our study is the query-only portion of the Transaction 
Processing over XML (TPoX) benchmark[16] version 2.0, with the Express-C 
edition of IBM DB2 database management software[17]. As the workload driver 
for TPoX draws very modest computational effort from the machine when 

“A less intrusive method, is to change 

the average power level using a control 

available in recent systems such as the 

E5-2600 series. This control is known 

as Runtime Average Power Limiting 

(RAPL) capability for CPUs and 

DRAM modules.”
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using the query-only workload, for configuration simplicity the workload 
driver is co-hosted together with the database management software on the 
system under test; in any case, this can be changed easily. The choice of TPoX 
benchmark as the workload for this study is motivated by its ability to impose 
the kind of broad front stress on the computing system that is representative of 
a modern enterprise—with its large numbers of threads, complex concurrency 
interactions, and appreciable memory footprint. IBM DB2’s self-tuning 
memory manager eliminated the need to perform any fine-tuning in our setup 
as we varied the imposed workload. The system under test employed two CMP 
processors, from the Intel Xeon E5-2600 series. The machine was furnished 
with 64 GB DDR3 DRAM. A single Intel SATA solid-state disk drive with a 
capacity of 160 GB provided the mass storage for database tables and log files, 
with sufficient random I/O throughput to eliminate disk wait times during 
workload execution.

For analysis and optimization planning, we simplify the model to reduce 
the complexity of equations (1). The perturbations in system power (P) and 
those in the application level response time and throughput that result from 
experiments in which memory power changes to any degree are negligible in 
comparison with those in which CPU power changes result. In part this is due 
to low sensitivity of workload performance to the bandwidth and latencies of 
DRAM accesses; in part it is due to the much smaller dynamic range of power 
variation that is possible for memory compared to that which is possible for 
the CPUs. Thus the second term(s) on the right hand side of equation (1) gets 
absorbed in the constants (K*) on the left hand side. This reduction leads to 
the following change from the equations (1):

	 CPU power readings (6)
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A second simplification arises from the use of the RAPL technique. Under 
CPU RAPL, hardware takes on the responsibility of ensuring that the sum, 
Vccp + Vtt + Vsa, is maintained at the specified CPU RAPL value, for each of 
the two processors (each processor is a multi-core chip). While we continue to 
obtain the full set of power sensor readings (that is, Vccp, Vtt, and Vsa) as input to 
model training, the individual variations in Vccp, Vtt, and Vsa are not as useful in 
training as their sum (since it is the sum that can be controlled). 

Hence in the SVM model formulation instead of fitting three separate 
coefficients per processor (α * in equations (3)), one for each of Vccp, Vtt, and 

“The choice of TPoX benchmark as the 

workload for this study is motivated by 

its ability to impose the kind of broad 

front stress on the computing system 

that is representative of a modern 

enterprise.”
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Vsa, we train one coefficient per processor (a∼* in equations (4) below) that 
multiplies their sum, Vsum = Vccp + Vtt + Vsa:

	CPU power readings (Vsum = Vccp + Vtt + Vsa )
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Model Training: Procedure and Evaluation
For the model training phase, we collected fine-grained and time-aligned 
readings from the power monitoring sensors described earlier, and from a 
database performance module that kept track of response times and request 
completion rates. These readings provided the input-output training vectors, 
{P*(t  ), R   *(t   ), T *(t), and V i

sum (t)} as denoted in equations (4). The training 
data was obtained under a cross-product of two sets of variations:

•• Variation of Demand: We modified the TPoX workload driver so that it 
would cause time-varying demand on the machine. The modification 
consisted of using a different “think-time” parameter at different times; the 
parameter controls how long each of a number of threads in the workload 
driver waits between the completion of a previous request and the issuance 
of a new request. 

•• Variation of Supply: We varied the CPU and memory RAPL settings, 
thereby varying the supply of power to CPU and DRAM. As we noted 
earlier in this section, the variation in memory power had marginal effects 
on system power, and on throughput and response time. We ascertained 
it thus: in order to check for any correlation or dependency in the 10 
predictors (component energy variables) of the original equation 1, we 
selected the best among the predictors for throughput and response 
time, and then tested sequentially how the addition of the next potential 
predictor could improve accuracy, and wound up with VDDQ variables as 
superfluous in this experimental setup.

We executed TPoX with think-time varying from 0 to 100. For each think-time 
CPU RAPL limits were varied between 20 W and 95 W. SVM model training 
on the basis of this data was then used to categorize the data into distinct  
phases ( J ), following which the SVM model parameters for each phase, 
{  

  K KR
J

T
J

P
iJ

R
iJ

T
iJ, , , ,α α α } were evaluated.

The SVM based classification yielded decomposition into three phases shown 
in Figure 5. Accordingly, three different sets of modeling parameters (that is, 
for J = 0, 1, 2) in equations (4) relate CPU RAPL parameters to total system 
power, throughput, and response-time outcomes. Figures 3 and 4 show the 
close agreement between estimated and measured results from the training. 
Figure 3 shows how the total wall power estimated on the basis of RAPL 

“We modified the TPoX workload 

driver so that it would cause time-

varying demand on the machine.”
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Figure 3: Wall power measured versus estimated (as function of component power)
(Source: Intel Corporation, 2012)
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Figure 4: CPU power actual needed versus estimated. Estimated CPU power is phase-wise, and based on the 
throughput and target latency requirements.
(Source: Intel Corporation, 2012)
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parameters via the first equation in (4) compares with that actually measured. 
The comparison is shown under variations in demand and supply that were 
introduced as described earlier in this section; the time instance values on the 
x-axis have no particular significance except as sample points.

Figure 4 also shows how in each of three phases the measured and estimated 
power values compare; in this case, the estimation is drawn in two steps: first, 
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the CPU RAPL values are estimated based on desired throughput and response 
time by inverting the last two of the equations (4) and then the first equation 
of (4) is used to derive estimated system power. The graphs show excellent 
agreements between measured and estimated values at most sample points. 

Figure 5: Model tree depicting three phases (P0, P1, and P2) in the workload characterized by throughput and 
response time
(Source: Intel Corporation, 2012)
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On an average our machine learning regression function supported by SVM 
machines delivers accuracy between 97 and 98.5 percent. Each phase is trained 
for its own performance and latency model coefficients.

Optimization and Control
Figure 6 depicts an example consisting of four different workload conditions 
in which a server may exist at some point. On the x-axis, tt 00, tt 10, and 
tt 20 stand for three different think times of 0.0 ms, 10.0 ms, and 20.0 ms 
respectively. The y-axis is used to show response times. The red colored multi-
segment line in Figure 6 connects four workload points (W1, W2, W3, and W4). 
These four workload points are four randomly selected perturbations in 
demand and supply: for example, W1 results from setting a think time of 
20.0 ms and a CPU RAPL value of 40 watts; W2 results from a think time of 
0.0 ms (driving a higher arrival rate than W1) and with a CPU RAPL value 
of 50 watts, and so on.

“On an average our machine learning 

regression function supported by SVM 

machines delivers accuracy between 97 

and 98.5 percent.”
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Figure 6: Response time at four arbitrarily selected points 
reflecting four possible TPoX workload and server conditions
(Source: Intel Corporation, 2012)
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If none of the response times for (W1, W2, W3, and W4) in Figure 6 exceeded a 
desired performance objective—say a Service Level Agreement (SLA) target of 
R = 20.0 ms, then it would be desirable to save power by reducing performance 
so long as the higher response times still stay below the target of 20.0 ms. On 
the other hand, if at any of these workload points the response time exceeds 
a desired threshold, then it would be desirable to improve performance by 
increasing the power at that point, in order to meet the SLA. In general, an 
SLA may spell out throughput and response time expectations, and may 
include details such as the fraction of workload that must complete within a 
threshold amount of response time under differing levels of throughput. For 
ease of description, we consider a simple SLA setting: that the response time, 
averaged over small time intervals (that is, 1 second), not exceed a static target 
value of 14.0 ms; this is shown in Figure 7 by the blue line, R = 0.014.

Figure 7: Illustration of improvement in the response time using 
proactive control of CPU power using CPU RAPL.
(Source: Intel Corporation, 2012)
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Figure 7 illustrates new workload points (shown in green) that result from 
proactive power-performance control through the use of a trained SVM 
model. New RAPL settings (higher CPU power) computed using the trained 
model reduce the response times for W1 and W2 from their previous values 
(by 15 percent and 7 percent respectively) to new values that are much closer 
to the SLA, as shown in Figure 7. Similarly, the model training produces 
lower CPU power settings for W3 and W4 that lead to power savings at the 
cost of higher response times and to 11.5-percent improvement in energy 
efficiency. Incidentally, the new setting for W4 misses the SLA target by a small 
but not negligible margin, which could force a re-computation of the CPU 
RAPL setting in a next iteration. Note that in order to reduce frequent course 
correction a control policy may permit overshooting the SLA target by a small 
margin in either direction. In the example of Figure 7, the new RAPL settings 
for W1 and W2 reduced response times by 15 percent and 7 percent respectively 
and the new RAPL settings. In this way phase-aware CPU power scaling yields 
significant power reduction at all performance levels relative to isolated tuning.

Summary and Future Work
This article described an autonomic approach for fine-grained control over 
power-performance tradeoffs at a single server level. It is comprised of 
observing, analyzing, planning, and controlling the dynamic expenditure 
of power while maintaining an application level performance objective. We 
used a time-varying database query workload on state-of-the-art database 
management software running on current generation hardware as the case 
study vehicle for our example. 

In summary, coordinated budgeting using phase-aware optimization can be 
used to maintain system balance between performance and power-efficiency 
targets. Experimental setup allows continuous monitoring of workload 
and planning energy allocation by predicting the effects on performance. A 
reconfigurable power allocation infrastructure directs power-control requests to 
each component.

Future work will expand the value proposition of the approach to multiple 
machine configurations, at the rack and data-center level. Since it would 
entail measurement and control over a larger set of local and global objectives, 
we will mix estimation alongside the use of hardware sensors, to simplify 
monitoring. The expanded set of objectives will include a mix of workloads, 
with compound SLAs covering response times, throughputs, and arrival rates, 
and we anticipate the inclusion of multi-objective optimization techniques [27] 
to satisfy diverse requirements.

References
[1]	 V. Sharma, A. Thomas, T. Abdelzaher, K. Skadron, Z. Lu, “Power-aware 

QoS Management in Web Servers,” in In Proceedings of the 24thIEEE 
Real-Time systems Symposium (RTSS.03), Cancun, pages 63–72, 2003.

“In order to reduce frequent course 

correction a control policy may permit 

overshooting the SLA target by a small 

margin in either direction.”

“Phase-aware CPU power scaling 

yields significant power reduction 

at all performance levels relative to 

isolated tuning.”



Intel® Technology Journal | Volume 16, Issue 2, 2012

Coordinated Optimization: Dynamic Energy Allocation in Enterprise Workload   |   49

[2]	 X. Fan, C. Ellis, A. Lebeck, “The Synergy Between Power-aware 
Memory Systems and Processor Voltage Scaling,” in Workshop on Power-
Aware Computing Systems, pages 164–179, 2002.

[3]	 K. Flautner, T. Mudge,“Vertigo: Automatic Performance Setting for 
Linux,” SIGOPS Oper. Syst. Rev., 36(SI):105–116, 2002.

[4]	 Y. Hayamizu, K. Goda, M. Nakano, M. Kitsuregawa, “Application-aware 
Power Saving for Online Transaction Processing using Dynamic Voltage 
and Frequency Scaling in a Multicore Environment,” in Proceedings of the 
24th international conference on Architecture of computing systems, ARCS’11, 
pages 50–61, Berlin, Heidelberg: Springer-Verlag, 2011. 

[5]	 C. Isci, G. Contreras, M. Martonosi, “Live, Runtime Phase Monitoring 
and Prediction on Real Systems with Application to Dynamic 
Power Management,” in Proceedings of the 39th Annual IEEE/ACM 
International Symposium on Microarchitecture, MICRO 39, 
pages 359–370, Washington, DC, USA, IEEE Computer Society, 2006. 

[6]	 W. Kim, D. Shin, H. Yun, J. Kim, S. Min, “Performance Comparison 
of Dynamic Voltage Scaling Algorithms for Hard Real-time Systems”, in 
Proceedings of the Eighth IEEE Real-Time and Embedded Technology and 
Applications Symposium (RTAS’02), RTAS ’02, Washington, DC, USA, 
IEEE Computer Society, 2002. 

[7]	 J. Li, J. Martinez.,“Dynamic Power-Performance Adaptation of Parallel 
Computation on Chip Multiprocessors,”International Symposium on 
High-Performance Computer Architecture, 0:77–87, 2006.

[8]	 A. Miyoshi, C. Lefurgy, E. Van Hensbergen, R. Rajamony,  
R. Rajkumar, “Critical Power Slope: Understanding the Runtime 
Effects of Frequency Scaling,” in Proceedings of the 16th Annual ACM 
International Conference on Supercomputing, pages 35–44, 2002.

[9]	 C. Poellabauer, L. Singleton, K. Schwan,“Feedback-based Dynamic 
Voltage and Frequency Scaling for Memory-bound Real-time 
Applications,” in Proceedings of the 11th IEEE Real Time on Embedded 
Technology and Applications Symposium, pages 234–243, Washington, 
DC, USA, IEEE Computer Society, 2005. 

[10]	 W. Bircher and L. John, “Complete System Power Estimation: A 
Trickle-Down Approach Based on Performance Events,” in IEEE 
International Symposium on Performance Analysis of Systems and Software, 
April 2007, pp. 158–168.

[11]	 F. Bellosa, “The Benefits of Event-Driven Energy Accounting in Power-
Sensitive Systems,” in ACM SIGOPS European Workshop, September 2000.

[12]	 H. David, E. Gorbatov, U. Hannebute, R. Khanna, C. Le, “RAPL: 
Memory Power Estimation and Capping,” in ACM/IEEE International 
Symposium on Low Power Electronic Design, 2010.



Intel® Technology Journal | Volume 16, Issue 2, 2012

50   |   Coordinated Optimization: Dynamic Energy Allocation in Enterprise Workload

[13]	 D. Economou, S. Rivoire, C. Kozyrakis, P. Ranganathan, “Full-System 
Power Analysis and Modeling for Server Environments,” in Workshop on 
Modeling, Benchmarking, and Simulation (MoBS), 2006.

[14]	 S. Kang and R. Kumar, “Magellan: a Search and Machine Learning-
based Framework for Fast Multi-core Design Space Exploration and 
Optimization,” Proceedings of the Conference on Design, Automation and 
Test in Europe, 2008.

[15]	 R. Bianchiny and R. Rajamony, “Power and Energy Management for 
Server Systems,” in IEEE Computer 2004.

[16]	 TPoX, http://tpox.sourceforge.net/

[17]	 DB2 Express-C Edition http://www-01.ibm.com/software/data/db2/
linux-unix-windows/edition-express-c.html

[18]	 IDC, “The 2011 Digital Universe Study,” http://www.emc.com/
collateral/demos/microsites/emc-digital-universe-2011/index.htm

[19]	 D. Meisner, B. Gold, T. Wenisch, “PowerNap: Eliminating Server Idle 
Power,” in ASPLOS 2009.

[20]	 B. Boser, I. Guyon, V. Vapnik, “A Training Algorithm for Optimal 
Margin Classifiers,” in Proceedings of the fifth annual workshop on 
Computational learning theory (COLT ’92), ACM, New York, NY, USA, 
144–152.

[21]	 Intel® 64 and IA-32 Architectures Developer’s Manual: Vol. 3A.

[22]	 Intel® Core™ i7 Processor Family for the LGA-2011 Socket, Datasheet 
Volume 2. 

[23]	 S. Siddha, “Multi-core and Linux Kernel,” Intel Open Source 
Technology Center

[24]	 Intel® Intelligent Power Node Manager, http://www.intel.com/content/
www/us/en/data-center/data-center-management/intelligent-power 
-node-manager-general.html

[25]	 Intel® Datacenter Manager (DCM), http://software.intel.com/sites/
datacentermanager

[26]	 E. Rotem, A. Naveh, D. Rajwan, A. Ananthakrishnan, E. Weissmann, 
“Power Management Architecture of the 2nd Generation Intel® Core™ 
Microarchitecture, formerly code named Sandy Bridge” http://www 
.hotchips.org/archives/hc23/HC23-papers/HC23.19.9-Desktop-CPUs/
HC23.19.921.SandyBridge_Power_10-Rotem-Intel.pdf

[27]	 A. Konak, D. W. Coit, A. E. Smith, “Multi-Objective Optimization 
Using Genetic Algorithms: A Tutorial,” Reliability Engineering & 
System Safety, volume 91, issue 9, Elsevier, 2006.



Intel® Technology Journal | Volume 16, Issue 2, 2012

Coordinated Optimization: Dynamic Energy Allocation in Enterprise Workload   |   51

Author Biographies
Martin Dimitrov obtained his B.S. degree in computer science from Bethune–
Cookman College in 2004 and his PhD in computer science from the 
University of Central Florida in 2010. Martin joined Intel in 2010 as a systems 
engineer. Currently, Martin works in enabling and optimizing enterprise 
software for Intel server platforms. In addition, Martin is an active researcher 
in the Greenpoint initiative, which aims at optimizing system energy through 
collaborative software-hardware approaches. Martin can be contacted at 
Martin.P.Dimitrov@Intel.com

Kshitij Doshi is a principal engineer in the Software and Services Group 
at Intel Corporation. He has a bachelor of technology degree in electrical 
engineering from the Indian Institute of Technology (Mumbai) and a master’s 
degree and PhD in computer engineering from Rice University. His research 
interests span operating systems, optimization of performance, power, and 
energy in enterprise solutions, database architectures, and virtual machines. He 
can be contacted at kshitij.a.doshi@intel.com

Rahul Khanna is a platform architect at Intel Corporation involved in 
development of energy efficient algorithms. Over the past 17 years he has 
worked on server system software technologies including platform automation, 
power/thermal optimization techniques, reliability, optimization, and 
predictive methodologies. He has authored several technical papers and 
book chapters in the areas related to energy optimization, platform wireless 
interconnects sensor networks, interconnect reliability, predictive modeling, 
motion estimation, and security, and he holds 27 patents. He is also the 
co-inventor of the Intel IBIST methodology for high-speed interconnect 
testing. His research interests include machine learning based power/thermal 
optimization algorithms, narrow-channel high-speed wireless interconnects, 
and information retrieval in dense sensor networks. Rahul is a member of 
IEEE and the recipient of three Intel Achievement Awards for his contributions 
in areas related to advancements of platform technologies. He is the author of 
book A Vision for Platform Autonomy: Robust Frameworks for Systems. He can be 
reached at rahul.khanna@intel.com

Karthik Kumar is a software engineer in the Software and Services Group 
at Intel Corporation. He obtained a bachelor’s degree in engineering from 
Anna University (India), and a master’s degree and PhD in computer 
engineering from Purdue University. His research interests span energy and 
performance optimization in computer systems. He can be contacted at 
karthik.kumar@intel.com

Christian Le is server power and thermal architect in Intel’s Data Center and 
Connected Systems Group. He has spent 16 years designing system thermal 
and power management solutions. He is currently focused on datacenter power 
optimization and platform autonomics technologies. He can be reached at 
Christian.le@intel.com



52   |   A Robust Autonomic Framework for Memory Thermal, Power, and Throughput Management

Contributors

Intel® Technology Journal | Volume 16, Issue 2, 2012

Advances in technologies are driving integration of more features and higher 
performance into smaller chip designs that are resulting in increasing power 
and thermal density and design complexity. Mobile computing devices require 
higher performance with more battery life while the need for higher performance 
servers places more demands on data center–server efficiency due to rising 
costs of energy, operation, and infrastructure. Holistic dynamic thermal and 
power management explicitly couples thermal and power management from 
the chips to computer to server and to the data center. Additional challenges 
are placed on hardware and software development and validation time as design 
complexity and density increase. A common architecture for power and thermal 
management facilitates more efficient hardware and software development, 
validation, and reuse across segments. This article proposes a common memory 
open and closed loop thermal management (OLTM, CLTM) integrated thermal 
and power capping with a technique called running average power limiting 
(RAPL) architecture. These traditional power and thermal features are described 
as part of an autonomic framework for power and thermal management 
integrated with advanced interrupts/signaling and power limiting (RAPL) 
concepts. We introduced efficient RAPL that enforces power limits over a sliding 
time widow, while minimizing performance impact in highly dynamic and 
transient data center workloads. We also introduce the concept of a standard 
software interface through standard configuration architecture (SCA) that 
produces a uniform telemetry and event signaling infrastructure across client and 
server segments. We also introduce the design considerations for a data center 
management data aggregation and workload autonomics framework that can 
make use of power, thermal, and throughput constraints to influence reduction 
of maintenance costs, to drive greater efficiencies for more flexibility, and to 
dynamically scale resource pools.

Introduction
An explosion of Internet growth is expected due to the exponential growth in 
the number of globally connected users, computing devices, and new emerging 
segments. Contents will drive more performance, density, and energy efficiency 
in data center and computing devices[1][2]. According to an EPA report to 
Congress[3], the annual electricity use by data centers for 2011 is projected 
to be nearly double from 60 billion kWh to more than 120 billion kWh, 
representing a USD 7.4 billion annual electricity cost and an increase from 
1.2 percent to 3 percent of electricity consumption in the US. The operational 
cost for cooling and providing power to IT equipment is equivalent the cost 
of equipment; the gap between operational versus capital costs will widen with 
decreasing cost of computing and increasing demand and cost of electricity.
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Memory power and thermal cooling is a significant portion of server power 
consumption and better controlling these two key aspects via autonomic 
functions is important to the future of green data centers. As an example, Figure 1  
depicts projection for a typical Intel® Core™ i7 generation server where both 
processor and memory constitute a significant portion of the platform power, 
ranging from 32 percent at idle to 61 percent when active. Given that CPU 
and memory provide high dynamic range, it is important to address both when 
designing platform power limiting. Since servers rarely operate at their peak 
capacity, efficient power capping is deemed as a critical management component 
of modern enterprise computing facilities. Advancements on the thermal and 
power management of processors[4] have resulted in features such as temperature 
sensor feedback for fan speed control, dynamic voltage and frequency scaling for 
proportional computing, and power meter and power control accessible in-band 
to the OS[5] and out-of-band to node or data center agents[6] but stops short 
of common interface. A holistic approach to power and thermal management 
requires a robust, auto-discoverable framework that enables policy-driven 
features using software standards, silicon hooks, and manageability containers 
to accommodate thermal/power budget and performance tradeoffs. Common 
framework facilitates more efficient hardware software co-design through reuse 
and fosters software innovations scalable across the computing continuum. 
Since memory is the less traveled path, in this article we present a robust thermal 
throttling framework for memory that standardizes and enhances the throttling 
features present in Nehalem (NHM), Sandy-Bridge (SNB) families to:

•• Maximize reusability across segments and across platforms

•• Balance efficient reuse of existing art and new development

•• Minimize cost for any particular segments

•• Define common memory power and thermal throttling algorithms

•• Running average power limiting (RAPL)

•• Leverage validation across generations and architecture divisions

•• Scale the architecture and interfaces across servers, desktop and mobile clients

Figure 1: Intel® Core™ i7 server power projections at idle and active modes
(Source: Intel Corporation, 2012)
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Related Work
Thorough examinations of thermal and power relationships have demonstrated 
the complex interdependence between thermal, power, and performance. 
Shah[7], Sharma[8], and Patel[9] demonstrated the importance and sensitivity of 
facility layout with respect to cooling and the relative difficulty in predicting 
dynamic thermal loading for optimal design and efficiency. They described 
how the horizontally scalable topology is driven by Internet computing and 
the thermal impact as the density of this segment increases in scale and power 
density and also addressed thermal management and multisystem resource 
management as a must-have application to the success of this segment.

Proportional energy computing equates to adjusting energy consumed relative 
to the amount of work being performed. Barroso[3] discussed the value of 
energy and computing power utilization and the need to improve server 
energy proportionality profiles. They called to the developer community to 
come up with a metric at non-peak activity as well as to employ heuristics 
to refine design through characterization of a system energy performance. 
Ahuja[10] conducted experiments and projected reliable server operations at 
higher data center ambient temperature up to 40°C to reduce cooling demands 
on data centers to facilitate higher ambient operations recommended by the 
American Society of Heating, Refrigerating and Air Conditioning Engineers 
(ASHRAE). Shah et al.[7] analyze the hot and cold air mixture using the second 
law of thermodynamics and present a metric of energy loss where thermal 
manageability and energy efficiency are both considered simultaneously. 

Although much focus has been given to server and data center energy 
efficiency and cooling over the past decade, little progress has been made in the 
standardization of the power and thermal interconnect scheme between the 
computing device and data center. Recent works by Khanna, et al.[13][14] proposed 
dynamic closed loop thermal management framework integrated into Sandy 
Bridge-EP with a multiple dynamic thresholds scheme to optimize performance 
and minimize fan energy. And they investigated a memory containerization 
software scheme to allocate frequently executed object codes into temporal-
spatial memory domains (from ranks-to-channel) in order to optimize power 
consumption. Another novel approach to a DRAM power sensor, employing an 
estimation and calibration scheme for use in an energy-efficient running average 
power limiting algorithm in software was proposed by David, et al.[15][16]. These 
pioneering works pave the way for integrated thermal and power management. 

The proposal in this article advances on these dynamic thermal management 
(DTM) and power limiting techniques. Our approach gears the architecture 
towards common memory architecture for power and thermal management 
unified by power metric and standardized through a scalable interface across 
desktop, mobile, and server/workstation segments. We propose a common 
memory open loop and closed loop thermal management (OLTM, CLTM), 
thermal and power interrupts and event signaling, open loop and closed loop 
power limiting (OPL, CPL), running average power limiting (RAPL), and a 
standard software interface with standard configuration architecture (SCA).
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Thermal and Power Autonomic Framework
Complexity in emerging computing systems requires the holistic solution to 
manage competing dynamics of power, thermal conditions, RAS, resource 
monitoring, and locality. Autonomics features are solutions built using 
software-based models and industry standards that can enable automated 
detection, optimization, correction, and tuning dynamically while making 
smart decisions to enable high service reliability. The goal of an automated 
system is to create expert hardware/software models that can automatically 
perform proactive actions to converge to an optimal solution by analyzing the 
specified policies and the current state of context the system is running.

The autonomic computing paradigm is modeled after the human autonomic 
nervous system, where changes in behavior of the system are brought back to 
an equilibrium state with closed loop control processes. An autonomic system 
adapts through a set of behaviors that promote stability through managing the 
system essential variables within their viable limits. The elements of autonomics 
as defined by Khanna are:

•• Telemetry bus – Retrieve RAW sensors as well as send the control messages 
to the respective devices using an efficient interconnect.

•• Monitor agent – Organize the RAW sensor data, synthesize the statistical 
characteristics and distribute the data internally or externally.

•• Analysis agent – Analyze the local power consumption of each device 
along with the corresponding performance. The analysis agent 1) builds a 
database of historic trends that can be used to make future decisions, and 
2) trains the model by taking a proactive action where power allocation 
to a random device is incrementally changed and the corresponding 
performance impact is measured. 

•• Control agent – propagate power control message to the controlled device 
in a timely manner. The control agent is specific to a device and the 
power control methodology. A control function identifies the dynamic 
range of the power control and the granularity at which it can be 
controlled.

•• Performance analysis agent – creates statistical model of the performance 
data to study the performance impact due to device power variation. 
It measures the system performance with respect to the workload and 
evaluates the fitness function that is the function of the change in 
performance between successive measurements. 

The goal of autonomic computing is to limit human intervention to 
extraordinary situations and instead enables general policies and rules as input 
for a self-management process. Figure 2 is a high level diagram of architecture 
for a power, performance thermal autonomic. Thermal and power management 
are the fundamental functional unit of an autonomic application, which 
contains executable code, exports functional interfaces, behavioral attributes, 
constraints, and control mechanisms. Thermal and power managed elements 
have their own private operators that are not visible to other managed elements 

“Autonomics features are solutions 

built using software-based models and 

industry standards that can enable 

automated detection, optimization, 

correction, and tuning dynamically 

while making smart decisions to 
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and can only be accessed through control functions exported via functional 
interfaces. 

•• Self-configuring – The system configures and reconfigures itself undervarying 
and unpredictable conditions.

•• Self-optimizing – The system detects suboptimal behaviors and optimizes 
itself to improve its operational characteristics while keeping the complexity 
hidden.

•• Context awareness – The system has the ability to understand its operation 
environment and ability to react to the environmental changes.

•• Open standards – Autonomic applications should be built upon open 
standards so that they can be ported across heterogeneous environments 
consisting of multiple hardware and software. Consequently, it should be 
built on open protocols and interfaces.

The thermal and power autonomic elements represent the initial two stages of 
maturity as defined by IBM. 

•• Basic – The expert knowledge of managed elements and its environment is 
embedded with the IT professional requiring human intervention on even 
trivial functions.

•• Managed – Scripting and expert tools automate data sensing, execution, 
and reporting operations. Once the information is collected, it is analyzed 
by individual experts to formulate plans and decisions.

Figure 2: Thermal and power autonomics[31]

(Source: A Vision for Platform Autonomy: Robust Frameworks for Systems, Intel Press, 2011)
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Thermal and power management functions forms fundamental ingredients of 
the autonomic infrastructure that play an optimization game to achieve energy 
efficiency for a given work while operating under multiple constraints. We will 
discuss the key features and interfaces to these elements, how to make them 
ubiquitous to platforms, how to export them as open standards compatible 
software for IT business processes, and how to automate power control as a 
function of anticipated utilization, performance degradation, available wall 
power, and cooling capacity.

Fundamentals of Thermal Design
Any cooling system must ensure that each and every component meets its 
specification. Most components have damage, functional, and reliability 
temperature specifications. The thermal management of the server ensures 
compliance to these specifications while taking the appropriate actions to 
manage that compliance. Figure 3 summarizes the thermal limits and the 
actions to be taken if they will be exceeded. 

When designing the cooling and thermal management system, one must 
comprehend the design load conditions. For processors this is well defined 
using the thermal design power (TDP) methodology. Intel characterizes 
workloads and sets the TDP for each SKU to ensure all reasonable workloads 
can be supported. For memory a similar process is employed based on likely 
workloads. Bandwidth targets are defined based on these workloads so that 
the thermal design can be sized appropriately. Memory vendor data is then 
used to translate that bandwidth into TDP levels for each DIMM type. One 
bandwidth target for a specific memory speed translates into widely different 
TDP levels. A DRx8 DIMM may dissipate less than 5 W while an LR-DIMM 
can consume 15 W for the same bandwidth. The thermal engineer must create 
a reasonable thermal design that can cover all supported configurations. 

Well-designed systems will use power and thermal management features to 
ensure compliance to component specifications. Figure 4 shows a processor in a 
system that will be used as an example. The three parts of the equation and the 
design influences for each are: 

•• System ambient – inlet temperature to the system: defined in ASHRAE’s 
publication “Thermal Guidelines for Data Processing Environments,” this 
includes any rack effects that can increase the air temperature delivered to 
the IT Equipment (ITE)

•• Air heating – increase in air temperature due to upstream heat sources, 
affected by component placement, upstream component power dissipation, 
air movers, local air delivery 

•• Self heating – increase in component temperature above local ambient 
due to the heat dissipated on the device of interest, driven by component 
packaging, power dissipation and thermal solution (such as a heat sink)

“The thermal management of the 

server ensures compliance to these 

specifications while taking the 

appropriate actions to manage that 

compliance.”

“Well-designed systems will use power 

and thermal management features 

to ensure compliance to component 
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Figure 3: Thermal management
(Source: Intel Corporation, 2012)
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Figure 4: Example component in a system and rack
(Source: Intel Corporation, 2012)
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The thermal engineer considers all supported system configurations along 
with the design requirements such as redundancy to ensure that the 
server can adequately meet the specifications based upon the target load 
requirements. 

Two important thermal and power characteristics are nonlinear and, as a result, 
weigh heavily in the overall power efficiency of the cooling system:

•• Fan power is proportional to the cube of airflow (and fan speed), and

•• Component and heat sink convective thermal performance is proportional 
to the inverse of airflow.

The combination of the two characteristics can cause extremely high fan power 
consumption depending on the driving component thermal characteristics. 
Optimization between performance and power can become highly complex as 
a result. 

An optimal design can be created by preferentially using features aggressively 
or nonaggressively. The combination of the feature settings must support the 
customer’s usage. 

Thermal management can be adjusted to preferentially favor performance, 
power efficiency, high reliability, or acoustics. In some cases the action taken 
overlaps with that used between these preferences. These designs may overlap, 
but they all involve tradeoffs between fan speed, component temperatures, 
acoustic output, power consumption, and performance. Table 1 summarizes 
key attributes of the designs. 

“The thermal engineer considers all 
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Design or Policy Fan Speed Power Management Result

Increasing Temperature Decreasing Temperature State Throttling

Performance Aggressive Non-aggressive Limited Protective Best performance at all times

Power Efficient Optimized Optimized Moderate to aggressive Optimized Least power consumption

High Reliability Aggressive Nonaggressive Moderate to aggressive Opportunistic Reduced down-time

Acoustic Nonaggressive Nonaggressive Moderate to aggressive Opportunistic Quiet, non-annoying operation

Table 1: System Thermal Management Tuning
(Source: Intel Corporation, 2012)

The controls for tuning to address these design preferences are fan speed, power 
states, and throttling. In all cases thermal, power, or activity sensors prompt the 
response to be taken. Some servers enable the customer to choose the design 
or “policy” to be used by the server management hardware and firmware at 
boot time. In an extremely sophisticated design the management controller or 
another entity could track and learn the usage of the equipment and change 
settings to either better optimize the server or notify the owners that their 
server is not optimally configured. They could also suggest changes to the 
settings, and ensure changes are approved before implementation.

Common Framework Power and Thermal 
Management
The growth in the Internet has put considerable pressure on data center 
cooling and power delivery capacity, which has driven up fixed infrastructure 
costs and operational expenses. Servers rarely operate at their peak capacity 
and efficient power capping is deemed as a critical component of modern 
enterprise computing environments. Conventional practice is to overdesign 
power and thermal characteristics on the conservative side due to complex 
feature/thermal/power interdependencies and lack of optimal system power 
modeling and/or system heuristics. Overdesigning at the system component 
level results in overprovisioning of computer room air conditioning (CRAC) 
in the data center as well as power supply sizing and operating efficiency[9][20]. 
Data collected by the Green Grid Association[21] on data center power usage 
effectiveness (PUE) indicate peak and average efficiency of 40–50 percent 
compared to theoretical or design power, which led to overprovisioning of 
cooling and oversizing space by upwards of 50 percent. This data suggests 
much optimization can be achieved by incorporating well-designed closed loop 
system thermal and power management. 

The challenge in facilitating a holistic approach requires defining thermal and 
power telemetry with control mechanisms that are ubiquitous and hierarchical 
within a data center. For example, analysis of power/performance dynamics 
requires observation not only at chip granularity, but also at node and rack 
granularity. At node granularity, resource equilibrium is maintained as a 
result of complex interaction between competing silicon components. This is 
analogous to inter-node interaction that maximizes the performance for a given 
power/thermal budget. The fundamental goals of efficient energy management 
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are to maximize energy used while guaranteeing that the power consumption is 
never so high that the chips in a platform exceed its junction temperature limit. 
Limiting platform memory power is a critical requirement for platform power 
budgeting capabilities. Power budgeting allocates power amongst different 
platform components to maintain an overall platform power limit. 

A high level block diagram of common memory thermal and power limiting 
high level architecture is shown in Figure 5. The architecture is comprised of 
dynamic closed loop thermal management (D-CLTM) and dynamic open 
loop thermal management (D-OLTM), both converging with platform power 
limiting capability employing a running average power limiting (RAPL) 
algorithm. The dynamic closed loop thermal management (D-CLTM) scheme 
is based on traditional closed loop thermal throttling (CLTT) with the 
capability for the software to reconfigure based on platform power and thermal 
heuristics. Dynamic thermal management enables the highest performance 
at lowest power implementation by reducing thermal guard bands, which 
maximizes the energy efficiency. Well-defined states initiate thermal 
management actions as a result of thermal events and finer well-managed 
fan speed control along with thermal protection through throttling. Thermal 
throttling must be driven by the need to protect both data and component 
health. 

Figure 5: Common framework for thermal and power management with running average power limiting
(Source: Intel 2010)
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The thermal state machine manages memory temperature data and provides 
minimum temperature margin of the hottest DIMM in the channel for 
platform fan speed control. A thermal sensor from memory subsystem (or 
equivalent) provides closed loop feedback to the processor to manage memory 
power or throttle activity to protect the memory from exceeding memory 
temperature limits. The thermal state machine also contains programmable 
registers for temperature DIMM thresholds, DIMM thermal limits, and the 
time window. For platforms without memory temperature sensing capability, 
DIMM power meter and running average power limiting algorithms serve as 
the virtual thermal closed-loop process control. The thermal state machine 
also contains the necessary logic and hardware for external memory thermal 
events such as memory VR signal# or equivalent input to trigger throttling. 
Out-of-band alerts are monitored by a platform management controller to 
trigger temperature polling action for fan speed control. Single bidirectional 
signal# can be encoded for input and output mode. Signal# event temperatures 
are programmable to correspond to different DIMM temperature thresholds. 
Interrupts are generated upon thermal threshold crossing to the OS via  
SMI/MSI for in-band platform thermal management.

Memory RAPL Architecture
Power capping provides benefits in the data center, acting as a safety valve by 
protecting the power distribution hierarchy against overdraw and enabling 
effective usage of the available power and thereby increasing rack population. 
Dynamic power capping is a primary power control requirement that must be 
addressed by a power management solution. Running average power limiting 
(RAPL) is a feature for limiting the power consumption to a programmable 
level of various hardware elements based on the energy consumed over a 
programmable time window. RAPL heuristically controls memory power while 
maximizing bandwidth and smoothing the effects of bandwidth limiting. 
Efficient enforcement of power limits over a time widow reduces performance 
impact for highly dynamic and transient data center workloads. Rather than 
setting instantaneous limits, RAPL maintains energy credits, which are traded 
to fulfill memory performance demands and accumulated when that demand 
is low. If the average workload memory bandwidth requirements are within 
the specified power limits, the system will not experience any performance 
degradation even though its memory demand over short periods of time may 
well exceed the average power limit. 

Memory RAPL architecture is comprised of three principal components: 
power measurement logic, a power limiting algorithm, and memory power 
limiting control. Figure 6 illustrates memory RAPL architecture where power 
measurement logic provides an accurate mechanism for measuring memory 
power. Calibrated weights can also be used to implement a cost-effective 
memory power measurement scheme. An alternative power metering scheme 
can be implemented through instrumentation in the voltage regulator (VR) 
with capability for accurate power metering. A power limiting algorithm 

“The thermal state machine manages 

memory temperature data and 

provides minimum temperature 

margin of the hottest DIMM in 

the channel for platform fan speed 

control.”

“Power capping provides benefits in 

the data center, acting as a safety valve 

by protecting the power distribution 

hierarchy against overdraw and 

enabling effective usage of the 

available power.”
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tracks memory energy consumption over a sliding time window and 
determines available power budget for the next interval. The algorithm aims to 
deterministically maintain a power limit while maximizing memory bandwidth 
and performance. 

Figure 6: Memory RAPL architecture
(Source: Intel Corporation, 2010)
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Multiple power limits may be active at any time, where each may be specified 
on a different component of memory and at different time scales (for instance, 
power delivery versus component thermals versus battery life or data center 
power/thermals). For example, Figure 7 shows platform power budgeting 
policy may set a power limit of 50 W over 100 milliseconds to allow some 
burst of memory traffic while setting a lower component power limit of 75 W 
over a ten-second time window to control the long time window average 
power. RAPL technology provides the following benefits versus its predecessors 
and alternatives:

•• Improved performance and correctness – Enforces mechanisms to maximize 
performance/responsiveness within any power limit, and guarantees 
correctness (deterministic power consumption limits) when required. This 
is primarily achieved by moving low-level policy into the core logic where 
we can take advantage of hardware granularity (temporal, spatial).

•• Decoupling – Provides a key feature (memory power limiting) that fully 
decouples their external policy from our internal implementation. External 
agents no longer limit power consumption using explicit memory throttling 
registers, thereby freeing hardware to do this more intelligently than could 
be done externally and without exposing available capabilities externally.

•• Encapsulation – Enhances capabilities and policies within our core logic 
without impacting or needing to (re) enable the ecosystem. Infers both 
time-to-market and differentiation opportunities.

“Multiple power limits may be active 

at any time, where each may be 

specified on a different component of 

memory and at different time scales.”

“Improved performance and 
correctness – Enforces mechanisms to 

maximize performance/responsiveness 

within any power limit, and 

guarantees correctness.”
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•• Standardization – Standard memory power limiting mechanism and 
interface across internal and external agents. We’re extending the Intel ISA 
to include the notion of power limiting. RAPL exposes the time interval to 
software and platform making it dynamically configurable. Furthermore, 
it allows multiple limits to be set simultaneously to meet different thermal 
and power constraints that arise in real physical deployments. Setting the 
time interval statically and choosing the lowest common denominator can 
either cause power excursions or unnecessary performance degradation.

Figure 7: Open and closed loop thermal and power limiting usages
(Source: Intel Corporation, 2010)
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Memory Thermal Management and RAPL
For servers, memory power limiting with RAPL can be part of platform power 
budgeting for data center optimization such as Intel® Intelligent Power Node 
Manager[17] by limiting system power consumption so rack density may be 
optimized. RAPL may additionally be used in platforms to limit DIMM power 
as part of memory thermal management. For clients, memory RAPL can be 
used to enforce basic battery life policies, enhance thermal management [18], 
and pave the way to more advanced policies and efficient execution. 

Platforms generally support four interfaces (MSR, MMIO, PECI/PCS, and 
SCA) that allow both in-band and out-of-band programming of the RAPL 
DDR domain power limits. Memory RAPL limits can be set by many internal 
and external policy agents to limit memory power. Traditionally, it is the 
responsibility of policy agents to implement any advanced control algorithms 

“RAPL exposes the time interval to 

software and platform making it 

dynamically configurable.”

“For clients, memory RAPL can 

be used to enforce basic battery 

life policies, enhance thermal 

management.”
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should there be desire and benefit. External in-band agents may include BIOS, 
OSPM, and OS-based agents[18]. External out-of-band agents may include 
PCH Management Engine, Baseboard Management Controller (BMC), 
Embedded Controller (EC), and System Management Controller (SMC). 

The complex control interface means that RAPL must be able to support 
multiple limits at multiple timescales applied by multiple agents—as well as 
a policy to resolve potentially conflicting power limits. To accomplish this, 
memory RAPL algorithm operates as a policy on top of a set of memory power 
limiting mechanisms. It systematically determines the maximum available 
energy budget for different memory components using currently applied 
power limits, recent workload behavior and the measured/calculated power 
consumption. The CPU uses this available energy to limit memory power, 
changing interface speed (such as DRAM frequency) or restricting memory 
bandwidth (such as core off-lining and activity throttling). 

Domains exposed and managed by memory RAPL include socket (all memory 
attached to a processor for client) channel and DIMM. The processor/
memory-controller should contain the necessary logic/firmware, controls, 
and interfaces (such as PCU, internal and external power sensors, and control 
registers) to implement the underlying algorithms and policies. The number 
of domains and power limits exposed in and out-of-band directly impact 
complexity and cost of the memory RAPL feature.

Memory Power Limiting
The domain-specific energy budget computed by the RAPL algorithm is passed 
to the memory power limiting logic. The power limiting logic is responsible 
for ensuring that the specified energy budget is not exceeded during the next 
time interval. The power limiting logic can use several mechanisms to limit 
memory power including rank reordering, frequency scaling, core off-lining 
and activity throttling. Each mechanism entails a different power-performance 
tradeoff for different workloads and their use should be defined within a 
policy that aims to maximize memory performance within specified energy 
constraints. The benefits of RAPL are illustrated in Figure 8 where RAPL 
allows for transient spikes in memory bandwidth at hardware time scales while 
maintaining average power over a time window specified by software. This 
allows the processor to deliver the required bandwidth to a workload when 
memory demand goes up and accumulate energy credits when demand is 
low or processor is idle. Setting a fixed bandwidth threshold to limit memory 
power would have a more adverse impact on system performance.

“RAPL algorithm operates as a policy 

on top of a set of memory power 

limiting mechanisms.”

“The CPU uses this available energy 

to limit memory power, changing 

interface speed or restricting memory 

bandwidth.”
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Figure 8: Memory RAPL power and thermal usage benefits
(Source: Intel Corporation, 2012)
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Standard Configuration Hardware Abstraction
Although sensor technology has matured over the last few years, it still 
lacks interoperability standards for representation, resource allocation, and 
constraint detection. Traditionally, most of the techniques used are specific to 
a given architecture, application, or devices. Sensors can have specific response 
characteristics that may be necessary elements in the quality of measurements. 
These characteristics may depend upon design aspects or operating conditions. 
For example, current measurements may exhibit high inaccuracies at lower 
utilization, but fewer errors at higher utilization. Hence, this information can 
be used to calibrate the sensor at higher utilization to reduce the overall error 
rate. Software support for sensor solutions has been proprietary for individual 
applications or device needs. The software designer is often faced with the 
task of re-implementing the sensor characteristics with new, emerging, or 
conflicting architectures. This has the potential to create software redundancy 
and to limit reuse. Therefore, it is essential to be able to interact and cooperate 
between autonomous entities in meaningful ways without too much 
complexity. This requires a comprehensive framework capable of measuring, 
quantifying, and describing the sensor’s properties and its statistical behavior in 
a dynamic environment. 

Common framework thermal and power autonomics defines the standardized 
set of registers required for performing power/thermal throttling functions. 
These registers are configurable resources in the platform that are mapped via 
PCIe[19] configuration space. Standard Configuration Architecture (SCA) is a 
novel methodology to utilize PCI vendor configuration space (VSEC IDs) to 
allow discoverability and feature standardization across platform segments and 

“It is essential to be able to interact 

and cooperate between autonomous 

entities in meaningful ways without 

too much complexity.”
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generations. SCA provides a standard and consistent software-friendly interface 
mechanism for product features. Each feature or group of relevant features 
is co-located in one logical device, which then becomes easily configurable 
by the software. In a traditional approach, each new platform would 
redefine common features and how they are formatted in the configuration 
registers. The constant change reduces the sustaining cycle and increases the 
development effort greatly. 

In general, SCA allows standardized discovery, organization, and consistency 
of layout that result in consistent implementation at the feature level while 
reducing platform software costs and enabling OS support. This section 
defines various abstraction classifications that employ common infrastructure 
mapped using the OEM-Standard PCIe capability structure. A common 
software framework deals with various abstractions with an ability to shape (or 
configure) the function based on various inputs. These abstractions perform 
the management functions required to successfully (a) identify the thermal 
and power capabilities, (b) securely upload/execute/modify functional/control 
parameters, (c) are signaled upon a trigger condition, and (d) configure the 
system parameters for execution containers, result storage, and scheduling. 
Architecturally, these abstractions can be classified into the following 
categories:

•• Discovery – These interfaces describe the attributes, granularity, and 
operational domain of operation. For example, the thermal threshold 
feature of a CPU can be controlled on an individual thread or collection of 
threads that are programmed individually.

•• Observation – These interfaces provide the performance, power, and thermal 
statistics that constitute the feedback loop within the control loop. 

•• Control – These interfaces provide the ability to configure the operating 
environment for process control (like energy throttling and task throttling) 
as well as result collection. For example, power thresholds can be configured 
in such a manner that they trigger a preconfigured policy (such as 
throttling).

•• Status – This interface describes the summary behavior of the domain. 
Status attributes are compressed to reduce redundant polling of the 
individual component in order to capture the statistics of the component 
that is behaving out of policy.

•• Interrupt – This interface allows the configuration of the thresholds that 
define the trigger attributes of the system interrupts. Interrupts can be 
configured according to the usage. Interrupts can be classified as (a) System 
Management Interrupt (SMI), (b) Message Signaled Interrupts (MSI),  
(c) Out-Of-Band Interrupt Signal (for example: CPUHOT).

Figure 9 illustrates a gradual evolution of memory thermal management 
features for CLTM, OLTM with virtual temperature sensor (VTS) and RAPL 
from current to future Intel architectures with underlying register format and 
location changed. The SCA block diagram depicted in Figure 10 follows the 

“A common software framework deals 

with various abstractions with an 

ability to shape the function based on 

various inputs.”

Figure 9: Evolution of thermal management and 
power capping
(Source: Intel Corporation, 2011)
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conventions of PCIe capability structure headers[19] combined with Intel VSEC 
ID for thermal management bar pointing to MMIO (client) or CSR (server) 
space where functional registers for thermal and RAPL are exposed. SCA 
methodology aims to standardize and employ a scalable register definition for 
future expansion.

Figure 10: Standard configuration architecture for thermal management and RAPL
(Source: Intel Corporation, 2011)
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Thermal and Power Events
Event processing is accountable for processing an event cloud in an effort to 
establish a meaningful pattern, sequence of events, or a situation. It employs 
heuristics that relate temporal properties of events, correlation between 
events, event-driven processes, and so on. A computation-oriented event 
processing is responsible for runtime evaluation of a stream of data entering 
the system. For example, runtime computation of exponential averaged data 
in response to inbound events falls in this category. A detection-oriented event 
processing is responsible for identifying events patterns or situations. For 
example, identifying a workload pattern based on the distribution of burst 
in traffic falls in this category. An event is normally an asynchronous signal 
from hardware that indicates the need for attention to the subscriber of an 
event. A hardware event (interrupt) causes the processor to save its context 
and execute a registered interrupt handler. Thermal and power events reduce 
the amount of data flow over the communicating channels and are integral to 
the scalable architecture in the future data center. An application can set up 
signals with dynamic properties. A signal handler (or interrupt handler) can 

“Event processing is accountable for 

processing an event cloud in an effort 

to establish a meaningful pattern, 

sequence of events, or a situation.”
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poll the data it is interested in for a short duration of time eliminating the 
need to continuously poll, reducing software overhead, and reducing hardware 
power consumption. A summary of programmable DDR thermal events are as 
follows:

•• Thermal status change for policy-driven thresholds 

•• DDR refresh rate change to 2x

•• Assertion of MEMHOT# input pin(s)

•• Policy-free temperature thresholds (for active and passive cooling heuristics)

Using event mechanisms, we can reduce the amount of data flow over the 
communicating channels. An application, based on its understanding of the 
actionable thresholds (sensor averages and so on), can set up signals with 
dynamic properties. These signals, when triggered, cause the software execution 
of a signal handler (or interrupt handler) that can poll the data it is interested 
in for a short duration of time. Upon understanding the cause of the alert, it 
can take an actuator action and optionally change the signal properties for the 
next trigger.

Various properties of signaling are:

•• Signal Type represents the type of signal that needs to be propagated 
when a certain threshold policy is fulfilled. These types include System/
Platform Management Interrupt (SMI/PMI), Non-Maskable Interrupt 
(NMI), Machine Check Interrupt (MCI), Message Signal Interrupt (MSI), 
SSP Interrupt (ARC, ME, and so on), and Out-Of-Band management 
Interrupt.

•• Signal Attributes represent the attributes that define the complex (and 
measurable) threshold of a component whose address is defined by the 
device path. The fulfillment of the complex threshold crossing triggers an 
alert that is routed according to the Signal Type settings.

•• Signal Handle represents the aggregation of multiple signals requested by 
various applications operating independently 

In many cases (particularly in Intel architecture), registers related to event 
mechanisms can be triggered based on thresholds and hysteresis. Mainly these 
triggers invoke system-level interrupts such as System Management Interrupt, 
SMBUS alerts, Machine Check Interrupt, and special signals (MEMHOT, 
PROCHOT, and so on). But since hardware supports only one set of threshold 
registers per device, it is therefore necessary to create a multiple instance 
model in a software middleware execution container that can handle multiple 
thresholds and selectively notify multiple applications. Hardware triggers 
can therefore be used intelligently to reduce the polling by the event service 
provider (ESP) execution container. The ESP handler gets triggered at the 
highest and lowest thresholds registered by multiple applications. As illustrated 
in Figure 11, once triggered, the handler compares each registered threshold 
and notifies the application if the threshold conditions are met. Additionally 
it evaluates the current thresholds and resets the triggers for future invocation. 

“Using event mechanisms, we can 

reduce the amount of data flow over 

the communicating channels.”

“Since hardware supports only one 

set of threshold registers per device, 

it is therefore necessary to create a 

multiple instance model in a software 

middleware.”
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A common framework proposed the following signals and interrupts allows 
ubiquitous management of power and thermal features:

•• Signals – MEMHOT# (I/O) – As an output this signal indicates that a memory 
throttling event is occurring. As an input this signal an external agent can force 
the memory controller to throttle in order to decrease memory power.

•• Interrupt (SMI) – SMI is a legacy system interrupt that is broadcast to all 
the cores. It stalls the CPU (and OS) for a short duration, where the SMI 
interrupt handler can perform its service routing for any cooling functions. 
This interrupt is generated by Memory-Controller upon any thermal 
threshold crossing and causes the OS (or BIOS) to enter in SMM mode 
where an Interrupt Service Routine (ISR) decides upon taking any cooling 
action. These cooling actions extend from task throttling, identification 
of HOT channels (or uneven distribution) that can be rectified by OS 
dispatcher or memory allocator. Thermal thresholds related to SMI are 
reactivated upon crossing the hysteresis levels.

•• Interrupt (MSI) – Message Signaled Interrupts (MSI) are software interrupts 
that allow the device to write a small amount of data to a special address in 
memory space. The chipset will deliver the corresponding interrupt to a CPU. 

•• Interrupt (SCI) – Hardware power management events trigger an OS-visible 
interrupt called a system control interrupt (SCI). Operating systems handle 
simple SCI interrupts (for example, fixed-feature power button state 
change) directly. Complex SCI interrupts are handled by the OS using 
AML code associated with the interrupt.

Figure 11: Interrupts and event signalings
(Source: Intel Corporation, 2010)
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Any thermal or power event can generate any one of these interrupts that 
allows the manageability to be hosted from any operational container.

Data Center Abstraction: Policy-based Thermal, 
Power, and QoS Management Using Optimal 
Scheduling
Management policies are a set of rules used to manage distributed computing 
environments in a scalable manner. Racks of server hardware, power supplies, 
network switches in a cloud data center generally operate with a set of business 
driven policies, intended to meet service level agreements (SLAs), reduce 
maintenance costs, and drive greater efficiency in usage of compute resources 
and energy. All the managed elements must work in tandem, governed by 
business rules and management policies. Propagating these rules or policies, 
device by device, is not scalable. Since the number of servers per data center 
can run into tens of thousands and the number of customers using the cloud-
hosted services on the hardware could run into hundreds of thousands, policy 
adherence via monitoring and management needs to be autonomous using 
software and tools[22][23]. To support the communication of data, management 
needs to be through standard protocols on all devices. This self-managed 
system needs to be able to handle any changes in its environment with minimal 
human intervention. The management system caters to conflicting goals of the 
end user who is interested in receiving the SLA and the cloud and data center 
provider who is interested in optimal usage of infrastructure. A non-policy 
management environment requires extensive monitoring, different software 
tools for different kinds of monitoring, and a coordination layer between them, 
which adds complexity, validation effort, and time for the ISVs. Hence cloud 
service providers (CSPs) tend to rank taking advantage of platform features low 
on their priority list.

Specifically, one of the cloud usages to address is the ability to map specific 
workloads to specific hardware to meet quality of service or throughput 
requirements. 

Consider a very common Infrastructure energy efficiency policy and a  
SLA-based policy with a simple usage model: 

Infrastructure Policy 1

IF (power consumed by rack1 >= 9.5 wkVA)
THEN Take action to maintain power by rack1

Action: Maintain power consumed by rack < 9.5 wKVA

This policy is implemented by infrastructure management software in the 
following manner:

MaintainPowerofRack() 
{ 
GetpowerConsumedbyEachServer() 

“Racks of server hardware, power 

supplies, network switches in a cloud 

data center generally operate with a set 

of business driven policies, intended to 

meet service level agreements.”

“Self-managed system needs to be 

able to handle any changes in its 

environment with minimal human 

intervention.”
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CheckLoadOnServer() 
ActivatePowerPolicies() 
PowerOffUnusedServer() 
…..//more actions 
}

Business Policy 2:

Premium Service SLA: XX IOPS per second, YY compute operations per 
second, DD IO bandwidth, ZZ Mbps memory bandwidth.

Policy 2 usage in resource pool creation for premium service:

IF ((serverX system compute operations per second >= YY) 
               AND (serverX system IOPS per second >= XX) 
               AND (server system memory bandwidth per second > ZZ))
               THEN Include serverX in Premium Service pool

Policy 2 usage in resource workload scheduling enforced by a resource  
management component

IF (serverX memory bandwith < ZZ)
THEN Schedule workload on ServerY

Now consider how both Policy 1 and Policy 2 are used in a load balancing 
action:

If ((serverX system compute operations per second >= YY) 
BUT (power consumed by rack1 >= 9.5 wkVA))
THEN LookforBestServerinList()//List of all servers fit for premium policy
IF (found)
THEN Move workload to next best server in Premium Service pool

As shown, Policy 1 and Policy 2 impact the optimal operation of racks and 
each server in the rack. They also impact the energy usage and effective 
allocation and usage of resource. The components affected by these policies 
are the cloud workload scheduler, resource usage monitoring tools, and the 
load balancer to maintain the performance SLAs and power usage. To locate 
the right platform (CPU, chipset and board), traverse the DC hierarchy to its 
location to set policies and aggregate the monitored data back to a meaningful 
high level metric. This section will introduce:

1.	 A data center resource monitoring framework 

2.	 A basic template for a workload map 

3.	 An autonomic control mechanism at every level to meet a defined efficiency 
metric 

“To locate the right platform (CPU, 

chipset and board), traverse the DC 

hierarchy to its location to set policies 

and aggregate the monitored data 

back to a meaningful high level 

metric.”
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Data Center Group Resource Monitoring Framework 
A typical data center hierarchy consists of compute nodes as rack mounted 
servers or aggregated as a subgroup of server blades with common chassis or 
SOC blades in a micro-server. A collection of nodes and node subgroups form 
either a physical group (rack) or span racks to form a logical group. A cloud 
workload scheduler working with a network zone will typically consist of such 
a collection of physical and logical groups, as shown in Figure 12.

Figure 12: DC management hierarchy
(Source: Intel Corporation, 2012)
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A scalable monitoring framework in a zone, group, node hierarchy would 
consist of monitoring at the node and the groups, thus extracting the required 
intelligence at each level. At every level of hierarchy, the managed element 
would have specific ranks associated with it, which allows the zone level 
management function to get a quick snapshot of the status. For example, 
if the cloud OS scheduler requests a particular server with a particular QoS 
requirement, it would look at the availability rank and QoS rank for the zones 
it is managing (Figure 13). The zone’s QoS rank will be derived using the ranks 
of the groups it is managing and that in turn from the nodes in the group. 
A higher rank could be termed favorable for this use case. This mechanism 
reduces the network span to address a system and also reduces the data set for 
search. Needless to say, data collection at the nodes and groups is required to 
be scalable and the data search distributed. 

“A scalable monitoring framework in 

a zone, group, node hierarchy would 

consist of monitoring at the node 

and the groups, thus extracting the 

required intelligence at each level.”
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Figure 13: Monitoring and ranking 
(Source: Intel Corporation, 2012)
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Data Model at the Group
A hypertable[24] “tablet” for monitored data collected at the node and group 
will have data stored and collected in a format shown in Table 2.

Row Key time ID IP address Metrics Rank 

T0 ComputeNode id =>“CN_UUID1”,
ServerGroupID => “SG_UUID1”,

MCU_add = “10.255.255”
BMC_Add = “10.255.255”
VMM_Add = “10.255.255” 

Usage => “100”
MemBW => “80”
Stalls => “40”
Cycles => “100” 

AvailabilityRank => 
“100” 
QOSRank => “200” 

T1 ComputeNode id => “CN_UUID2”
…… 

…… ….. …..

Table 2: Monitored Data Storage Format
(Source: Intel Corporation, 2012)

Workload Map
A significant amount of work has been conducted on analyzing workload 
characteristics, user behavior, and performance of workloads in single- and 
multisystem virtualized and nonvirtualized environments[28][25] (see Code 1). 
User behavior and phases of workload execution, whether submitted as  
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pre-known inputs or learned by correlation during execution have been 
discussed [26][27]. 

{“user session”: { 
	 “jobs”: [{job:1},{job:2} ], 
	 “Instruction Sequence”: [ ], 
“time”: [ ],  
“machine_instruction_type”:[{mem_read:1},{mem_write:2},{ARM:3}], 
“Phases”:[{phase1:“mem_read”},{phase2:”mem_write”}] 
}} 
{ “UsagePattern”:{  
	 “CPUUsagePattern”: [ ],  
	 “MemoryUsagePattern”: [ ] ,  
	 “NetworkIOUsagePattern”: [ ], 
	 “DiskIOUsagePattern”: [ ]  
}}

Code 1: An example workload map in JavaScript Object Notation (JSON) 
(Source: Intel Corporation, 2012)

Autonomic Control Mechanism for Workload Placement
Autonomic workload placement in the data center has often been done to 
optimize on cost, energy usage, or SLA[29][30]. The scalable and hierarchical 
monitoring framework can be used to perform optimal workload placement 
as shown in Figure 14. If workload runtimes and throughput are the cost 
functions to optimize, then a workload autonomics manager sets those 
parameters for providing an efficiency rank. The workload map and the 
placement policies are set at the zone, group, and the compute node. As 
workloads are placed, the efficiency ranks of the nodes are updated based on 
monitored data. The “control” block in this flow may attempt to adjust the 
workloads within a group by migrating to different systems, to maintain the 
efficiency rank of the group. Node level control and throttling will also be 
needed where in usage of shared resources like power, cache, and bandwidth 
can be set as thresholds and throttled to maintain a node level efficiency rank, 
thus reducing the cost of migration. 

“If workload runtimes and throughput 
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Figure 14: Design of autonomic workload scheduling
(Source: Intel Corporation, 2012)
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Data Center Trends and Technologies
To take full advantage of platform features requires an understanding of 
future data center needs and possible interactions between the IT equipment 
and the data center. Some of these interactions are easily understood and 
managed while others require a high degree of communication and real-time 
optimization between the ITE and data center. A holistic view will become the 
norm when evaluating data center efficiency. 

Presently, the data center and the ITE are viewed separately and there is no 
agreed-upon way to measure overall efficiency. The data center can be evaluated 
using power usage effectiveness (PUE), which is simply the ratio of total energy 
entering the data center to the ITE load. The Green Grid has defined how 
PUE should be stated based on how the measurements are performed. PUE 
provides a good way to evaluate and compare infrastructure designs but does 
nothing to address the efficiency of the ITE (the “1” in the PUE equation). 
Separately, ITE compute efficiency metrics have been under evaluation by the 
governmental entities such as the US government’s Energy Star to characterize 
the efficiency using both power and performance so that servers can be directly 
compared with each other. 

In the future, collaborative design between the data center and the ITE must 
occur. The data center and ITE must be fully aware of and communicative 
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with each other in order for real-time optimization to occur. That collaboration 
will result in features and capabilities in the ITE that are available and usable 
when needed to optimally meet the data center’s needs and vice versa. It is not 
enough to have the features. An integrated data center will have the software 
and algorithms using the data supplied by the ITE to optimally address the 
real-time workloads.

Some of the most important thermal interactions requiring data center/ITE 
collaboration and optimization are:

1.	 Server inlet temperature – Servers are designed to support specific 
environments based on the temperature delivered at the inlet to the 
server. When the data center is aware of inlet temperature (as delivered 
by ITE sensors), cooling adjustments can be made to the room to ensure 
compliance to the ITE specification and prevent reduced performance or 
shutdown. Alternatively, workload can be moved to other servers not under 
this type of stress.

2.	 Rack airflow demand – Airflow demanded by a server varies based on 
workload and thermal conditions. (ITE thermal management drives server 
fans to ensure compliance to component thermal specifications.) The data 
center must be able to satisfy that demand or cooling may be compromised. 
The result may be airflow recirculation in the data center leading to further 
increases in IT airflow demands to ensure adequate cooling to the server. 
Optimized, air-cooled data centers will enable delivery of precisely the 
airflow required to cool the ITE. 

3.	 Rack exhaust temperature – The air exhausting from a rack can be both a 
safety and functional concern. If employees will be working in this space, 
temperatures can easily approach burn limits, or may simply be too hot 
for humans. Air movement can be increased to eliminate this concern. 
Also, some equipment including cables and switches have temperature 
limits that can be exceeded. Inclusion of exhaust temperature in the server’s 
thermal management can alert the data centers of potential issues. More 
importantly, awareness at a rack or data center level can create opportunity 
for the data center to respond by improving flow to that rack or through 
better distribution of the workload. 

4.	 Thermally limited performance – When increased cooling within the 
server is inadequate to meet thermal requirements power management 
features such as throttling may engage to ensure thermal compliance. By 
knowing whether power management features are engaging and how often, 
determination can be made whether to redistribute workload to less-
stressed servers to better meet the workload demands of the data center. 
In some cases it may be desirable to keep workload on thermally-stressed 
systems for overall power reduction. (Running many servers under lower 
load may be much more power-consuming than running fewer servers 
under heavy loads.)

“An integrated data center will have 

the software and algorithms using the 

data supplied by the ITE to optimally 

address the real-time workloads.”

“Awareness at a rack or data center 

level can create opportunity for the 

data center to respond by improving 

flow to that rack.”



Intel® Technology Journal | Volume 16, Issue 2, 2012

A Robust Autonomic Framework for Memory Thermal, Power, and Throughput Management   |   77

The most important power/performance interactions requiring data center/ITE 
optimization are:

1.	 Power supply capability – Power supplies are not typically designed to 
support simultaneous worst-case consumption on all components. When 
workloads approach the limits of the power supply to support them the 
data center should be aware so that workload distribution can take place 
assuming that is the desired response by the data center operator.

2.	 Power consumption – Similar to power supply budget, the capability for 
delivering power in the rack or data center can be limited. The ability to 
know power consumption at a rack level enables the data center operator to 
redistribute workload prior to exceeding the capability for the data center  
to deliver the power for that workload. 

3.	 Power-thermal-aware scheduling – The holy grail of power/performance/
thermal management is the capability for scheduling workloads based on 
awareness of how to complete the workload while consuming the least power 
in the required time. Thermal, power, and performance characteristics all 
weigh in the algorithms required to determine this. Without the previously 
described sensor capability power-thermal-aware scheduling would be 
impossible. Each power or thermal management feature in concert with the 
sensors that support them plays its part in achieving an optimal data center–
ITE capability. The data center characteristics must be combined with the 
ITE characteristics to be able to begin the process of optimization. The 
capability for scheduling, adjusting, or moving workloads based upon the 
power and thermal capability of the data center will distinguish future data 
centers from present implementations where there is little or no awareness 
between the ITE and the data center.

Conclusion 
High power and density pose significant cooling challenges for system design 
as well as for the facility housing the equipment. Designing a cooling solution 
to manage temperature of these high power chips in a server is critical to 
reliable performance and life of the equipment. This requires a well-designed 
autonomous thermal management implementation that can enable minimal 
thermal guard bands and the flexibility to configure the platform for 
performance and power reduction. Dynamic thermal management presents 
a fast growing approach that couples thermal management and explicit 
management of energy consumed to optimize energy efficiency of the chip. 
The challenge in facilitating a holistic approach requires defining thermal and 
power telemetry with control mechanisms that are ubiquitous and hierarchical 
within a data center. In this article we described the system approach to building 
a standardized Memory power and thermal management infrastructure. We 
described the RAPL methodology that enforces power limits over a time widow, 
while reducing performance impact in highly dynamic and transient data center 
workloads. RAPL scheme dynamically determines the maximum available 
energy budget for different memory components using currently applied 
power limits, recent workload behavior, and the measured/calculated power 
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consumption. We also presented Server Dynamic CLTM architecture that 
integrates thermal management within the processor and integrated memory 
controller (IMC). We also reiterated the need for interface standardization 
through standard configuration architecture. It allows standardized discovery, 
organization, and consistency of layout that result in consistent implementation 
at feature level while reducing platform software costs and enabling OS support. 
The standardized approach also includes the ability to reduce the software 
polling overhead by using standard events and interrupts. Event processing is 
accountable for processing an event cloud in an effort to establish a meaningful 
pattern, sequence of events, or a situation. It employs heuristics that relate 
temporal properties of events,correlation between events, event-driven processes, 
and so on. We illustrated the management models to drive the decisions 
for optimal thermal management in a platform in the presence of acoustics, 
environmental standards, power, and performance targets.
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This article studies an adaptive fan speed control technology to deliver scalable 
acoustic control that is integrated in platforms. The technology consists of two 
critical elements: algorithms that automatically adapt to system configuration 
and loading, and direct coupling between acoustic fan speed control techniques 
and power management.

The automatic tuning eliminates the need for manual tuning while reducing 
the guard bands that are introduced by current static algorithms to account 
for system-to-system variations. The automatic tuning capability combined 
with the auto-discoverable thermal management capability enables a scalable 
solution for optimal cooling. The objective of the fan controller is then to 
maintain a positive headroom for each device at all times.

Introduction
Modern computer platforms can have several fans as part of their cooling 
solutions. Cooling requirements in a platform vary continuously with time. 
Hence it is advantageous to have a fan controller integrated in the platform to 
set the fans to turn at low speeds when thermal conditions allow. The controller 
can use either a feed-forward (FF) or feedback (FB) scheme to generate a pulse 
width modulated (PWM) voltage signal to set the speed of each fan. Typical FF 
controllers[1] apply linear interpolation between programmable low and high 
fan speed limits to compute the PWM level as a function of the temperature 
input. FB controllers[2] work on a thermal error signal defined as the difference 
between the measured temperature input and a set point temperature. The 
controller attempts to drive the thermal error to zero by adjusting the fan 
speed, for example, using a PID control law. The increased complexity of 
FB controllers relative to traditional FF controllers is justified because they 
can have a significant performance advantage in terms or reducing thermal 
guard bands and providing a smoother response. Attaining this benefit using 
traditional FB control methods is complicated in practice because: 

•• The thermal relationship between the fan speed input and the temperature 
sensor output is nonlinear

•• The fans themselves feature static nonlinearities; for example, the speed is 
bounded by upper and lower limits

•• The response of the fans is slow relative to the thermal error dynamics. 
The result is that conservative tuning of the parameters and testing by the 
system integrator are required to ensure reliable performance. 

“A fan controller integrated in the 

platform to set the fans to turn at 

low speeds when thermal conditions 

allow.”

“Conservative tuning of the 
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In the case of servers in particular, the goal of fan speed control is to improve 
performance and acoustics while making the overall systems more power 
efficient without changing thermal requirements, altering server system 
reliability, or negatively impacting performance[3]. From the point of view of 
the thermal solution, server systems consist of cooling zones, at least some 
of which may contain one or more cooling fans. Most modern dual- and 
multiprocessor servers have from three to five fan domains controlled by 
independent fan speed signals. During normal operation, as opposed to during 
failure situations, fan speeds are driven by the (minimum) thermal margin in 
each domain. Hence, the control system monitors ambient and/or component 
temperatures and applies algorithms to reduce thermal margins without 
increasing thermal risk. A combination of lookup tables and feedback control 
algorithms are typically used[4].

In this article, we propose a solution to enhance the energy efficiency of servers 
by reclaiming the thermal margins of the fans. We present a new fan speed 
control system which manages the speed of the fans proactively by monitoring 
both the usage indicators and the temperatures of the components. It employs 
thermal models based on fuzzy logic to minimize the energy consumed by the 
fans without violating the thermal constraints of the system. It achieves this at 
equal performance and lower acoustic noise. In addition, the system is adaptive 
and self-tuning, thereby eliminating the need for cumbersome manual tuning. 
Thus, the cooling solution is automatically optimized for each individual 
server system. The remainder of this article is organized as follows. In the 
section “Adaptive Fuzzy Models” we describe a type of fuzzy systems called 
Takagi-Sugeno that can be used to model the thermal interactions in a server 
system. In the section “Model-based Predictive Control” we describe a model-
predictive control technique that uses a fuzzy thermal model to minimize the 
total power in a system while maintaining positive thermal headroom. In the 
section “Self-Tuning, Adaptive Fan Speed Control” we present some simulation 
results that demonstrate the benefit of the system. The “Conclusions” section 
makes some final observations.

Adaptive Fuzzy Models
In this section we describe a type of fuzzy system that can be used to 
create and update models which describe the complex, possibly nonlinear 
relationships between components found inside computer systems. These 
models are data-driven in the sense that they can be fully designed, extracted, 
or learned from data, which can be gathered from different sources: raw data 
from measurements; context information, such as OS hints, applications, 
and user input and environment; structured sources, such as technical 
specifications; and streams, typically from an on-line processing context 
(sample- or block-wise). Several methodologies can be used for model 
training, such as statistical approaches, machine learning, and iterative least-
squares techniques. The result of training is the determination of optimal 
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parameter settings for the system. An important class of data-driven models 
is comprised of evolving systems, which are automatically adapted, extended 
and evolved dynamically on the fly based on new incoming data samples[5]. 
Compared to adaptive models, which include mechanisms to update some 
model parameters, evolving systems can also be extended based on data; 
that is, they can generate new structural components as needed in order to 
improve accuracy. Hence, evolving models are a key element to enable self-
learning computer systems and machines.

Takagi-Sugeno Fuzzy Systems 
Takagi-Sugeno (TS) fuzzy systems are widely used to build adaptive fuzzy 
systems. Figure 1 presents the main elements of a TS system. Like other types 
of fuzzy systems, TS systems include a set of rules of the general form IF 
antecedent THEN consequent. The characteristic feature of TS systems is the 
linear consequent functions, which are combined by the nonlinear fuzzy sets 
and T-norm operators in the antecedent part of the rules to form a smooth 
nonlinear model[5]. 

•• The i-th rule of a TS system is of the form 

	 Ri : IF z1 is Zi1 AND . . . AND zp is Zip THEN 
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Figure 1: Elements of a Takagi-Sugeno fuzzy system
(Source: Intel Corporation, 2012)

Figure 2 shows two of the most common types of fuzzy sets used in the 
construction of TS systems. Trapezoidal functions are simple to compute 
and interpret but are not steady differentiable and may not cover the input 
space sufficiently in the case of data-driven systems. On the other hand, 
Gaussian functions have infinite support and are steady differentiable but their 
interpretability is weaker. 
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Figure 2: Trapezoidal and Gaussian fuzzy sets
(Source: Intel Corporation, 2012)
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To illustrate how to use a TS system we present a simple example. Figure 3  
shows the rules and fuzzy sets for a simple system with two fans and one 
temperature sensor. The inputs to the system are the scheduling variables z1 
and z2 that represent the speed setting for each fan. The inputs are normalized 

“The inputs to the system are the 
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so that they take values in the range between 0 (minimum speed) and 
1 (maximum speed). The input space for each fan speed is partitioned into two 
fuzzy values, Slow1 (respectively Slow2) and Fast1 (respectively Fast2). 

R1 : IF z1 is Slow1 AND z2 is Slow2 THEN y1 = w10

R2 : IF z1 is Slow1 AND z2 is Fast2 THEN y2 = w20

R3 : IF z1 is Fast1 AND z2 is Slow2 THEN y3 = w30

R4 : IF z1 is Fast1 AND z2 is Fast2 THEN y4 = w40
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Figure 3: Elements of a Takagi-Sugeno fuzzy system 
representing a thermal model
(Source: Intel Corporation, 2012)  

Z12(z2) = Z32(z2) = 1 - z2

Z22(z2) = Z42(z2) = z2

For simplicity, the consequents for the rules include only the singleton 
consequent parameter, wi0. Using multiplication in place of the T-norm for the 
conjunction operator, the weight of each rule can be computed as follows.

w1 = Z11(z1)Z12(z2) = (1 - z1)(1 - z2)� (1)

“For simplicity, the consequents for 

the rules include only the singleton 

consequent parameter.”
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w2 = Z21(z1)Z22(z2) = (1 - z1)z2� (2)

w3 = Z31(z1)Z32(z2) = z1(1 - z2)� (3)

w4 = Z41(z1)Z42(z2) = z1z2� (4)

For example, suppose that the normalized speeds are z1 = 0.1 and z2 = 0.9, as 
shown in the figure. Then, using equations 1−4 the value of the rule weights 
correspond to w1 = 0.09, w2 = 0.81, w3 = 0.01, and w4 = 0.09. Therefore, 
the output of the fuzzy model, which in this case corresponds to a predicted 
temperature, is given by

f ̂(z1, z2) = ŷ  = 0.09 w10 + 0.81 w20 + 0.01 w30 + 0.01 w40� (5)

We’ll have more to say about the parameters wi0 in the next section.

Model-based Predictive Control
The fan speed control problem can be divided in two tasks. The first task is to 
construct a Takagi-Sugeno fuzzy system that can be learned from data, with fan 
speeds (or fan voltage or PWM) as inputs and device temperatures as outputs. 
The second task is to design an optimum controller that will exploit the 
predictive capabilities of the TS system to drive the fan speeds toward optimal 
settings that will minimize a cost function while limiting the temperatures in 
the system below the desired limits. The two tasks are described in detail in the 
following two sections.

Adaptive Fuzzy Thermal Model
A thermal model describes interactions between active components, like the 
CPU, memory, and fans. Every active component in a server system may have 
a thermal/power relationship with every other active component; however 
for the geometric and time scales involved in fan management, most of these 
relationships are fairly weak and can be safely ignored. Identifying, for each 
component, the key thermal relationships with the rest of the system and 
constructing accurate thermal models are two of the most difficult challenges 
to overcome for deploying effective fan management solutions.

Before going into the details, the main elements of the system can be 
summarized as follows. When the fan speeds change, and therefore the airflow 
inside a computer system changes, thermal relationships change in a nonlinear 
way. Capturing these nonlinear interactions is necessary for an effective and 
robust fan speed control system. The output of a fuzzy thermal model is a 
predicted device or zone temperature. The past values of the output become 
inputs to the thermal model, together with the past and present values of 
the power inputs. These inputs provide an indication of the active power 
consumed when some component is used. The parameters of the system can 
be self-tuned on the fly using a least-squares parameter adaptation algorithm. 
Using this fuzzy model, critical temperatures in the system are predicted ahead 
of time, enabling proactive control versus a purely reactive approach.

“A thermal model describes 

interactions between active 

components, like the CPU, memory, 

and fans.”

“When the fan speeds change, and 

therefore the airflow inside a computer 

system changes, thermal relationships 

change in a nonlinear way.”
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Using the fuzzy thermal model, the temperature at time t + 1 predicted at time 
t for a particular sensor is given by

ˆ .y w y w y w yC C= + + +1 1 2 2
. . � (6)

From Figure 1, Equation 6 corresponds to the output of a TS system with 
C rules. For a system with p fans we have the following formula for the 
membership degree of the i-th rule.

w Z zi ij jj

p
=

=∏ ( )
1

� (7)

The symbol ∏ indicates multiplication over the corresponding fuzzy sets in 
the antecedent part of the rules and the scheduling variables, zj, represent the 
fan inputs applied at time t - d. The delay d represents the time delay between 
an applied fan input and the resulting thermal response of the system. The 
consequent of the i-th rule is given by

yi i= ϕ 0 � (8)

Where, as in the example given in the section “Takagi-Sugeno Fuzzy Systems,” 
only the singleton consequent parameter was kept. Substituting equation (8) in 
equation (6) and dropping the sub-index 0 from the singletons, the predicted 
temperature can be calculated as follows.

ŷ w w wC C= + + +1 1 2 2ϕ ϕ ϕ. . . � (9)

To understand the meaning of the singletons, refer once again to Figure 3 and 
consider the case when the fan input z1 is 0 and the fan input z2 is also 0. In this 
case, the predicted temperature would be exactly ŷ = w1. Therefore, w1 corresponds 
to the predicted temperature when the applied fan speed inputs are Slow1 and 
Slow2, respectively. In general, the singletons correspond to local solutions of the 
nonlinear TS system for a particular combination of fan inputs, which we refer 
to as the scheduling variables. This insight leads to a method to determine the 
value of the singletons for a particular system, for consider what happens when 
the fan speeds are constant. It is well known that when this is the case, the future 
temperature of an electronic component can be estimated accurately from a linear 
function of the applied power (see for example Huang et al.[8]).

ϕi k
t k

k
t k

k

n

k

n
t a y b uba( )+ = − ++ − + −

=

−

=

− ∑∑1 1 1
0

1

1

1 � (10)

Where wi is the temperature at time t +1 predicted at time t when the fan 
inputs correspond to the antecedent of the i-th rule. The first term on the right 
hand side is a regression of the observed temperature, y t+1-k, up to time t. The 
second term is a moving average of the observed power, ut+1-k, up to time t + 1. 
In vector form, equation 10 can be rewritten as

ϕ θi it t( ) ( )+ =1 T Ψ � (11)

The superindex T on the right side of the equality is the vector transpose 
operator. The parameters a1 ⋅ ⋅ ⋅ ana-1 and b0 ⋅ ⋅ ⋅ bnb-1 are collected in column 
vector θi and the recent temperature and power measurements are collected 
in column vector Ψ. Combining equations (9) and (11), the predicted 
temperature from the fuzzy thermal model is given by

ˆ( ) , , ( ( ), ( ) . . .,T T T T Ty t w t w t wC C+ = ( )1 2 1 2θ θ θ1  Ψ Ψ Ψ TT T T( )) ( )t t= θ Φ � (12)

“In general, the singletons correspond 

to local solutions of the nonlinear TS 

system for a particular combination of 

fan inputs.”
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The parameters in equation 12 can be identified adaptively using a least squares 
parameter adaptation algorithm. The book by Lughofer[5] is a good reference 
to learn more about such algorithms and their particular application to fuzzy 
systems. We’ll consider the identification problem in the section “Self-Tuning, 
Adaptive Fan Speed Control.”

Optimum Fan Speed Control
Model predictive control (MPC) is a general approach to nonlinear optimal 
control[6]. Applying MPC to fan speed control, the future output y(t + T    ) of 
the system is estimated at time t using the fuzzy thermal model such that the 
predicted output ŷ(t + T  ) is a function of the current observation vector ψ(t) 
and of the fan speed z(t + k), where 0 ≤ k < T and z(t + k) = z(t + K - 1) for 
K ≤ k < T. Hence the fan speed varies only within the control horizon K. 

The control law is obtained by minimizing an objective function. This 
minimization problem yields the optimum control sequence z* = { z*(0), 
z*(1) . . . z*(K - 1)}. The control applied at instant t corresponds to z(t) = z*(0). 
All that remains to be done at this point is define the optimization problem 
to be solved in the MPC scheme. Since our interest in fan speed control is 
using it to minimize system power, the cost function should include the power 
consumed by the fans in cooling the system and the leakage power that is a 
function of the electronic components’ temperature. Our cost function is then 
defined as

L P k P y ka sk

k T
= +

=

=∑ ( ( )) ( ( ))z
1

� (13)

The first term on the right side of the equality, Pa, is the power consumed by the 
fans, which is a function of the fan inputs only. Therefore, for a given set of fan 
inputs, z, we can measure the power consumed by the fans and associate the value 
obtained with one of the rules of the fuzzy thermal model. In other words, each 
rule in the fuzzy thermal model has a cost associated with it that represents the 
power needed to drive the fans at the corresponding input’s levels specified in the 
rule’s antecedent. Consider now the second term on the right side of the equality 
in equation 13. Since leakage is a function of temperature, we can use equation 8 
and associate to each rule in the fuzzy thermal model a cost term proportional to 
the estimated leakage power. The total cost of each rule is therefore

Li = Pa(zi) + Ps(i  )� (14)

The optimization problem associated with MPC can now be stated as follows:

Minimize	 L w k d L ki ii

C

k

k T
= −

==

= ∑∑ ( ( )) ( )z
11

� (15)

such that	 w k k Tii

C
( ( )) ,z

=∑ = ≤ <
1

1 0 � (16)

and	 w k d y k y k Ti ii

C
( ( )) ( ) ,limz − ≤ ≤ <

=∑ 1
0 � (17)

Equation 15 represents the total system power, including cooling power and 
leakage. As mentioned in the previous section, the delay d represents the time 
delay between an applied fan input and the resulting thermal response of the 

“The control law is obtained by 

minimizing an objective function. 

This minimization problem yields the 

optimum control sequence.”

“The cost function should include the 

power consumed by the fans in cooling 

the system and the leakage power.”
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system. Equation 16 is the normalization condition for the fuzzy weights. 
Equation 17 represents the condition that the resulting temperature must be 
within the thermal limits of the component. Notice that the optimization 
problem defined by equations 15 through 17 can be solved using a standard 
linear programming solver such as the simplex [7]. The solution of the 
optimization problem is the set of fuzzy weights { w w wC1 2

* * *, , . . . } that should 
be applied to the rules of the fuzzy thermal model. The final step is thus to 
determine the optimal fan speeds as follows:

z t w Z w Z w Zj j j C C j( ) * * *= + + +1 1 2 2
. . . � (18)

Self-Tuning, Adaptive Fan Speed Control
In this section, we use an example to illustrate the implementation aspects of a 
self-tuning adaptive fan speed control system. Figure 4 shows a thermal model 
of a CPU with cooling solution. 

Figure 4: Thermal model of a CPU with cooling solution
(Source: Intel Corporation, 2012)
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The model can be represented as a thermal network in a similar way as is 
done for example in HotSpot[8]. Figure 5 shows a thermal network model 
representation of the CPU system depicted in Figure 4. 

Figure 5: Thermal network model
(Source: Intel Corporation, 2012)
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The thermal network is a simplified way to represent the dynamic thermal behavior 
of the system in terms of equivalent thermal resistances and capacitances. In 

“The thermal network is a simplified 

way to represent the dynamic thermal 

behavior of the system.”
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the thermal-electrical analogy, temperatures correspond to voltages and power 
corresponds to current. The CPU power includes the power loss due to leakage. 

P F M Ns i s i( ) ( )ϕ ϕ= × + � (19)

Fs is the leakage current. M and N are parameters obtained by curve fitting in 
the piece-wise linear model[9].

The thermal model has a variable thermal resistance, Rconv, to represent the 
effect of the fan on the system. In our model, Rconv is defined as an inverse 
exponential function of fan speed.

R ( )conv = −a zω α � (20)

The function v(z) in equation 20 corresponds to the CPU fan speed in RPM 
that results from applying the fan input z. The parameters a and a depend on 
the fan and heat sink characteristics. Fan power is proportional to the cube 
of the speed in RPM, so if on average we change the fan speed from some 
reference value RPM1 to a new value RPM2, we have from the fan law[10] that

RPM1/RPM2 = (Power1/Power2)3� (21)

Equations 19–21 plus the set of differential equations that can be derived 
from the thermal network model of Figure 5 by applying the thermal-electrical 
analogy describe the dynamics of the CPU thermal model. This model was 
used to generate data to train an adaptive fuzzy thermal model based on the 
scheme described in the section “Model-based Predictive Control.” Table 1 
shows the parameters of the model. 

Parameter Value 

Thermal resistances & 
capacitances (Fig. 5) 

R1 = 0.305, R2 = 0.122, C1 = 1.141, 
C2 = 19.45, C3 = 30.71 

Fan equation (Eq. 20) a = 9000, a = 1.20 
Ambient temperature TA = 22°C 
Number of fan inputs p = 1 
Number of rules C = 3 
Control delay d = 1 
MPC control horizon K = 1, T = 1 
Fan power (per rule) Pa = {1.3, 2.4, 14.0}
Leakage power (Eq. 19) Fs = 1, M = 0.22, N = -4.5 
Fuzzy sets Slow = (0, 0.025), Medium = (0.175, 0.057), 

Fast = (1, 0.225) 
Local models (Eq. 10) na = 12, nb = 12 

Table 1: Model parameters
(Source: Intel Corporation, 2012)

The steps needed to generate the model from data are explained next. The first step 
to generate a fuzzy thermal model for the system of Figure 4 is to partition the input 
space using fuzzy sets. In this example we use Gaussian fuzzy sets, with the input, 
z, corresponding to the normalized voltage or PWM input applied to the fan. The 

“Fan power is proportional to the cube 

of the speed in RPM.”
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input space using fuzzy sets.”
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fuzzy inputs can therefore be assigned linguistic values such as Slow, Medium, and 
Fast. Hence, the following three rules for the fuzzy system are obtained.

IF z(t - d    ) is Slow THEN y1(t + 1) = 1(t + 1)� (22)

IF z(t - d) is Medium THEN y2(t + 1) = 2(t + 1)� (23)

IF z(t - d) is Fast THEN y3(t + 1) = 3(t + 1)� (24)

Recall that the output of the fuzzy model corresponds to the predicted 
temperature that is obtained, via equation 9, by combining the output from 
the local models. Depending on the nonlinearity, a large number of local 
models may be necessary. While there are no general guidelines on how 
to choose the number, position, and shape of the fuzzy sets, in the present 
example the two extremes of the fan input range represent good choices for the 
Slow and Fast sets. The fuzzy set Medium can be placed initially at an arbitrary 
location between the first two. If necessary to improve the accuracy of the fuzzy 
model, it can be updated and/or extended adaptively at a later stage.

In the case of a single input system, one local model can be associated with each 
fuzzy set used in partitioning the input space. Each of these local models needs 
to be identified adaptively. Identification, or training, can be done for both the 
antecedent and consequent parts of the fuzzy rules. In general, local consequent 
training is more robust than global training because of the inherent regularization. 
For the present example, an affine projection algorithm[11] was used for local model 
identification of the consequent parts. A standard gradient descent least-squares 
algorithm was used to optimize the parameters of the Medium fuzzy set, while the 
Slow and Fast sets remained fixed. Figure 6 shows the resulting fuzzy sets. 

Figure 6: Partition of the fan input space using Gaussian 
fuzzy sets
(Source: Intel Corporation, 2012)
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A near perfect sequence of odd length was used to generate a power trace 
for local model training[12]. The linear model parameters (equation 11) were 
identified adaptively using the following update equation[11].

“Identification, or training, can be 
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θ θi it t r( ) ( ) ( )T= − + + −1 1Ψ Ψ Ψ I E � (25)

Where E is a ne × 1 error vector defined as

E = − − +( ( ), ( ), ( ))Te t e t e t ne1 1 � (26)

Matrix Ψ is similarly defined (abusing notation) using the ne most recent values 
of the measurements vector Ψ(t) from equation 11. For the present work ne = 2 
was used. Matrix I is the ne × ne identity matrix and r is a regularization 
parameter (in our case, r = 1e - 8).

After consequent and antecedent training were done, a different pseudo-noise 
sequence was applied to test the fuzzy model as shown in Figure 7.  

Figure 7: Simulation results using thermal network model and fuzzy 
thermal model. Top: temperature from network model (blue line), predicted 
temperature from trained fuzzy model (green line) and fan input (red line). 
Bottom: CPU power input applied to thermal network model.
(Source: Intel Corporation, 2012)
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Having trained a fuzzy thermal model of the system, the next step is to 
calculate the total cost of each rule using equations 14, 19, and 21. This is 
the last preliminary step before the optimum fan speed control strategy can 
be deployed to control fan speed. During operation in a system, the flow of 
the adaptive fan speed control system is as follows. Once a second, the fuzzy 
thermal model is used to predict the temperature d + 1 seconds ahead of 
the current time, using CPU power and temperature data sampled every a 
second. Based on these estimates, the linear optimization problem defined by 
equations 15–18 is solved to determine the fan speed level that is applied in the 
next second. If necessary, the fuzzy thermal model can be updated or extended 
at any time to cope for example with hardware configuration changes or aging 
of the components.

Figure 8 shows simulation results that illustrate the performance of an adaptive 
fan speed control system compared to a standard PID (proportional, integral, 

“The fuzzy thermal model is used to 

predict the temperature d + 1 seconds 

ahead of the current time.”

“If necessary, the fuzzy thermal model 

can be updated or extended at any 

time.”

Figure 8: Simulation results using PID (blue line) and adaptive (green 
line) fan speed control. Top: total power is the sum of the active CPU 
power, leakage, and cooling power to drive the fan. Middle: fan input. 
Bottom: CPU temperature. The red lined represents the Tcontrol setting. 
Fans should be at 100 percent whenever the CPU temperature is 
above Tcontrol.
(Source: Intel Corporation, 2012)
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derivative) control. It can be observed that both methods successfully limit 
CPU temperature but the adaptive control manages in addition to significantly 
reduce the total power consumed by the system. Note that the parameters of 
the PID controller were manually tuned for this particular example to ensure 
that the thermal limit was not exceeded. On the other hand, no manual tuning 
was necessary for the adaptive system, as expected. 

Conclusions
This article presented an adaptive system for fan speed control and power 
management. The system is self-tuning so thermal guard bands and system 
power can be minimized in every system. The system is data driven so it can be 
updated and extended automatically, enabling a scalable solution for optimal 
cooling. The fan controller maintains a positive headroom for each device at all 
times while minimizing total system power.
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The fast data center growth and cloud computing implementations drive the 
demands for a higher server system power efficiency to reduce data center 
energy cost. In this article, a novel control strategy is explored for power 
optimization to key components in a server system, using the voltage regulator 
(VR) control as an illustrative example. The new approach is based on the 
unique active disturbance rejection control (ADRC) principle, which actively 
estimates, and compensates for, disturbances to the system caused by dynamic 
load changes rather than passively reacting to them as most existing methods 
do. Hence the controller is inherently efficient in rejecting the disturbances in 
real time. Without any hardware changes, this methodology leads to substantial 
power saving in a highly dynamic load environment in a simulation study. 

Introduction
The US data center industry is in the midst of a major growth period 
stimulated by increasing demand for data processing and storage[1][2]. Financial 
services, Internet communication and entertainment, media, and global 
commerce all drive fast growth of the data center, along with a significant 
increase in energy consumption and its associated cost from the server system 
and data center infrastructure. The server system power efficiency becomes a 
frontline issue in server architecture, design, and research[3][4][5].

An Intel server system is shown in Figure 1. Under the hood of a modern 
server, we see many subsystems or circuits that are separately controlled. The 
server subsystem system controls can be characterized in several categories: 
voltage regulator control, power energy control and optimization, and thermal 
management and control. At the OS level, the control issues could be workload 
control, performance optimization, and so on. Each of these subsystems 
is quite different in its dynamics, but they all seek better control means to 
improve efficiency, robustness, smartness, and yet, at the same time, retain 
ease of use and intuitiveness. The improvement of control methodology or 
strategy in each subsystem in the server could result in a major improvement 
of the overall server system in terms of power efficiency, performance, and 
adaptation.

Undoubtedly automatic control systems play a crucial role in server systems 
and yet their design and tuning have not been the focus of our work until 
recently. Our default solution for many years has been the conventional 
proportional-integral-derivative (PID) controller that dates back to early 
1900s[6][7][16]. It is still widely used in server subsystems today due primarily to 
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its simplicity and our familiarity with it. But perhaps we can no longer ignore 
its intrinsic shortcomings, including but not limited to the following:

•• It is mostly tuned by trial-and-error, leaving much room for systematic 
improvement.

•• It has limited ability to reject disturbances, such as load changes and process 
dynamics variations, which is the primary function in any control systems 
and this imposes unnecessary constraints on server systems.

•• It regulates the system by reacting to the deviations in the process variables, 
such as voltage and temperature, from their desired values, also known as 
setpoints, wasting energy in the process, especially during high dynamic 
load change in server operations. 

It is our belief that to overcome such shortcomings we must make a 
fundamental change in how we approach the problem for server subsystem 
control: instead of passively reacting to disturbances, we propose an active 
disturbance rejection (ADR) paradigm where the disturbance information 
is gathered and used preemptively in limiting the disturbance impact on the 
system. That is, we propose a method that will help eliminate the deviation 
before it appears, therefore saving the energy that would be otherwise needed 
in correcting the deviation. 

Such a design principle has been discussed in depth before[8][9][10]. The key in 
general is to find a way of getting ahead of the curve in mitigating set-point 
deviation, as opposed to always playing catch-up like PID does most of time. 
The focus of this article is to creatively adapt the ADR principle to server 
problems, utilizing all our relevant knowledge of server dynamics. The key to 
the solution is how we obtain the disturbance information and fully taking 
advantage of it in helping the controller to get ahead in mitigating disturbance 
effects. 

“Active disturbance rejection (ADR): 

the disturbance information is 

gathered and used preemptively in 

limiting the disturbance impact on the 

system.”

“Eliminate the deviation before it 

appears.”

Figure 1: Intel server system
(Source: Intel Corporation, 2012)
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This new way of thinking about server control problems is rooted in our 
understanding of a control system’s primary task as that of disturbance 
rejection, upon which system performance is evaluated. Acting on the source 
of the deviation, that is, disturbance, as opposed to deviation itself, gives us 
the advantage of getting ahead, of treating the cause, not the symptom. As will 
be demonstrated, this has a profound impact on future energy saving in the 
server market. 

In this article, we use a typical CPU VR control subsystem as an example to 
apply the ADR principles. The server in a data center normally runs in a high 
dynamic workload environment with the various tasks running above the 
operating system making the CPU current changes drastically in real time; 
this makes it a tough disturbance to deal with for the VR controller. From the 
perspective of efficiency, however, any improvement in the VR controller in 
handling each single load change will add up to potentially significant energy 
savings in a highly dynamic environment with big swings in load current. It 
is in this environment that we’ll design and validate the ADR methodology 
to actively reject the disturbance in the CPU VR system and compare the 
performance and energy consumption with respect to step load changes, as it 
is compared to the standard PI controller currently used; with a given average 
dynamic load fluctuation, we derive the energy saving over a period of time. 

The article is organized as follows: the following section, “Background: 
What Is the Control Anyway?” describes the related work and background 
of the control algorithms. The next section, “Active Disturbance Rejection,” 
introduces the ADRC algorithm. Next, the section “Active Disturbance 
Rejection in a Server VR Subsystem” describes the ADRC control method on 
a server VR subsystem. “Comparing ADRC to Existing Solutions” provides an 
analysis of the result and makes the comparison between the PID and ADRC 
in terms of control performance and power efficiency. This is followed by a 
summary of the article. 

Background: What Is Control Anyway? 
Since not all server design engineers are well versed in the concepts and 
terminology of controls, we start with this basic question. Automatic control 
is a technology that has played a crucial role in industry ever since the era of 
the steam engine and the industrial revolution in the 18th century. Today, 
automation has been built into the very fabric of modern society, from 
massive production lines of consumer goods to individual homes and personal 
electronic devices. From the vantage point of control engineers, everything 
is a part of a process, or system, within which all variables are in some way 
interdependent to each other. The objective of control system design is to 
make such dependency, in a particular case, meet a predetermined goal or set 
of criteria. Over a period of two centuries, control technology has emerged as 
a crucial centerpiece in all engineered systems, simply because all such systems 
have a goal to reach, a need to satisfy, and the resources to reach the goal. To 
satisfy the need is what we call the act of control. 

“Today, automation has been built 

into the very fabric of modern society, 

from massive production lines of 

consumer goods to individual homes 

and personal electronic devices.”

“Over a period of two centuries, 

control technology has emerged as a 

crucial centerpiece in all engineered 

systems, ...”
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The act of control can be divided into two phases: collecting information and 
acting on it. Using the CPU VR control as an example, the goal is to provide 
a constant voltage supply for CPU to function. The information that can be 
collected are values of process variables such as voltage and current at various 
points in the circuit. Such information is used by the controller to adjust the 
amount of power supplied to the CPU—not too much, not too little, just 
right! That is, in a perfect CPU VR system, the power supplied to the CPU is 
exactly what it needs, resulting in a voltage supply that is kept at a constant  
3.3 volts, despite huge, unpredictable swings in load current.

Perfect control, of course, doesn’t exist in the real world. For instance, when 
we turn on a washing machine at night, the light may dim momentarily, 
indicating a voltage dip when the load current suddenly increases. The same 
thing happens in the VR control system: when the load currently unexpectedly 
increases, the voltage dips, the extent of which shows the ability of the 
“disturbance rejection” of the controller, a primary criterion and a central task 
in control design. 

Curiously, little has changed since the beginning of the modern era in how we 
perceive and solve the disturbance rejection problem in control: we wait, we 
see, and we react to the deviation in the process variable from its desired value, 
or setpoint, the deviation caused by disturbances. Much progress has been 
made in all aspects of control engineering, techniques, hardware, and software, 
and so on, but this reactive paradigm has endured over two hundred years, 
crystallized in the dominant industrial control technology known as PID[6], a 
technology defined by how it react in three ways to the setpoint deviation, that 
is, tracking error, proportional, integral, and derivative, as shown in equation 1.

u K e K edt K ep I D= + + ⋅∫ � (1)

where u is the control signal, e is the error between the process output and 
its desired value, and {Kp, KI, KD} are controller gains. Over 95 percent of 
industrial controllers are of this type[6], an alternative to which is discussed 
below.

Active Disturbance Rejection 
Emerging after World War II as a distinct engineering discipline, automatic 
control has been synonymous with feedback largely thanks to Norbert Wiener’s 
brainchild of Cybernetics[17]. Wiener calls it “control by informative feedback,” 
which means that “when we desire a motion to follow a given pattern the 
difference between this pattern and the actually performed motion is used as 
the new input to cause the part regulated to move in such a way as to bring 
its motion closer to that given by the pattern.” In other words, the control 
mechanism first sees the deviation and then acts on it in order to reduce it. 
Such conception by Wiener influenced generations of control scientists and 
engineers and dominated the field ever since the publication of his book in 
1948. Many, if not most, control textbooks have the word feedback in the 

“Much progress has been made in all 

aspects of control engineering, ... but 

this reactive paradigm has endured 

over two hundred years.”
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title. The renowned historian of control engineering, Otto Mayr, goes as far 
as saying that “this field is essentially based upon a single idea, that of the 
feedback loop” and there was never a serious debate or reflection on it, or was 
there?

The success, as well as the occasional problems of oscillation, of steam engines 
some 200 years ago attracted the attention of many scholars, and engineers. 
Among them, Jean-Victor Poncelet, a prominent French scholar and engineer, 
in the early 1800s conceived of a very different idea of control: measure the 
load disturbance to the engine and cancel it out with the adjustment of steam 
flow before the engine speed is affected[9]. Some 100 years later, Russian scholars 
revived Poncelet’s idea and developed an entirely different theory and practice 
of automatic control that is called “combined system” or dual channel, where 
disturbances are measured and the information is used to make a much more 
effective control system[18][19]. A few scholars and engineers in England and the 
United States also discovered the benefits of adding the so called “feed forward” 
element to the control system, as shown in nature and manmade systems’ 
control systems alike[6][20].

The Origin of ADRC
Conceived by Jingqing Han in the mid-1990s, Active Disturbance Rejection 
Control (ADRC) is in the same vein of the invariance principle of the Soviet 
scholars a few decades earlier, exposed to him when he was a budding graduate 
student in Moscow. By late 1980s, Han, well established as one of the top 
control theorists in China, openly challenged the modern control paradigm 
in the vein of Kalman Filter and mathematical control science, predicated 
on accurate model of the reality[21]. Han believed that such conception of 
the problem and presumption in its solution could be called a theory of 
mathematical models, but not of controls. Han believed that the Soviet scholar 
got it right: control systems are about disturbances; in particular, they are about 
how one strives to make the controlled variables, or process outputs, invariant 
under the assault of disturbances ubiquitously internal and external. 

The background of Han’s 1989 paper[21] is that PID had dominated industrial 
controls for decades and no serious researchers could ignored the reality any longer 
and avoid the question “why?” If there was competition in engineering practice 
between PID and its users against the vast edifice of modern control theory and 
its creators and builders in academia, PID would have won hands down and 
everyone knows that. What is not so clear was the reason behind such a big divide 
between how control is practiced and how it is researched and taught. It took a 
scholar of the highest caliber to pinpoint the cause: our reliance on mathematical 
models and a misconception of what control engineering really is.

What a mathematical model represents is the known dynamics of the process 
being controlled; but the real task of control, the reason to have a control system 
in the first place, is to deal with the unknowns and unpredictables, also known 
as disturbances. Renowned control theorist Roger Brockett once said “If there is 
no uncertainty in the system, the control, or the environment, feedback control 

“PID had dominated industrial 

controls for decades and no serious 

researchers could ignored the 

reality any longer and avoid the 

question“why?” ”

“If there is no uncertainty in 

the system, the control, or the 

environment, feedback control is 

largely unnecessary” – Roger Brockett.
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is largely unnecessary.”[22]. But modern control theory largely proceeded along 
the lines of the following: given the mathematical model, design a control law 
to achieve some measure of optimality, which is a valid question in itself but 
not necessarily the only control problem out there. Hence the theory/practice 
dichotomy and the eighty-year dominance of PID. The question was “What can 
we do about it?” The answer, according to Han, was ADRC.

From 1989 to the time of his passing in early 2008, Han dedicated the last 
two decades of his life to an alternative to PID and he came up with much 
more than just a replacement algorithm. ADRC, according to Han, “inherits 
from PID the quality that makes it such a success: the error-driven, rather 
than model-based, control law; it takes from modern control theory its best 
offering: the state observer; it embraces the power of nonlinear feedback and 
puts it to full use; it is a useful digital control technology developed out of an 
experimental platform rooted in computer simulations.” 

In other words, Han concluded that a viable control law cannot be model 
driven. The success of PID demonstrates the effectiveness and practicality of 
the error-driven control paradigm. At the same, being a theorist he recognized 
that the vast research in modern control brought us its crown jewel, the state 
observer, which can be creatively used to extract the disturbance information 
from the already available input-output data. ADRC “actively” uses this 
information to cancel the disturbance out whenever possible, before it does any 
damage, in direct contrast to PID, which only passively reacts to the changes 
produced by the disturbances after it runs its course through the process.

Another barrier broken through via ADRC is the linear-nonlinear divide in 
control theory. Instead of the linearizing the nonlinear dynamics so that they 
can fit into the well-developed linear system theory, Han demonstrated in the 
ADRC framework that one could purposely add nonlinearity into the PID 
structure to make it more effective. This and other discoveries are only made 
possible because the computer simulation provided us with a platform where 
control research could be done experimentally, like other physical sciences, 
instead of as a branch of mathematics. Han emphasized that it is through 
experimental research ADRC was discovered, as opposed to derived. 

In summary, ADRC can be viewed as a distinctly different conception of what 
control is; as a way of conducting an experimental science; and finally as a 
new control system platform, absorbing the error-driven mentality of PID but 
adding to it a proactive disturbance rejection facility that makes control truly 
“active.” 

Illustration of Active Disturbance Rejection for a  
Second Order Plant
The conception and the methodology of ADRC obviously is quite general 
and fundamental, applicable to most control systems across disciplinary 
boundaries, so much so that any concrete application of it would come with it 
limitations pertaining only to that application, which is sometimes mistaken 

“A viable control law cannot be model 

driven.”

“ADRC was discovered, as opposed to 

derived.”
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for limitations in general. With this in mind, we introduce a second order, 
nonlinear, uncertain, and time-varying process and demonstrate how the 
problem can be reformulated with the guidance of ADRC principles.

Although the ADRC method is applicable, in general, to nth order, nonlinear, 
time-varying, multi-input and multi-output systems (MIMO), for the sake of 
simplicity, its basic concept is illustrated here using the second-order motion 
control problem in equation 2. 

 y p y y w u t= ( , , , , ) � (2)

of which 

y u= � (3)

is an idealization corresponding to Newton’s law of motion f = ma. Between 
the totally unknown system of equation 2 and the idealized motion of 
equation 3, the actual motion system can be described as 

 y f y y w t bu= +( , , , ) � (4)

That is, p( y, y., w, u, t) can be meaningfully separated as 

p y y w u t f y y w t bu( , , , , ) ( , , , ) ≈ + � (5)

Adopting a disturbance rejection framework, the motion process in equation 2 
can be seen as a nominal, double integral, plant in equation 3 scaled by b and 
perturbed by f ( y, y., w, t). That is, p( y., y, w, t) is the generalized disturbance 
and the focus of the control design. 

Contrary to all existing conventions, Han proposed that f (y, y., w, t) as an 
analytical expression perhaps is not required or even necessary for the purpose 
of control design. Instead, what is needed is its value estimated in real time. 
Specifically, let ˆ ˆf y u= − be the estimate of f ( y, y., w, t) at time t, then

u f u= − +( ˆ )0 ⁄b� (6)

reduces equation 1 to a simple double-integral plant

y u≈ 0
� (7)

which can be easily controlled. 

This demonstrates the central idea of active disturbance rejection: the control 
of a complex nonlinear, time-varying, and uncertain process in equation 2 is 
reduced to the simple problem in equation 7 by a direct and active estimation 
and rejection (cancellation) of the generalized disturbance, f (y, y., w, t). The key 
difference between this and all of the previous approaches is that no explicit 
analytical expression of f ( y, y., w, t) is assumed here. The only thing required, as 
stated above, is the knowledge of the order of the system and the approximate 
value of b in equation 4. The bu term in equation 4 can even be viewed as a 
linear approximation, since the nonlinearity of the actuator can be seen as an 
external disturbance included in f. 

“The control of a complex nonlinear, 

time-varying, and uncertain process 

in equation 2 is reduced to the simple 

problem in equation 7.”
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Obviously, the success of ADRC is tied closely to the timely and accurate 
estimate of the disturbance. A simple estimation such as ˆ ˆf y u= −  may very 
well be sufficient for all practical purposes, where ̂y  denotes an estimation of y .

The Extended State Observer and the Control Law
There are also many observers proposed in the literature, including the unknown 
input observer, the disturbance observer, the perturbation observer, and the 
extended state observer (ESO). See, for example, a survey in Tian and Gao[9]. 
Most require a nominal mathematical model. A brief description of the ESO 
of equation 1 is described below. The readers are referred to Tian and Gao[14], 
Goa[10][11], and Sun and Gao[12] Zheng and Gao[13] for details, particularly for the 
digital implementation and generalization of the ESO in Ping and Gao[15].

The ESO was originally proposed by J. Han[23]. It is made practical by the 
tuning method proposed by Goa[11], which simplified its implementation 
and made the design transparent to engineers. The main idea is to use an 
augmented state space model of equation 1 that includes f, short for f (y, y., w, t), 
as an additional state. In particular, let 

x1 = y, x2 = y., and x3 = f� (8)

The augmented state space form of equation 1 is

x Ax Bu Eh
y Cx

= + +
=

� (9)
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Note that x3 = f  is the augmented state and h = f
.
  is a part of the jerk; that is, 

the differentiation of the acceleration, of motion and is physically bounded. 
The state observer

z Az Bu L y y
y Cz

= + + −
=

( ˆ)
ˆ

� (10)

with the observer gain L = [l1 l2 l3]
T selected appropriately, provides an estimate 

of the state of equation 9, zi  xi, i = 1, 2, 3. Most importantly, the third 
state of the observer, z3, approximates f. The ESO in its original form employs 
nonlinear observer gains. Here, with the use of linear gains, this observer is 
denoted as the linear extended state observer (LESO). Moreover, to simplify 
the tuning process, the observer gains are parameterized as 

L o o o
T= [ , , ]3 3 2 3ω ω ω � (11)

where the observer bandwidth, wo, is the only tuning parameter.

With a well-tuned observer, the observer state z3 will closely track 
x3 = f (y, y., w, t). The control law 

u = (-z3 + u0) ⁄ b� (12)

“The success of ADRC is tied closely to 

the timly and accurate esitmation of 

the distrubance.”

“The ESO (extended state oberserver) 

is simplified its implementation 

and made the design transprent to 

engineers.”
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then reduces equation 4 to equation 7, that is,

y f z u u= − + ≈( )3 0 0 � (13)

An example of such u0 is the common linear proportional and derivative 
control law

u k r z k zp d0 1 2= − −( ) � (14)

where r is the set point. The controller tuning is further simplified with 

k kd c p c= =2 2ω ωand � (15)

where vc is the closed-loop bandwidth[11]. Together, equations 10 through 15 
are collectively denoted as the parameterized linear ADRC, or LADRC. 

Active Disturbance Rejection in a Server  
VR Subsystem
In this section, we apply ADRC to a Romley Server CPU PVTT power 
rail voltage regulation subsystem, and compare the simulation result with 
traditional PID control in the next section. 

Sandy Bridge CPU VTT Voltage Regulator
The Romley PVTT VR is designed to provide power to the VCCPPA, 
VCCPCA, VCCPDTTA pins of the Sandy Bridge processor. The VR 
switching regulator is a single phase synchronous buck converter as shown 
in Figure 2. It consists of two MOSFETs, one inductor, and one capacitor. 

“Apply ADRC to a Romley Server 

CPU PVTT power rail voltage 

regulation subsystem, and compare the 

simulation results.”

Figure 2: VTT VR circuit
(Source: Intel Corporation, 2012)
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It converts the 12 V to 1.05 V Vout or 1.0 V Vout. It is capable of providing 
a maximum load of 20 A, the maximum step load size is 14 App, and the 
maximum step load slew rate is 20 A/µs. The frequency of the pulse-width 
modulation (PWM) is 500 kHz.

The MOSFETs are turned on and off to alternate between connecting the 
inductor to source voltage to store energy in the inductor and discharging the 
inductor into the load, and the capacitor smooths the ripple of voltage output 
from the inductor. The PWM control the MOSFETs open and close the time 
ratio to determine the output voltage level.

The control object of the controller is to deal with voltage deviation caused by 
the CPU VTT dynamic load changes and maintain the desired voltage level by 
adjusting the PWM duty ratio. 

MATLAB Modeling of the Voltage Regulator
To be able to test ADRC in simulation, a MATLAB model is built to 
describe the CPU PVTT buck converter circuit. Based on the original circuit 
implemented in the Romley Rosecity Server Reference board, we created the 
model to describe the CPU PVTT VR circuit as shown in Figure 3.

Figure 3: PVTT VR circuit modeling in MATLAB
(Source: Intel Corporation, 2012)
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The CPU PVTT load connects to the output of the VR circuit to simulation 
CPU PVTT load changes. Current sensors are added to the input and output 
of the VR circuit to get the current reading in real time, and a voltage sensor is 
applied to the output side; thus the power data can be derived with product of 
the voltage and current. 

“A MATLAB model is built to 

describe the CPU PVTT buck 

converter circuit.”
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Active Disturbance Control Design
As described earlier, the ADRC control law is given as follows:

z t Az t Bu t L y t y t
y t Cz t
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Here, v0 is the bandwidth of the observer. The control law is

u
r z z z

b
c c=

− − −ω ω2
1 2 3

0

2( ) � (17)

where r is the set point and vc is the control bandwidth. ADRC has three 
design parameters, b0, v0, and vc, which can be easily tuned [8][9][10][11]. 

Figure 4: ADRC simulation block diagram in MATLAB
(Source: Cleveland State University, 2003, 2012)
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The model of the ADRC is built in MATLAB as shown in Figure 4, and 
when connected with the CPU VTT VR model built from last section, we 
get a fully controlled CPU VTT voltage regulator simulation model, which 
is shown in Figure 5. A cyclic step load resource to simulate the CPU VTT 
dynamic load changes is added to the input of the VTT VR model. The 
setup point to the controller is set to 1.05 V to the ADRC controller to 
regulator the voltage to 1.05 V. 

“The model of the ADRC is built in 

MATLAB and connected with the 

CPU VTT VR model build from last 
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Figure 5: PVTT with ADRC controller modeling in MATLAB
(Source: Intel Corporation, 2012)
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ADRC Simulation Result
The simulation result of the ADRC is shown in Figure 6. The top chart is the 
voltage output, and the lower chart is the simulated CPU VTT cyclic step 
load change between 0~3 A in the frequency of 200 Hz (for further testing 
it is an idea to use the maximum load step change as 0~15 A or 0~50 A). 
The rising curve at the beginning of the output voltage is the control system 

“ADRC simulation result is shown 

with cyclic step load.”

Figure 6: Simulation result of ADRC control
(Source: Intel Corporation, 2012)
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transient response when the system starts. After the voltage reaches the desired 
voltage level at 1.05 V and is in steady state, the cyclic 0~3 A step loads are 
applied to the output of the regulator. From the simulation result, we can 
see that the ADRC can quickly correct the overshoot and undershoot caused 
by the dynamic step load change and quickly recover to the desired voltage 
without any oscillation. The control action is effective and efficient, thus 
resulting in a power saving by avoiding unnecessary control effort. In the next 
section, we compare the ADRC control with tradition PID control and show 
how much power it can save by ADRC with the same cyclic load over the 
certain period of time. 

Comparing ADRC to Existing Solutions
In this section we compare the ADRC and PID to control the same VR circuit 
while adding in the same load changes. As the intrinsic characteristic of the 
ADRC, it generates more smooth control to the VR circuit and results in 
power savings. We will quantify the power savings based on the simulation 
comparison result. 

Simulation Setup
A Simulink model is set up in MATLAB to compare the ADRC and PID as 
shown in Figure 7. Two identical VR circuit models we made in the last section 
are put into the comparison model, and the exact same CPU cyclic loads are 
applied to each VR circuit. The upper VR circuit model is connected with a 
PID controller; the lower VR controller is connected with an ADRC controller. 
To make a real-time comparison, the output voltage, output current, and the 
control signal from the controller output are fed into the simulation scope so 
that we can visualize the difference between these two control methodologies. 
Specifically, the VR input voltage and current are multiplied and have the 
integration over time to make the energy consumption comparison between 
these two control methods for the same VR circuit. In addition, the Integral of 
Absolute Errors (IAE) of the VR voltage output is calculated for each control 
method for comparison, the purpose of the extraction of IAE data is to make 
a common reference parameter to make a fair comparison. We make the above 
comparisons under the condition that the FAE with these two control methods 
are about the same. 

Controller Tuning 
In addition to performance, especially disturbance rejection ability, the 
comparison between controllers must include the ease of use, which consists 
of two aspects: 1) what does the user need to know to perform the controller 
design? And more importantly 2) how easy it is to adjust the controller 
parameters in order to meet different design specifications? 

PID is well known as an empirical design with users assuming little knowledge 
of the plant dynamics. On the other hand, most design methods based on 
control theory, classical or modern, require detailed and accurate knowledge 
of plant dynamics in the form of a mathematical model. In practice, the 

“As the intrinsic characteristic of the 

ADRC, it generates more smooth 

control to the VR circuit and results in 

power savings.”
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PID controller is mostly tuned based on the user’s experience and model-
based controllers are tuned based on the identification or estimation of the 
parameters of the plant model. 

ADRC design and tuning require a different mindset: it presumes that the 
users are familiar with the physics of the physical process but not necessarily 
its detailed dynamic relationship between the input and output. Based on such 

Figure 7: MATLAB Modeling to compare ADRC and PID control
(Source: Intel Corporation, 2012)
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knowledge the user chooses the order of the plant, n, to be used in design, 
which is not necessarily the actual order of the plant but, instead, is the order 
in which the controller will force the plant to behave. Once n is chosen, the 
users need to know, or acquire the information of, how the change in input 
u, approximately translates to the change in the nth derivative of the output y, 
as described in the parameter b in equation 9. Such information can be easily 
obtained as the initial rate of temperature change in a step response test for a 
thermal system.

Once the order of the plant is selected and the parameter b is obtained, the 
tuning of ADRC is quite straightforward. Shown in equations 10 through 
15, there are two key parameters in ADRC: the observer bandwidth and the 
controller bandwidth. All observer gains are functions of the former and all 
controller gains the latter. The observer bandwidth is in general several times 
higher than that of the controller, to ensure that the state estimation converges 
fast enough for the controller, although there are exceptions. Once the ratio 
of the two bandwidths is fixed, the only tuning parameter is the controller 
bandwidth, which is the measure of the aggressiveness of the control system. 

With such single parameter tuning, practical optimality or tradeoff is easily 
obtained. It is obvious to the users that, increasing bandwidth from low to 
high, the tracking and disturbance rejection are improved, but at the costs 
of increased sensitivity to measurement noises, the larger amount of energy 
exerted, and the reduced stability margin. Seeing both sides, it will not be hard 
for the user to choose a compromise.

PID Tuning
In PID tuning, we strive for fairness in comparison. Since PID is usually tuned 
by experience in practice, in a time-consuming process, duplicating that in our 
simulation is challenging. Instead, we take advantage of the MATLAB embedded 
PID autotuning tool to get the optimal coefficient value of Kp, Ki, and Kd. 
The MATLAB PID autotuner is a tool capable of computing the parameters 
of a regulator connected to the VR circuit automatically, without major user 
interaction apart from initiating the operation. The autotuner avoids tuning a 
PID regulator manually, which is not consistent and may not be optimal. The 
basic steps of a tuning process of the autotuner may be summarized as follows:

1.	� Observing the process behavior, eventually stimulating it somehow and 
turning this knowledge into a description of the process behavior

2.	� Establishing the desired closed loop behavior on the basis of the obtained 
process description

3.	� Computing the PID controller parameters in order to achieve the desired 
closed loop behavior.

Comparison Results
The comparison simulation result is shown in Figure 8. The top chart is for 
output voltage of the VR circuit, the second chart from top is the cyclic load, 
which simulates the CPU load frequent changes applied to the VR. The third 

“There are two key parameters in 

ADRC: the observer bandwidth and 

the controller bandwidth.”
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chart is the control signal output (PWM duty ration) from each controller. The 
bottom chart is the output current applied to the CPU. The purple line is PID, 
and the yellow line is ADRC. 

Based on the comparison, we made the following observations:

1.	� For both ADRC and PID control, the output voltage all reach to the 
desired value 1.05 V after start transient and reach to steady state. 

2.	� With the load step change, both ADRC and PID can correct the voltage 
back to 1.05 V with small overshoot or undershoot. 

3.	� The major differences between ADRC and PID are the control signal 
output. The ADRC control is smooth and only acts when it is needed. PID 
does a busy control and it is very hard to maintain the output voltage at the 
same 1.05 V. Theoretically, the more efficient control will result in power 
savings, and we will look at how power saving ADRC can be provided 
quantitatively in the next step. 

Energy Consumption Comparison between ADRC and PID
Figure 9 plots the integration of the input power to the VR circuit with 
both ADRC and PID control method; the integration of the power over 
time is the energy consumption. The energy consumption (yellow line) 

“Compare the Integration of the power 

over time between ADRC and PID 

control method.”

Figure 8: Comparison simulation result
(Source: Intel Corporation, 2012)
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with ADRC control method (purple line) is obviously less than the energy 
consumption with the PID control method. With the time last, the gap of 
energy consumption between ADRC and PID is significant. The energy 
consumption is calculated between time 0.0025 seconds and 0.012 seconds. 
The reason to choose 0.0025 seconds as the start time is because at 0.0025 
seconds it has reached steady state after transient for both ADRC and PID to 
make a fair comparison.

Table 1 shows the quantitative energy consumption different between the 
ADRC and PID while the output voltage IAE between the ADRC and PID are 
about the same.

 
Energy Consumption 
(Watt X second) 
(input voltage 12 V)

IAE

ADRC 0.0919 3.3927e-04
PID 0.2358 3.3784e-04

Table 1: Energy Consumption Comparison between ADRC and PID
(Source: Intel Corporation, 2012)

Based on the data shown in Table 1, ADRC saves about 68 percent energy 
versus the PID control method for this CPU VTT VR circuit.

“ADRC control method save major 

power versus PID control method.”

Figure 9: Energy consumption comparison between ADRC and PID 
(Source: Intel Corporation, 2012)
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Power Saving Estimation at System Level
The simulation timespan for the above data is 0.0095 second, so assuming 
the same cyclic load is applied to the VR, we can derive what the power 
consumption is in hours, days, and a year. Table 2 gives a comparison about 
the energy consumption for various time spans. In a year, only the ADRC in 
the single VTT VR controller will save about 131.4 kWh of energy for the 
server. If the same control methodology applied to each VR in the server, and 
in a data center, the energy and cost saving would be tremendous. 

 
1 hour 1 day 1 year 1 year energy 

saving per VR

ADRC 0.0097 kWh 0.23 kWh 83.95 kWh 131.4 kWh
PID 0.0248 kWh 0.59 kWh 215.35 kWh  

Table 2: Energy Saving For Various Timespans
(Source: Intel Corporation, 2012)

Summary
Design principles pertaining to control systems in server subsystems are 
examined in this article to distinguish two different paradigms: the reactive 
PID and active disturbance rejection. It is shown how the ADRC principle can 
be systematically applied to facilitate advanced control development for server 
subsystems. One class of such subsystems, the CPU VR control, is used to 
illustrate how the concept fits and how the corresponding control algorithm is 
developed and validated in simulation, with encouraging results. Much work 
is ahead to further test the concept in hardware implementation and in the 
expansion of the investigation into other Server subsystems. 
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The successful design and evaluation of autonomous energy optimization 
techniques requires the availability of a ubiquitous and accurate set of 
measurement techniques that are cheap and easy to implement. We discuss an 
approach for mathematically estimating the wall power as well as the power of the 
principal functional units (like DRAM) in the server platforms without incurring 
the cost of hardware instrumentation. Support Vector Regression (SVR) has 
proven to be an effective tool in real value function estimation. In this paper we 
modify two loss functions, Vapnik’s e-insensitive loss function and an insensitive 
Huber loss function to be asymmetrical in order to limit underestimates. Our 
novel approach, asymmetrical support vector regression, provides accurate 
prediction while maintaining a low number of out of bounds misestimates. We 
test our approach on two different datasets by predicting the power for the next 
time interval and achieve accuracy rates of below 6 percent relative percentage 
error while keeping the number of boundary misestimates below 4 percent.

Introduction
Accurate power measurement at system and sub-component level allows 
a predictive analysis of energy consumption for an optimal efficiency of a 
platform. This helps in estimating the peak consumption and helps minimize 
system failures by allowing sufficient safety margins. Power metering can 
be established using an extensive network of instrumented power sensors 
(such as instrumented power supply units). While instrumentation solves the 
problem, it can be expensive to build and requires an extensive network of 
system interconnects with certain expectation of accuracy, bandwidth, and 
response time. High accuracy translates into high linearity of an analog sensor 
over a large range that can easily become expensive. Since sensors perform 
linearly only within a limited operating range, it makes them inaccurate in 
the regions of high or low currents. Further, environmental and electrical 
variations (temperature, humidity, environmental impurities, and electro-
migration) and aging can cause inaccuracies over time, which will require a 
frequent recalibration of electrical components. At the same time, while meters 
can easily be built at a physical component level (CPU, memory, and power 
supply); they are rather difficult to build at the virtual level. For example, in a 
multi-partition system, instrumentation is rendered useless if all the partitions 
are powered by a single power supply unit with a single instance of power 
instrumentation. We discuss an approach to power metering by estimation 
using a set of observed variables that share linear or nonlinear correlation to the 
power consumption. This approach exploits the statistical relationship among 
potential variables and power consumption through predictive approximation.

“We discuss an approach to power 

metering by estimation using a set of 

observed variables that share linear 

or nonlinear correlation to the power 

consumption.”
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In many instances of approximation there is an uneven consequence of 
misprediction based on whether the error is above or below the target value. 
For instance, in power prediction, an incorrect low estimate may be of much 
more concern than an overestimate. Underpredicting could lead to insufficient 
cooling of data centers, inadequate UPS power supply, unavailable processor 
resources, needlessly powering down chip components, and so on. In the case 
of forest fire behavior prediction, a lower estimate of the threat could lead to 
additional property damage as well as loss of life due to a lack of adequate 
supply of personnel and equipment in response. In such circumstances, 
it is critically necessary to eliminate or strictly limit underestimating a 
function. It is preferable to relax accuracy constraints in order to decrease the 
likelihood that the estimation falls below certain bounds as necessitated by the 
application. In these cases, it is crucial to minimize misestimates on one side of 
a boundary even at the risk of reducing the accuracy of the entire estimation. 
It is necessary to restrict the loss function so that only a minimal number of 
under- or overestimates occur. This leads to an asymmetric loss function for 
training whereby a greater penalty is applied when the misestimate on the 
wrong side of the boundary.

Unlike other approaches, which predict power for the current time interval, we 
predict the power usage for the next time interval. This is preferable in cases 
where online configuration may take time.

The remainder of this article is organized as follows: The next section discusses 
prior research. This is followed by a brief overview of standard support vector 
regression (SVR). Next, we explain our asymmetrical approach (ALB-SVR). 
This is followed be an explanation of the six different data sets used. Then we 
present our experimental results and compare SVR and ALB-SVR accuracies, 
followed by our conclusion.

Prior Research
Although we are not aware of prior work specifically addressing our approach, 
we survey in this section some related work available in literature. Seok et al.[2] 
used an asymmetric e-insensitive loss function in support vector quantile 
regression (SVQR) in an attempt to decrease the number of support vectors 
(SV). They altered the insensitivity according to the quantile and achieve a 
sparser model. Our work differs from theirs in that their aim was to decrease 
the number of SV while maintaining the same accuracy as a regular SVQR, 
while our approach specifically seeks to limit underestimates at the possible 
cost to accuracy. Asymmetrical loss functions are discussed by Schabe[3], 
who studies different loss functions for Bayes parameter estimation. Schabe 
compared a two-sided quadratic loss function to a quasi-quadratic s-loss 
function and showed that the modified version offers a smaller increase 
of loss and can be used in real world situations where overestimation and 
underestimation have different importance. Norstrom[4] studied Bayesian 
risk analysis and replaced the quadratic loss function with an asymmetric loss 
function to derive a general class of functions that approach infinity near the 

“It is preferable to relax accuracy 

constraints in order to decrease the 

likelihood that the estimation falls 

below certain bounds as necessitated 

by the application.”
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origin to limit underestimates. Saketha Nath and Bhattacharyya[5] presented 
a maximum margin classifier that bounds misclassification for each class 
differently, thus allowing for different tolerances levels. Lee et al.[6] proposed a 
smoothing strategy to modify the typical SVR approach into a non-constrained 
problem, thereby only solving a system of linear equations rather than a convex 
quadratic program. Jeh-Nan Pan and Jianbiao Pan[7] compared three different 
loss functions for economic tolerance design: Taguchi’s quadratic loss function, 
Inverted Normal Loss Function and Revised Inverted Normal Loss Function. 

Support Vector Regression
SVR as proposed by Vapnik[1] has proven to be an effective tool in real value 
function estimation. The usual approach trains using a symmetrical loss 
function, which equally penalizes both high and low misestimates. Using 
Vapnik’s e-insensitive approach, a flexible tube of minimal radius is formed 
symmetrically around the estimated function such that the absolute values of 
errors less than a certain threshold e are ignored both above and below the 
estimate. In this manner, points outside the tube are penalized but those within 
the tube, either above or below the function, receive no penalty.

One of the main advantages of SVR is that its computational complexity 
does not depend on the dimensionality of the input space. Additionally it has 
excellent generalization capability with high prediction accuracy[6].

d-insensitive Loss Function
In Vapnik’s e-insensitive SVR[6], a real value y is predicted as:

yi = w · xi + b� (1)
{xi, yi}  i = 1 . . . L,    yi  R, x  RD

using a tube bounded by ± e i as shown in Figure 1. The penalty function is 
characterized by only assigning a penalty if the predicted value yi is more than 
e away from the actual value ti, (i.e. |ti − yi| ≥ e). Those data points that lie 
outside the e-tube are given the same penalty whether they lie above (x +) or 
below (x −) the tube (x + > 0, x − > 0 i):

ti ≤ yi + e + x +� (2)

ti ≥ yi − e − x −� (3)

The accuracy of the estimation is then measured by the loss function LeSVR(t, y) 
as shown in Figure 2:

L t y
if t y

t y otherwiseSVRε

ε

ε
( , ) =

− ≤

− −







0
� (4)

The empirical risk is: 

R y
L

L t yemp SVR i ii

L
( ) ( , )=

=∑1
1 ε � (5)

“The usual approach trains using 

a symmetrical loss function, which 

equally penalizes both high and low 

misestimates.”



Intel® Technology Journal | Volume 16, Issue 2, 2012

Asymmetrical and Lower Bounded Support Vector Regression for Power Prediction   |   121

X

y – e –

y + e +

y

→
→

y

x – > 0

x + > 0

Figure 1: SVR with e-insensitive tube
(Source: American University of Beirut, 2012)
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leading to the SVR error function: 

C
i

L

i i=
+ −∑ + +

1

1
2

( )ξ ξ ||w||2� (6)

which should be minimized subject to the constraints x + ≥ 0, x − ≥ 0 i and 
equations 2 and 3. Support vectors (SVs) are those points that lie outside the 
e-tube. The computational efficiency of the SVM lies in the fact that only the 
linear combination of the SVs is used for the solution so that large feature data 
sets do not affect the SVR[12].

Huber Insensitive Loss Function
The Huber insensitive loss function, as proposed by Bo et al.[11] and shown 
in Figure 2, is similar to the e-insensitive loss function; however it increases 
quadradically for small errors outside the epsilon bound but below a certain 
threshold − > e and then linearly beyond −, making it robust with regards to 
outliers.
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Asymmetrical and Lower Bound Support  
Vector Regression
Our approach, asymmetrical and lower bound support vector regression  
(ALB-SVR), modifies the SVR loss functions and corresponding error 
functions such that the epsilon tube is only above the function as shown in 
Figure 3 and Figure 4. The penalty parameter C is split into C + and C − so that 
different penalties can be applied to the upper and lower mispredictions. We 
apply this technique to both the e-insensitive and the Huber insensitive loss 
functions.

e-insensitive ALB-SVR
For the e-insensitive loss function equations 3, 4, and 6 are modified as 
follows:

ti ≥ yi − x −� (8)

L t y
if t y
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y
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Introducing Lagrange multipliers: a+
i  ≥ 0, a−

i  ≥ 0, m+
i  ≥ 0, m−

i  ≥ 0 i 

“The computational efficiency of the 

SVM lies in the fact that only the 

linear combination of the SVs is used 

for the solution so that large feature 

data sets do not affect the SVR.”
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which leads to: 
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Substituting equations 12 and 13 and maximizing LD with respect to a+
i and 

a−
i (a

+
i ≥ 0, a−

i ≥ 0 i ) where:
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Figure 3: ALB-SVR with e-insensitive tube
(Source: American University of Beirut, 2012)

Since m+
i ≥ 0 and m−

i ≥ 0 and equations 14 and 15, therefore a+
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with 0 ≤ a+
i ≤ C +, 0 ≤ a−
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Substituting equation 12 into equation 1

y x x bi i i ii

L
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=∑ ( )α α
1

� (18)

Support Vectors xS can be found with the indices where 0 < <+ +α C  and 
0 < <− −α C  and ξ ξi i

+ −= =0 0( )or

and b can be derived by:

b t x xS m m
m S
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m S= − − − ⋅+ −∑ε α α
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Figure 4: ALB-SVR e-insensitive and ALB-SVR insensitive Huber loss 
functions with e  = 1   = 2
(Source: American University of Beirut, 2012)
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with solution given by:
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and the resulting optimization problem:
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Training Data Sets
Two different power data sets were used for our experimentation. These data 
sets are used for training function. In our experiments we used CPU power 
telemetry data sets and DRAM activity data sets to estimate system power and 
DRAM power respectively.

CPU Power Telemetry Data Set
Power telemetry data set is accessed through power telemetry harness (PCI 
based Gladiator telemetry Harness (GTH) Card) externally connected to Intel® 
Xeon® server class dual-socket platform. The data set consists of 640 samples 
of 6 attributes of telemetry data from a distributed set of physical sensors as 
shown in Table 1 along with the measured system power (mW). This dataset is 
then used to train the model that predicts the system power.

CPU1 Vtt1 Termination, misc. I/O power

CPU1 Vcc1 Core power

CPU1 Vsa System agent, Uncore, I/O power

CPU2 Vtt1 Termination, misc. I/O power

CPU2 Vcc1 Core power

CPU2 Vsa System agent, Uncore, I/O power

Table 1: Gladiator Data Set Attributes
(Source: Intel Corporation, 2012)

DRAM Activity Data Set
The data set taken from David et al.[8] and Stockman et al.[9] consists of 
17765 samples of 5 attributes of memory activity counters as described in 
Table 2 with the actual corresponding power consumed in watts as measured 
directly by a memory power riser. This dataset is then used to train the model 
that predicts the DRAM power.

“In our experiments we used CPU 

power telemetry data sets and DRAM 

activity data sets to estimate system 

power and DRAM power respectively.”

Activity Units

Activate(A) nj/Activate

Read (R) nj/Read

Write (W) nj/Write

CKE=High mW

CKE=Low mW

Table 2: Memory Power Model Attributes
(Source: Intel Corporation, 2012)
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c Type C+ C- g d − % error % out of bound

CPU e-insensitive 512 — 16 0.23 1.72 50.33

CPU e-insensitive ALB-SVR 32768 32 1 0.00039 5.72 2.81

CPU Huber Insensitive SVR 10000 — 1 0.00039 0.01 1.45 50.86

CPU Huber Insensitive ALB-SVR 10000 100 1 0.00039 0.01 5.33 3.58

DRAM e-insensitive 512 — 706 0.10 1.82 57.54

DRAM e-insensitive ALB-SVR 1000000 10 706 0.20 5.06 1.74

DRAM Huber Insensitive SVR 512 — 128 0.1 1.0e-06 1.03 67.07

DRAM Huber Insensitive ALB-SVR 10000000 1000 128 0.1 1.0e-06 1.50 0.24

Table 3: Comparative Results of SVR versus ALB-SVR
(Source: Intel Corporation, 2012)
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Figure 5: System power estimates using CPU training data (Table 2) with 
e-insensitive SVR
(Source: American University of Beirut, 2012)

Experiments and Results
We modified the code in LIBSVM[10] for ALB-SVR. For all experiments, 
we normalized the data and took the average of 10 runs of threefold cross-
validation. Using an RBF kernel, we performed a grid search combined with 
heuristic experimentation for both SVR and ALB-SVR to find the best meta-
parameters e, g, C + and C −.

Table 3 and Figures 5 through 12 show the results of SVR and ALB-SVR 
for both the loss functions. As can be seen, the number of underestimates is 
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Figure 6: System power estimates using CPU training data (Table 2) with 
e-insensitive ALB-SVR
(Source: Intel Corporation, 2012)
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Figure 7: System power estimates using CPU training data (Table 2) with 
Huber insensitive SVR
(Source: Intel Corporation, 2012)
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Figure 8: System power estimates using CPU training data (Table 2) with 
Huber insensitive ALB-SVR
(Source: Intel Corporation, 2012)

1
0 1000 2000 3000 4000

Data Points

P
o

w
er

5000 6000

2

3

4

5

6

7

9

10

8

Predicted Actual

Figure 9: DRAM power estimates using DRAM activity data (Table 3) with 
e-insensitive SVR
(Source: Intel Corporation, 2012)
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Figure 10: DRAM ower estimates using DRAM activity data (Table 3) with 
e-insensitive ALB-SVR 
(Source: Intel Corporation, 2012)
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Figure 11: DRAM power estimates using DRAM activity data (Table 3) with 
Huber insensitive SVR
(Source: Intel Corporation, 2012)
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around 50 percent for the SVR, which is because SVR centers the epsilon tube 
around the data. ALB-SVR positions the half tube under the data so that only 
a small number of points fall below the estimate. The accuracy of ALB-SVR is 
necessarily less than that of SVR since the estimation is now skewed lower.

Model performance is evaluated by computing percentage relative error as: 

E
L

t y
t

i i

i
i

L
=

−
=∑1

100
1

ˆ
� (25)

The relative error for estimating system power using CPU Power data set was 
5.72 percent and for estimating DRAM power using DRAM Activity data set 
it was 5.06 percent. This is acceptable since we have minimized the number of 
underestimates. As also can be seen, the number of support vectors are greater 
in ALB-SVR than in SVR.

Comparison of SVR and ALB-SVR 
Comparing ALB-SVR to SVR allows us to look at the tradeoffs involved with 
using this technique.

“ALB-SVR positions the half tube 

under the data so that only a small 

number of points fall below the 

estimate.”
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Figure 12: DRAM Power estimates using DRAM activity data (Table-3) with 
Huber insensitive ALB-SVR
(Source: Intel Corporation, 2012)
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Empirical Risk
By substituting the new loss function, ALB-SVR’s empirical risk becomes:

R y
L

L t yemp ALB SVRi

L

i i( ) ( , )= − −=∑1
1 ε � (26)

The maximum additional empirical risk for ALB-SVR can be computed to be:
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Number of Support Vectors and Convergence
In SVR, support vectors (SVs) are those points that lie outside the epsilon 
tube. The smaller the value of e, the more points that lie outside the tube and 
hence the greater number of SVs. In ALB-SVR, we have essentially cut the 
epsilon tube in half. We no longer have the lower epsilon bound. Therefore, 
for the same g and epsilon parameters, more points lie outside the tube and 
there will be a larger number of SVs. This increase in the number of SVs 
indicates that using ALB-SVR has some negative effects on the complexity of 
the estimating function. However, as seen in Table 3, the CPU data set did not 
show a significant increase in SVs. This may be because the data set is relatively 
small. As also can be seen in Table 3, the number of iterations was smaller in 
ALB-SVR, indicating the algorithm converged faster and hence this may offset 
the larger number of SVs using this approach. 

For our ALB-SVR model, we used a grid search and heuristics to determine 
optimal meta-parameters. We achieved the goal of limiting the underestimates 
to 2.71 percent for the CPU data set and 1.74 percent for the DRAM Activity 
data set as compared to 50.33 percent and 57.54 percent for SVR.

Conclusion and Future Work
We have shown our novel approach ALB-SVR to be an effective technique to 
bound an estimation such that underestimates are greatly limited. This comes 
at the expense of accuracy but nevertheless is helpful for applications that are 
highly sensitive to such mispredictions such as power estimation. We tested our 
approach on two different power data sets and achieved accuracy rates of below 
6 percent relative percentage error while keeping the number of underestimates 
below 4 percent. Future work will include different data sets and techniques for 
more accurately selecting the meta-parameters as well as improving the error 
percentage.
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Wireless interconnects at low to medium speeds (below 1 Gbps) allow efficient 
state exchange (power states, thermal throttling states, performance states, 
component profile deviation), system process control (power states, tuning 
optimization, emergency triggers for power delivery, and so on), platform 
test and debug in an isolated environment, on-board component testing, and 
cooperative tuning and control. Conventional metal wiring is becoming an 
inevitable difficulty for the future management of the computing platform. 
This article presents an ultra-wideband (UWB) wireless interconnect solution. 
The channel characteristics within a computer chassis are analyzed, including 
the path loss, multipath reflections, and electromagnetic interferences 
(EMI). To address the above problems, two prototypes of impulse-radio 
ultra-wideband (IR-UWB) transceivers are proposed. The first prototype 
has advantage in power consumption and simplicity and is suitable for low 
data rate communications; however, it ignores the inevitable frequency 
offset between transmitter and receiver baseband clocks. In the second 
prototype, pulse injection-locking is employed for receiver clock recovery and 
synchronization and an equalizer is introduced in the transmitter to relax the 
multipath reflections. The second prototype is more suitable for high data rate 
communications.

Introduction
Platform stability and autonomics requires a collective decision process 
that optimizes the system states for maximum efficiency in terms of energy 
usage, performance/watt, thermal tuning, power budget re-balancing, and 
component profiling for failure analysis. Each platform component plays an 
optimization game involving multiple components, in which each component 
is assumed to know the equilibrium strategies of the other components in 
real time, and no component has anything to gain by changing only its own 
strategy. An essential ingredient to enable such manageability is an efficient 
telemetry for observability and control through the broadcast nature of the 
wireless. For example, to achieve high power/performance efficiency in a 
multi-socket scenario, a CPU socket cannot change its sleep (or performance) 
state if it is unaware of its neighboring sockets states. Furthermore, these 
neighboring states need to be sampled and analyzed in real time to be effective. 
Although the downscaling of CMOS technologies allows the integration of 
heterogeneous chips on a single die, the future computing platform still needs 
many specialized chips from different vendors, such as an RF front end, flash 
memory card, and LCD driver. In a conventional server blade card, except 
for many-core microprocessors, high-bandwidth serial link interconnects 

“An essential ingredient to enable such 

manageability is an efficient telemetry 

for observability and control through 

the wireless broadcast.”
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and parallel data buses between chips, a PCB card also includes many low-
bandwidth, control-based interconnects that are needed for propagating power, 
thermal, utilization, reliability, QoS, and performance trends of various system 
components (CPU, DIMM, fans, network, I/O hub) in the form of sense data. 
These low-speed interfaces include Joint Test Acting Group (JTAG), Peripheral 
Equipment Interface (PEI), and Simple Serial Transport (SST) interconnects, 
and so on[1]. In the future computing system, more processers are required on 
a single board, integrating numerous side-band channels for various control 
information. The conventional wired interconnects will not be able to scale to 
future systems without degrading the quality of control.

One potential solution is the wireless interconnect system. A wireless, control-
plane communication system has several advantages[1][2] as, (1) wireless 
interconnects reduce latency, which is critical in a clock distribution system, 
platform’s manageability, and test or debug capabilities; (2) the broadcast 
nature of a wireless interconnect can provide link performance characteristics 
globally, enabling dynamic rerouting for performance optimization, which 
improves the fault tolerance; (3) wireless interconnects have better scalability 
and modularity as easily adding or subtracting sideband channels without 
affecting the system’s overall performance; (4) wireless interconnects provide 
an opportunity to reconfigure particular chips with variable bandwidth on the 
basis of usage requirement; (5) global control data can be sent in a broadcast 
as opposed to a serial manner; (6) power optimization and cost reduction. 
However, advantages of wireless interconnects inside a computing channel 
are accompanied by several significant challenges, such as channel attenuation 
and multipath interferences. Recently, ultra-wideband (UWB) has become 
an attraction for short-range wireless interconnects [3][4] because of its high 
bandwidth, low power, and immunity to multipath fading, and so on.

In-Chassis UWB Channel Characteristics
While UWB wireless communication systems are widely used in a variety 
of military, commercial, and consumer applications, the channel models for 
indoor/outdoor propagations and wireless body area networks have been 
thoroughly studied[5][6][7]. However, a full-size desktop chassis typically houses 
substantial amounts of metallic objects and is comprised of a highly reflective 
metallic case, as shown in Figure 1. The complex environment in a computer 
chassis indicates a unique channel model. Signals within the enclosed area will 
experience dense multipath channels with the majority of transmissions within 
a short distance of less than 20 cm. 

The UWB channel measurements were taken within the chassis interior 
of a standard desktop workstation with dimensions 45 × 20 × 40 cm3. To 
accurately characterize the channel during normal operation, all miscellaneous 
components were left inside the computer during data acquisition. 
Measurements were taken inside a near-static, electromagnetically-shielded 
lab. A vector network analyzer was used to capture 1601 data points between 

“One potential solution is the wireless 

interconnect system.”

“The complex environment in a 

computer chassis indicates a unique 

channel model.”



Intel® Technology Journal | Volume 16, Issue 2, 2012

136   |   Wireless Interconnects for Future Computing Systems

3 and 6 GHz, providing a frequency-domain resolution of 1.875 MHz. The 
EMI measurement was conducted with a spectrum analyzer.

Propagation Path Loss
Because of its large bandwidth, path loss of a UWB signal is a function of both 
the distance between the transmitter and receiver (d ), and the transmitted 
frequency ( f  )[7].

L( f, d ) = L( f ) ⋅ L(d )� (1)

Where L f( )  f  2k, k is the decay factor. The distance-dependent 
component L(d ) is derived from Friis’ equation and is expressed as

L d
L n d d S d d d

L ndB ( )
log ( / ) ,
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
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
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where L01 and L02 are the loss at the reference distance d01 and d02, respectively. 
When d01 < d ≤ d02, propagation is a near-field scenario; when d > d02, 
propagation is far-field. The near-field and far-field path loss exponents are n1 
and n2. S1 and S2 are the near-field and far-field shadowing components with 
corresponding standard deviations sS1 and sS2. Figure 2(a) shows the channel 
path loss in both near-field and far-field propagation[8]. All parameters related 
to this model are given in Table 1. For all of these parameters, spatial averaging 
was implemented[7] to remove the frequency dependence of the path loss, 
except for the determination of k. Averaging was performed by repeating the 
path loss experiment for different transmitting antenna positions and averaging 
the acquire data at each spatial position.

“Path loss of a UWB signal is a 

function of both the distance and the 

frequency.”
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Figure 1: In-chassis communication scenario
(Source: Oregon State University, 2010)
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Parameter Near-field Far-field

Valid Range (cm) 1 to d02 d02 to 40

i (for parameters below) 1 2

d0i (cm) 1 3

G0i 16.78 -25.90

ni 1.99 0.11

sSi 0.94 1.67

κ (independent of i) 1.31 1.47

Table 1: Channel Propagation Path Loss Model Parameters
(Source: Oregon State University, 2010)

Channel Impulse Response
According to the Saleh-Valenzuela model[9] for indoor propagation, 
the complex baseband impulse response for a general indoor multipath 
propagation can be expressed as

h t e t Tk l
j

k l
l k l

k l( ) ,
,

,
,= ⋅ ⋅ − −( )∑β δ τθ

� (3)

where l is the cluster index, k denotes the k th ray of the l th cluster, bk,l denotes 
the path loss of the k th path of the l th cluster, tk,l is the delay of the kth path 
of the l th cluster relative to the lth cluster arrival Tl, and uk,l is the component 
phase, which is uniformly distributed over [0, 2π]. Through our experimental 
measurements, we have found that this expression adequately describes 
multipath propagation within this enclosed environment.

In a common indoor channel, the number of clusters L is generally modeled as 
a Poisson-distributed random variable with mean L . The probability density 
function (pdf ) of L is

f l
L e
lL

l L

( )
!

= ⋅ −

� (4)

Clusters are typically identified by visual inspection[7] while the mean L  is 
derived by averaging the observed clusters per impulse response.

Table 2 summarizes the channel impulse response model parameters, which 
are derived from best-fit algorithms on the measurement data[7]. The cluster 
arrival rate is Λ, Γ is the inter-cluster decay time constant, γ is the intra-cluster 
decay time, and scluster is the cluster shadowing standard deviation. Additionally, 
we have observed that the distribution of small-scale component weight bk,l 

is Nakagami with a log-normally distributed m-factor. The parameter mm 
and sm are the mean and derivation of the m-factor, respectively. The RMS 
delay spread trms, is used to interpret delay dispersion. Since the maximum 
transmission distance for our channel environment is so short, we found that a 
mean value E{trms} is sufficient to characterize this factor.

“This expression adequately describes 

multipath propagation within this 

enclosed environment.”
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The power delay profiles show the received signal power as a function of time 
delay, giving an intuitive inspection of the multipath channel.

PDP = 20 log |h(t)| = 20 log ∆ ⋅ ⋅ ∆ ⋅
=

−

∑ f H k f e
j

kn
N

k

N

( )
2

0

1 π

� (5)

where h(t) is the UWB channel impulse response (CIR) in the time domain, 
and H(f  ) is the measured UWB channel frequency response. Figure 2(b) 
illustrates the high density of multipath clusters encountered in this 
environment because of the inherent reflectivity of the metallic surrounding[8].

Parameter Near-field Far-field

Valid Range (cm) 1 to d02 d02 to 40
i (for parameters below) 1 2
d0i (cm) 1 3

L 18.27 29.71

Λ (1/ns) 0.377 0.376

Γ (ns) 17.13 23.03

γ (ns) 1.12 1.03

scluster (dB) 5.55 3.87

mm (dB) 1.57 1.76

sm (dB) 1.04 0.99

E{trms} (ns) 25.65 23.62

Table 2: Channel Impulse Response Model Parameters
(Source: Oregon State University, 2010)

Electromagnetic Interferences
Electromagnetic interferences (EMI) from switching noise of the ICs in the 
chassis can limit the wireless link budget and therefore the maximum data 
rate that can be achieved[1]. For example, the many parallel, single-ended I/Os 
necessary for the multiple DIMMs might create significant EMI, making it 
difficult to send wireless data reliably. To understand the magnitude of possible 
EMI, we designed a custom test suite for the server blade that fully stresses the 
I/O interfaces, creating the potential for a significant amount of background 
crosstalk. 

We applied a spectrum analyzer to measure the EMI from 0.1 to 7 GHz 
within this chassis. We found dominant spectral components at 1.3 GHz, 
1.9 GHz, 3 GHz, and 3.7 GHz, with the largest signal spur occurring at 
2.5 GHz (-53 dBm), as shown in Figure 2(c). Given that the UWB transceiver 
will presumably eventually operate within the 3.5–5 GHz band with a peak 
operating frequency of around 4 GHz, the EMI had a nominal effect on the 
bit error rate (BER).

“The power delay profiles give an 

intuitive inspection of the multipath 

channel.”

“EMI can limit the wireless link 

budget and therefore the maximum 

data rate that can be achieved.”
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IR-UWB Transceiver Design
The analysis of the UWB channel in a computer chassis showed that 
although the constraints of channel attenuation, multipath inter-symbol 
interference, and EMI noise are challenging, they were tolerable and acceptable 
concerning the SNR degradation. The next challenge is developing practical 
implementations of the wireless transceivers in CMOS technology to enable 
high bandwidth, low power consumption, robustness regarding multipath and 
EMI, and low cost. 

Previous Studies on IR-UWB Transceivers
Within a traditional narrowband RF transmitter, a mixer is employed to 
convert the baseband signal to the RF carrier frequency, requiring a PLL 
in order to generate the LO carrier. However, in an IR-UWB transmitter, 
frequency conversion is usually performed by differentiation of a Gaussian 
pulse output, where the higher the differentiation order, the higher the center 
frequency. Therefore, an IR-UWB transmitter is greatly simplified when 
compared with a conventional radio. Because of the ultra-wideband nature 
of IR-UWB and its spectral overlap with other sensitive frequency bands, the 
transmitted power spectral density of IR-UWB must be designed not to exceed 
-41.25 dBm/MHz. This low transmitted power means that conventional 
power-consuming power amplifiers are not a requirement for these UWB 
systems, which further improves the power efficiency of IR-UWB systems.

Several types of modulation can be used for pulse-based UWB systems, 
including Binary Phase Shift Keying (BPSK), On Off Keying (OOK), and 
Pulse Position Modulation (PPM). BPSK modulation generates 180° phase-
shifted pulses while transmitting baseband symbols “1” and “0”. OOK is 
performed by generating transmitted pulses only while transmitting “1” 
symbols, while PPM is performed by generating pulses at different phase 
delays. Therefore, BPSK has an advantage over other modulation types due to 
an inherent 3 dB increase in separation between constellation points[10]. 

The main block in an IR-UWB transmitter–pulse generator (PG) can be 
categorized into analog pulse generators and digital pulse generators. An analog 
PG[11] employs the square and exponential functions of MOS transistors biased in 
saturation and weak inversion, respectively. However, it suffers from low output 
amplitude. A digital PG combines the edges of a rectangular signal and its inverted 
signal to form a very short duration pulse, and then a differential circuit or a 
multiphase combination circuit[12] is employed to up-convert the pulse without 
using a local oscillator[10][13]. The main problem with the digital PG is the difficulty 
in controlling the exact pulse shape and its spectrum due to PVT variations.

Conventional IR-UWB receivers can be categorized into coherent receivers[11][14], 
noncoherent receivers[15][18], and direct down-sampling receivers[19]. The direct 
down-sampling receiver is quite straightforward; the received pulse is amplified 
and then sampled by a multi-gigahertz sampling rate ADC. Although at first 
glance this architecture seems simple, it is seldom used in the 3–10.6 GHz 
frequency band for several reasons. First, it is difficult to implement a high gain, 

“An IR-UWB transmitter is greatly 

simplified when compared with a 

conventional radio.”

“Conventional IR-UWB receivers can 

be categorized into coherent receivers, 

noncoherent receivers and direct 

down-sampling receivers.”
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wide-bandwidth RF amplifier (at least 60 dB is required for 10 m transmission 
range), as it may easily oscillate and also consumes significant power. Second, 
the design of a multi-gigahertz ADC is not trivial. Although 1-bit resolution 
may be sufficient[20], this ADC consumes significant power in the clock 
distribution of the high data rate communications.

Both coherent and noncoherent receivers correlate the received pulse first, such 
that the center frequency is down-converted to baseband. The difference is 
that in a coherent receiver, the received pulse correlates with a local template 
pulse; in a noncoherent receiver, the received pulse correlates with itself. 
Therefore, a noncoherent technique exhibits the disadvantage that the noise, 
as well as signal is both amplified at the receiver[16]. Simulation results show 
that a noncoherent receiver requires at least 6 dB higher SNR than a coherent 
receiver for a fixed BER[21]. However, the advantage of a noncoherent receiver 
is that it avoids the generation of a local pulse as well as the synchronization 
between the local and received pulses. In a coherent receiver, in order to obtain 
large enough down-converted signal for quantization, the local and received 
pulses must be synchronized to less than 100 ps[11][22] in 3–5 GHz frequency 
band, which would be even tougher in 6–10 GHz frequency band. This precise 
timing synchronization can be achieved with a DLL or PLL, which is very 
power consuming[11][22]. However, in a noncoherent receiver, only symbol level 
synchronization between the baseband clock and received data is needed with a 
resolution of nanoseconds.

Two Prototypes of IR-UWB Transceivers
Two IR-UWB transceiver systems will be introduced for different applications. 
The proposed noncoherent IR-UWB transceiver is low power and simple and 
is suitable for low date rate communications. The proposed injection-locking 
IR-UWB transceiver realizes synchronization with injection-locking and is 
suitable for high data rate communications. 

Proposed Noncoherent IR-UWB Transceiver with Baseband Synchronization
The IR-UWB transmitter is based on a former BPSK-modulated transmitter 
implementation[23]. Since a noncoherent receiver detects only the energy of 
the received pulses rather than the phase of the pulses, BPSK modulation is 
not suitable for the noncoherent receiver. Hence, OOK modulation is chosen 
in this system. The transmitter implementation includes mode selection and 
power control blocks, in addition to the pulse generator and output buffer, 
as shown in Figure 3. The power control block is used to turn off the output 
buffer during pulses intervals in order to reduce the power consumption. 
When BPSK is selected, the power control block turns the output buffer 
on before the rising edge of the clock signal—the FreqCtrl signal is enabled 
and lasts for about 2 nanoseconds, regardless of whether BBin is “1” or “0”; 
otherwise, when OOK modulation is selected, the output buffer is enabled 
only when BBin is “1”. Therefore, the introduction of the power control 
block means that the transmitted power consumption is proportional to 
the data rate. The output spectrum of IR-UWB transmitter is difficult to 
control due to PVT deviations and inaccurate parasitic models for differential 

“A noncoherent receiver requires at 

least 6 dB higher SNR than a coherent 

receiver for a fixed BER.”

“The proposed noncoherent IR-UWB 

transceiver is low power and simple 

and is suitable for low date rate 

communications.”
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Figure 3: Proposed noncoherent IR-UWB transceiver (a) system architecture (b) pulse generator (c) correlator (d) baseband 
clock synchronization
(Source: Fudan University, 2010)

Pulse
Generator

LNA

Correlator PGA Comparator

Baseband

RX data

BBin

clkin

Output Buffer

Tx/Rx
Switch

RX

TX

RX clkSync

FreqCtrl

BBin

BBin

Vctrl1

Vctrl1

Vctrl2 Vbias

fctrl1 fctrl2 fctrl3

L 1

C1
C2 C3 C4

M1

M2

M3

M4

Vctrl2

M5

M6

M7

M8

M9

M10
M11 M12 M13

Inv1

Inv2

Vout

BPSK
Modulation

Quasi-Gaussian
Pulse Generator

Gain Control

(b)

(a)

(c)

(d)

Differential Circuit

OOK

BPSK
OOK

Mode
Selection

Vin+

Vin+ Vin+
Vin–

M1 M2

M5

R1 R2Is

C1 C2

M4M3

M6

Is

Vin–
x x

y

y

y

–10m
780m

0

10m

20m

30m

760m

740m

720m

700m
0n 8n 12n4n 14n 20n

In
t_

ou
t (

v)
Vi

n 
(v

)

Time (s)

Decision Counter Delay Line

D-FF

CK
D

Q

rst

Comp_out
RX clk

clkin

RX data

dctrl

Before sync

clkin

RX clk

Comp_out

RX data

1

1

0.5

0.5

0

1
0.5

0

1
0.5
0 –0.00118953 V

1.20056 V

0 V

1.2 V
–0.00745447 V

1.32868 V

1.34256 V

–0.0122828 V0

After sync

Power
Control



Intel® Technology Journal | Volume 16, Issue 2, 2012

Wireless Interconnects for Future Computing Systems   |   143

circuit. Therefore, this chip implements four-step spectrum control by using 
signals fctrl1–3 showing a measured frequency tuning range of 3.2–4.1 GHz. 
Furthermore, three-step gain control by signals Vctrl1–2 is implemented to 
enable adaptable output power spectral density in order to meet the FCC 
spectral mask at a different data rate.

The proposed IR-UWB receiver employs the noncoherent receiver architecture 
as shown in Figure 3. After first being amplified by the low noise amplifier 
(LNA), the received pulse is then self-correlated by a correlator, amplified by a 
programmable gain amplifier (PGA), and then sent to a comparator for digital 
quantization. Finally the received data is synchronized with the baseband clock.

A correlator is the critical block in the receiver. A conventional correlator 
consists of a multiplier and an integrator. Previous correlators used in both 
coherent receivers[11][24] and noncoherent receivers[18] needed to synchronize the 
received pulse with local controlling signals first. This synchronization process is 
analogous to the RF front-end synchronization in a coherent receiver requiring 
a strict timing resolution. In this design, the duty-cycled characteristic of the 
IR-UWB system is used to remove the timing synchronization. The upper 
left area of Figure 3 presents the proposed multiplier and integrator-merged 
correlator. The multiplier employs a Gilbert topology, while the integrator is 
realized by capacitors C1 and C2. As shown in this figure, after the pulse is 
multiplied with itself, the integrator begins to integrate, and between the pulses 
intervals, the integrator starts to discharge and prepare for the next integration.

After the received signal is squared and integrated by the correlator, a comparator 
compares it with a reference voltage and performs digital quantization. However 
the comparator output is a return-to-zero (RZ) signal, which needs to be 
converted to a non-return-to-zero (NRZ) signal that can synchronize with the 
baseband clock. In a coherent receiver, a DLL/PLL is usually introduced to 
perform synchronization between the received pulse and the local pulse, needing 
precision on the order of several tens of picoseconds. However, in a noncoherent 
receiver, the RZ signal quantized by the comparator exhibits a duty cycle on the 
order of nanoseconds. Therefore, a low jitter DLL/PLL is no longer necessary 
and a sliding correlator is employed. The digital synchronization circuit is shown 
in the upper right of Figure 3, where clkin, comp_out, RX clk, and RX data are 
the baseband clock, the comparator output, the recovered baseband clock, and 
the recovered data, respectively. With a reset signal, the delay line control signal 
dctrl is set to 0, such that there is no delay between the RX clk and clkin. Then 
the Sync block starts operation, and RX clk samples comp_out. If the RX clk is 
not synchronized with comp_out, the decision block enables the counter that 
increases the value of dctrl—thus elongating the latency of the delay line until 
RX clk and comp_out are synchronized.

The proposed IR-UWB noncoherent transceiver is implemented in a 0.13 µm 
1P8M CMOS technology. The die area is 2 mm 3 2 mm, as shown in Figure 4(a). 
With a supply voltage of 1.2 V, the power consumption of the transmitter is only 
1.2 mW and 2.2 mW when transmitting 50 Mb/s and 100 Mb/s baseband signals, 
respectively; the power consumption of the receiver is 13.2 mW.

“The duty-cycled characteristic of the 

IR-UWB system is used to remove the 

timing synchronization.”

“A low jitter DLL/PLL is no longer 

necessary and a sliding correlator is 

employed.”
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Figure 4: Measurement results of the proposed noncoherent IR-UWB transceiver (a) chip microphotograph 
(b) received pulses with transmission distance of 10 cm (c) BER performance of the receiver with transmission 
distance of 10 cm 
(Source: Fudan University, 2010)
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The amplitude and spectrum tunable transmitter has output pulses with peak-
to-peak voltage of 240 mV, 170 mV, and 115 mV and the frequency center of 
the spectrum has a tuning range of 3.2–4.1 GHz.

The receiver provides a total gain ranging 43–70 dB, in which the LNA 
exhibits a gain variation of 7.5 dB in high/low gain mode; the PGA 
incorporates an 8-step, 3-dB gain control with an RMS error of 0.7 dB. The 
receiver shows a minimum noise figure of 8.6/13.3 dB while operating in high/
low gain mode, with a noise figure variation less than 2 dB in the 3–5 GHz 
frequency band. The 1-dB compression point of the receiver is -28/-22 dBm 
in high/low gain mode.
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BER performance of the receiver is measured by transmitting 50 Mb/s 
random data from FPGA. The employed antennas are 3–5 GHz monopole 
omnidirectional antennas, manufactured by Fractus. With transmitted 
amplitude of 115 mV, the received pulses are attenuated to only 20.4 mV 
(-50 dBm) and 6.4 mV (-61 dBm) when the distance between the antennas 
is 1 cm and 10 cm, respectively. The receiver achieves a BER of 10-3 when the 
distance between the antennas is set to 1 cm (-50 dBm). While the distance 
extends to 10 cm (-61 dBm), the BER performance is greatly deteriorated to 
over 10-2. As shown in Figure 4(c), the TX pulse is OOK modulated, every 
pulse represents bit 1 at baseband. The received pulses are correlated and then 
amplified by the PGA, where PGA out is the buffered output of the PGA. 
A bit error occurred in the synchronized RX data as the received pulses are 
distorted by the antennas and the transmission channel. 

Table 3 lists the performance summary of the proposed noncoherent IR-UWB 
transceiver.

Parameter Measurement Results

Technology 0.13mm CMOS
Die Size 2 mm 3 2 mm
Modulation OOK
Data Rate 50–100 Mbps
VCO Frequency Range 3–5 GHz
Transmitted Pulse Width 1ns
Rx NF 8.6 dB
Rx Gain 70 dB
Rx IP1dB -28 dBm
Rx Sensitivity -50 dBm at 50Mbps, BER < 10-3

-61 dBm at 50 Mbps, BER > 10-2

Energy Efficiency Tx: 22 pJ/b;
Rx: 0.13 nJ/b at 100 Mbps

Table 3: Performance Summary of the Proposed Noncoherent IR-UWB 
Transceiver 
(Source: Fudan University, 2010)

Proposed IR-UWB Transceiver with Injection-Locking Synchronization
The proposed noncoherent receiver above greatly relaxed the difficulty 
in synchronization; however, the inevitable frequency offset between the 
baseband clocks of the transmitter and receiver still exists, which needs to 
be compensated in the digital baseband circuit. In the proposed receiver in 
Figure 5, the receiver clock is extracted from the received impulses using 
pulse injection-locking. The injection-locking-VCO (ILVCO) employs 4-bit 
capacitance bank to tune the VCO free-running frequency. The closer the 
ILVCO free-running frequency is to the input pulse frequency, the smaller the 
jitter of the recovered clock. Hence, the receiver clock is automatically phase 
aligned with the received pulse, exhibiting neither clock offset nor phase drift. 

“A bit error occurred as the received 

pulses are distorted by the antennas 

and the transmission channel.”

“The receiver clock is extracted from 

the received impulses using pulse 

injection-locking.”
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Additionally, the initial phase difference between the received impulse and the 
receiver clock can be statically adjusted at startup by using a programmable 
phase shifter in the receiver clocking path, aligning the receiver sampling point 
with the optimal SNR position of the incoming impulses. The sampling clock 
of the 5-level flash ADC is generated by dividing the VCO output, which is 
the same as the impulse data rate. In the transmitter, a 3–5 GHz LC-VCO 
output is clock-gated by a baseband pulse that generates the transmitted pulses. 
The baseband, pulse-shaping control block (“pulse window”) enables tunable 
pulse widths between 0.4–10 ns.

This proposed receiver clock recovery uses pulse injection-locking from the 
transmitted pulses, similar to subharmonic injection-locking in Lee et al.[25][26] 
As shown in the lower left of Figure 5, Region I denotes the region where 
the offset frequency is smaller than the locking range of the injection locked 
VCO, where the VCO noise is suppressed by the injected signal. Region II 
is the competition region, where the VCO phase noise is the result of the 
competition between the injected signal and the VCO free-running signal. 
In Region III, beyond the injected signal frequency, the VCO phase noise is 
dominated by the VCO free-running phase noise. Similar to a subharmonic 
injection-locked PLL[26], for this pulse injection-locked VCO, the effective 
division ratio N can be expressed as:
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where a is the probability that data is “1”, b is the roll-off coefficient due to 
pulse-shaping at the transmitter output compared with an uniformly-gated, 
sine-wave pulse; DRinj is the data rate; fout and Tout are the ILVCO output signal 
frequency and period; and Wpulse is the pulse width. Similar to Lee et al.[25], the 
phase noise degrades as 20 log N dB, compared with the injected signal. From 
Equation 6, we can see that an increase in the injection pulse rate or pulse 
width reduces the phase noise of ILVCO output, because more external clean 
energy is injected into the noisy oscillator.

An injection-locked VCO suppresses the noise within the locking range, 
similar to a first-order PLL, where the bandwidth wBW is equal to the locking 
range wL. Similar to the subharmonic injection-locked PLL, the locking range 
wL degrades as N increases. The locking range of a sine wave injected VCO is 
described in Razavi[27] and Adler[28]:
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where Q represents the quality factor of the tank, and Iinj and Iosc represent the 
injected and oscillation currents of the LC-tank VCO. With pulse injection-
locked VCOs, the effective injection current is Iinj,eff  = Iinj /N, because less 

“This proposed receiver clock recovery 

uses pulse injection-locking from 

the transmitted pulses, similar to 

subharmonic injection-locking.”

“An increase in the injection pulse rate 

or pulse width reduces the phase noise 

of ILVCO output.”
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current is injected when compared with full sine-wave injection. Consequently, 
the locking range of a pulse injection locked VCO is modified as:

ω ω ω
L

out inj

osc inj

osc

out

Q
I
I N I

I N

= ⋅ ⋅ ⋅

−
⋅

≈
2

1 1

1
2

2 2

22
1

Q
I
I N
inj

osc

⋅ ⋅ � (8)

Channel multipath is a major constraint in a computer chassis due to short 
distances and the metallic case. Fortunately, in a chassis, the wireless transceiver 
locations are stationary, so that the exact distances and time delay of the 
multipath is a priori predictable and time invariant. A multiple transmitter 
equalizer is designed that can reduce the two most severe multipath reflections. 
As shown in Figure 5, Tap1 and Tap2 are sign- and coefficient-programmable 
delayed versions of the main signal, with delay time of τ1 and τ2, respectively.

“Channel multipath is a major 

constraint in a computer chassis due to 

short distances and the metallic case.”

Figure 5: Proposed IR-UWB transceiver with injection-locking synchronization
(Source: Oregon State University, 2010)
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The 2 mm2 IR-UWB transceiver[29] is built in a 90 nm CMOS 1.2 V mixed-
signal technology, as shown in Figure 6(a). The on-chip scan-chain is controlled 
by a computer via a Ni-DAQ interface. Indoor free space measurements are 
performed with transmission distance of 10–20 cm.

The measured amplitude of the pulse is 160 mVpp, with a nominal pulse 
width of 1 ns and data rate of 62.5 Mbps. The frequency spectrum fulfills the 
FCC UWB spectral mask except for the GPS band, which can be improved 
by incorporating more design attention to spectral shaping in the transmitter 
output. The maximum transmission data rate is 500 Mbps.

The measured S11 is below -10dB in 3–5 GHz frequency band. After the 
recovered IL-VCO clock locked to the LNA output, with a 1-ns pulse width 
and a data rate of 250 Mb/s, the recovered clock jitter is 7.6 ps-RMS. For the 
same pulse width, the data rate of 125 Mbps and 500 Mbps are also measured, 
with RMS jitter of 8.0 ps and 23 ps. Due to limited bandwidth of LNA, the 
inter-symbol interference (ISI) seems worse at the high data rate of 500 Mbps, 
increasing the clock jitter.

Figure 6(b) shows the measured injection-locking range versus pulse width 
and pulse repetition rate. As can be seen, a wider pulse width and higher data 
rate improve the locking range, as more transmitted pulse energy synchronizes 
the receiver IL-VCO. Figure 6(b) also shows the measured close-in phase 
noise, from free-running without injection, to pulse injection rates (DRinj) of 
125 Mbps, 500 Mbps and sine-wave injection. Lower phase noise is exhibited 
at higher injection rates, as the phase updates occur at a higher frequency, 
similar to the dynamics in a first-order PLL. The result also verifies Equation 6, 
showing an approximately 12-dB phase noise difference between 125 Mbps 
and 500 Mbps pulse injection rates. Without pulse injection, the free-running 
VCO shows very large phase noise at a low frequency offset. 

While a long string of empty data transitions would result in loss of phase 
synchronization, conventional DC-balanced codes such as 8b/10b can 
limit the maximum run length. Transmission using the on-chip PRBS-15 
modulator, exhibiting a maximum string length of 14 zeros, showed no loss in 
receiver phase synchronization.

The indoor free-space measurement setup uses two UWB antennas that are 
placed 10 cm apart. Figure 6(c) show the transmitted digital data, received 
pulses after LNA gain, the recovered Rx clock, and finally the received 
demodulated data at 500 Mbps. 

Because this receiver is injection locked, interferers will increase the recovered 
clock jitter and increase the BER, so it is important to measure interference 
performance. By putting a single tone interferer through a UWB antenna 
close to the receiver antenna, characterizing the received interference power 
at receiver input, and increasing the interfere power till the BER reaches 10-3, 

“The maximum transmission data rate 

is 500 Mbps.”

“Interferers will increase the recovered 

clock jitter and increase the BER.”
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Figure 6: Measurement results of the proposed IR-UWB transceiver with injection-locking synchronization (a) chip microphotograph 
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then we get the maximum tolerable power at receiver input. With a 
communication distance of 14 cm, 125 Mpbs 110 mVpp 1-ns wide pulses 
are transmitted for interferer test. The measured interference performance 
is shown in Figure 6(d) for both in band and out of band. The maximum 
tolerable interferer power is -50 dBm at 4 GHz, and -25 dBm at 2.4 GHz. 
And considering the EMI in Figure 2(c), this receiver can work robustly in a 
computer chassis.

The computer chassis channel exhibits intensive multipath reflections. 
Multipath reflections affect the signal differently in short-distance channels 
and long-distance channels (relative to the data rate): 1) for short channels, 
multipath reflections are close to the main signal (direct path), causing 
intra-symbol interference (while OOK modulation is somewhat enhanced 
by this additive energy from multipath reflections, BPSK modulation would 
be severely limited due the sign change inversion); 2) For long channels, 
multipath reflections show longer delay from the main signal, and may fall in 
the next symbol. Both intraference and interference can degrade the BER.

The multipath equalizer can cancel multipath reflections in both short-distance 
and long distance channels for this OOK IR-UWB transceiver. In a computer 
chassis, all antennas are stationary, resulting in a fixed amplitude and time 
delay for the multipath signal that arrive at each receiver. Hence, the two-tap 
coefficient delay, amplitude, and sign of the equalizer were calibrated at reset 
time, and adjusted differently for each of the multipath propagations.

For simplicity, the received pulses and recovered clock are captured by a high 
sampling rate oscilloscope, and then the data are processed in MATLAB. In 
this case, the quantization noise of the flash ADC in the receiver is eliminated. 
Figure 6(e) shows the pulse response (after squaring and low-pass filtering) 
before and after equalization is applied, for one of the receivers on the 
motherboard. On the left, a single pulse response is observed with several 
multipath pulse interferers causing a long pulse tail. On the right, a single pulse 
is observed where the first tap equalization is activated, significantly reducing 
the multipath reflections. At a data rate of 250 Mbps, the recovered ADC 
clock jitter was improved significantly after applying the equalizer, reducing 
RMS clock jitter by 27.4 percent at RX1 in Figure 1, while the motherboard 
was operational. Within an enclosed chassis that exhibits significant multipath 
interference, at 250 Mbps BER is improved from 0.0158 to 0.0067 
without/with first-tap equalization enabled respectively. While the proposed 
equalization can help cancel the multipath reflections, it is difficult in practice 
to eliminate them entirely.

Table 4 lists the performance summary of the proposed injection-locking  
IR-UWB transceiver.

“Multipath reflections affect the signal 

differently in short-distance channels 

and long-distance channels.”

“The multipath equalizer can cancel 

multipath reflections in both short-

distance and long-distance channels.”
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Parameter Measurement Results

Technology 90 nm CMOS
Die Size 1 mm 3 2 mm
Modulation OOK
Data Rate 7.8125–500 Mbps
VCO Frequency Range 3.7–4.5 GHz
Transmitted Pulse Width 0.5–10 ns
Rx Sensitivity(free space) -64 dBm at 125 Mbps, BER < 10-3
Rx Sensitivity(free space) -60 dBm at 500 Mbps, BER < 10-1
Energy Efficiency (with ADC) Tx: 90 pJ/b;

Rx: 90 pJ/b at 500 Mbps
In-chassis 
BER 
(TX1–RX1) 
at 125 Mbps

w/oEMI
w/oEQ 1.7 3 10-3
wEQ 3.3 3 10-4

wEMI
w/oEQ 2 3 10-3
wEQ 3.3 3 10-4

Table 4: Performance Summary of the Proposed Injection-Locking IR-UWB 
Transceiver 
(Source: Oregon State University, 2010)

Summary
Use of low power wireless interconnects provides bidirectional telemetry 
and eases the manageability by reducing the routing complexities relating 
to numerous component interconnects and replacing them with a single 
transceiver per component. The broadcast nature of wireless makes available 
the equilibrium strategy to all other components in real-time without adding 
any routing complexity so that they can optimize themselves based on the 
collective strategy. Wireless chip-to-chip interconnects can provide benefits 
that are unattainable by other interconnect technologies and therefore should 
be considered for next-generation, many-socket computing platforms. In this 
article, the UWB channel model within a computer chassis is analyzed. The two 
proposed IR-UWB transceivers are both applicable. The noncoherent IR-UWB 
transceiver with baseband synchronization is low power and low complexity in 
the RF front end, but needs further frequency offset compensation in digital 
signal processing. The injection-locking IR-UWB receiver realizes both phase 
and frequency synchronization in the RF front end and a two-tap equalizer is 
employed in the transmitter to cancel the multipath signals.
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Server consolidation in virtualized data centers introduces new challenges for 
resource management, capacity provisioning, and guaranteeing application 
quality of service (QoS). The bursty nature of typical server workloads makes it 
difficult to provide response time guarantees without significant overprovisioning, 
resulting in low utilization and higher infrastructure and energy costs. In this 
article we present Nested QoS, a formal model that specifies application QoS by a 
response time distribution based on the burstiness of the workload. The workload 
is adaptively decomposed into classes with different response time guarantees and 
scheduled using an Earliest Deadline First policy. A procedure for determining the 
decomposition parameters is developed, and empirical results showing the benefits 
of decomposition and adaptive parameter setting are presented.

Introduction
Large virtualized data centers that multiplex shared resources among hundreds of 
clients form the backbone of the growing cloud IT infrastructure. The increased 
use of VM-based server consolidation in such data centers introduces new 
challenges for resource management, capacity provisioning, and guaranteeing 
application performance. Service level objectives (SLOs) are employed to 
assure client applications a specified performance quality of service (QoS), like 
minimum throughput or maximum response time. The service provider should 
allocate sufficient resources to meet the stipulated QoS goals, while avoiding 
overprovisioning that leads to increased infrastructure and operational costs. 
Accurate capacity estimation of even a single application in isolation is difficult 
due to the bursty nature of server workloads[9][16][20]; dynamic sharing by multiple 
clients further complicates the problem. Performance SLOs range from simply 
providing a specified floor on average throughput (for example, I/Os per second 
or IOPS) to providing guarantees on the response times of individual requests. 
Throughput guarantees can often be enforced using scheduling techniques based 
on fair queuing (FQ)[3][6][7][8][11]. However, guaranteeing response times[5][10][18] 
requires that the input workload be suitably constrained.

In this article we propose a service model called Nested QoS that enables clients 
to flexibly specify their performance requirements in terms of a distribution 
of response times, based on workload characteristics and pricing structure. 
The model formalizes the observation that workload burstiness results in a 
disproportionate fraction of server capacity being used simply to handle the 
small tail of highly bursty requests. In the Nested QoS model, a workload 
is dynamically decomposed into multiple QoS classes, each with a different 
response time guarantee. Bursts of different intensities are identified and their 
requests assigned to different classes, which are isolated from each other so 

“VM-based server consolidation in 

data centers introduces new challenges 

for resource management, capacity 

provisioning, and guaranteeing 

application performance.”

“The Nested QoS service model 

enables clients to specify a response 

time distribution  based on workload 

characteristics and pricing structure.”
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that their performance can be guaranteed. In this way, requests arriving during 
a highly bursty period are prevented from delaying subsequent well-behaved 
requests. In the absence of such enforced isolation, the response times of both the 
bursty requests as well as the following well-behaved requests will be significantly 
degraded over the durations that it takes for the request backlogs to dissipate. 

In earlier works[13][14][15] we described a workload decomposition scheme to identify 
bursts and schedule requests to reduce capacity. However, this framework is not 
backed up by an underlying SLO model. There are several difficulties in specifying 
desired performance formally with an intuitive but enforceable SLO contract. 
For instance, client requirements are often informally expressed by statements like 
“95 percent of requests must have a response time of less than 50 ms.” However, 
such a requirement can only be met (even theoretically) if there are well-defined 
restrictions on the workload; otherwise, an adversarial client can arbitrarily increase 
the workload beyond the available capacity. Additionally, there is ambiguity over 
the time granularities over which such guarantees must hold, which can feed back 
to even more awkward and hard-to-measure restrictions on the input workload. 

Performance SLO models should be intuitive, easy to monitor, and mutually 
verifiable in case of dispute. The Nested QoS model provides such a formal but 
intuitive, flexible, and enforceable way to specify the notion of graduated QoS, 
where a single client’s SLO is specified in the form of a spectrum of response times 
rather than a single worst-case guarantee. The model properly generalizes SLOs 
based on a single response time (for example, see Cruz[5], Gulati et al.[10], and 
Sariowan[18]), thereby providing the opportunity for trading significant reductions 
in capacity requirements of the server for small changes in performance.

Our work is related to the ideas of differentiated service classes in computer 
networks[4][12][17]. However, we believe our model and analysis are substantially 
different from these works. Network QoS is largely concerned with providing 
throughput guarantees and reducing network congestion by anticipatory 
packet dropping. In contrast our focus is on providing response time 
guarantees by adaptive parameter estimation and capacity provisioning. 
Furthermore, we believe there is inherent merit in understanding how these 
techniques can be applied to the server environment.

In the next section, “Nested QoS Model,” we describe the Nested QoS model 
and its implementation. Analysis of the server capacity based on the model 
parameters is presented in the section “Capacity Analysis of Nested QoS.” In 
“Parameter Estimation” we describe how model parameters can be estimated 
based on a fast iterative simulation of a trace sample drawn from the workload. 
“Evaluation of Nested QoS” presents empirical results to demonstrate the 
benefits of Nested QoS using several block-level storage server traces. The 
article concludes with a summary of our findings.

Nested QoS Model
The workload W of a client consists of a sequence of requests that are sent to the 
server at arbitrary times. For specificity, we consider a block-level I/O workload, 
whose accesses have been broken into requests for fixed-size disk blocks after 

“Performance SLO models should 

be intuitive, easy to monitor, and 

mutually verifiable in case of dispute.”

“The Nested QoS model trades 

significant reduction in capacity 

requirements for small changes in 

performance.”
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filtering by the buffer cache. An arriving request is classified into one of several 
service classes based on the current state of the system. The service class to which 
the request is assigned determines its maximum response time. Classification is 
done based on the SLO agreement; the classifier will place a request into a class 
with a lower response time in preference to one with a higher one, unless doing 
so would violate the arrival rate specification of the SLO. 

In the Nested QoS model, the performance SLO is determined by multiple 
nested classes C1, C2, . . . , Cn. Figure 1 is a conceptual depiction of the model 
for the case of three classes. A class Ci is specified by three parameters: 
(si, ri, di ), where (si, ri) are token bucket[17][19] parameters, and di is the 
response time guarantee. A token bucket regulates the traffic admitted to a class 
based on its two parameters: the burst parameter s and the long-term arrival 
rate r. Traffic that is compliant with a (s, r) token bucket has the following 
property: the number of requests admitted in any interval of length t is upper 
bounded by s  + r  ×  t. A token bucket is used to provide an upper limit on 
the traffic admitted to each class in the Nested QoS model.

The requests in class Ci consist of a maximal-sized subsequence of W that 
is compliant with a (si , ri) token bucket: that is, in any interval of length t 
the number of requests in class Ci is upper bounded by si + ri × t, and no 
additional request of W can be added to the sequence without violating the 
constraint. The token bucket provides an envelope on the traffic admitted to 
each class by limiting its maximum instantaneous burst size (si ) and arrival 
rate ( ri ). All requests in Ci will be guaranteed a maximum response time of di. 

“The performance SLO is determined 

by multiple nested service classes with 

different response time guarantees.”

“A token bucket regulates traffic 

admitted to a class based on burst and 

average arrival rate parameters.”

Figure 1: Nested QoS model
(Source: Rice University, 2012)
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The nested nature of the classes Ci implies that all requests in Ci also belong to Cj 
for all j > i. Hence, for instance in Figure 1, all requests that are admitted to C1 are 
also members of C2 and C3. All the requests in C3 are guaranteed a response time d3.
Of these requests, those that are also in C2 are guaranteed a smaller response 
time d2, while those who make it to C1 are guaranteed the smallest response time d1. 
Nesting of the classes requires that si ≤ si +1, ri ≤ ri +1 and di ≤ di +1.

As an example, consider a Nested QoS model with three classes. Suppose that 
the parameters of C3, C2 and C1 are (30, 120 IOPS, 500 ms), (20, 110 IOPS, 
50 ms), and (10, 100 IOPS, 5 ms) respectively. The parameters of C1 specify that 
all the requests in the workload that lie within the (10, 100 IOPS) envelope will 
have a response time guarantee of 5 ms; the requests within the less restrictive 
(20, 110 IOPS) arrival constraint have a latency bound of 50 ms, while those 
conforming to the (30, 120 IOPS) arrival bound have a latency limit of 500 ms.

Implementation of Nested QoS Model
Figure 2 shows a possible implementation of the Nested QoS model. It consists 
of two components: request classification and request scheduling (not shown 

“The nested nature implies that all 

requests in Ci also belong to Cj  for all 

j . i.”

Figure 2: Cascaded token-bucket implementation
(Source: Rice University, 2012)
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in the figure). The classification module assigns each incoming request to the 
appropriate class. The scheduling module chooses the request with the earliest 
deadline from one of the classes to dispatch to the server when it is free.

Request Classifier
The request classifier is implemented using a cascade of token buckets, B1, 
B2, . . . , Bn (innermost is B1) attached to FCFS queues Q1, Q2, . . ., Qn. The buckets 
filter the arriving workload so that queue Q1 receives all the requests of class C1, 
Q2 receives requests of C2 − C1, and Q3 receives requests of C3 − C2. By ensuring 
that requests in queue Q i meet a response time of di , the SLO of the Nested QoS 
model can be met. Any requests that do not meet the arrival constraint of the 
outermost class are simply dropped or served on a best-effort basis. For notational 
simplicity, we assume a hypothetical queue Qn+1 that handles the overflow requests.

Note that the token bucket specification is an intrinsic property of the 
workload based on its burst and rate characteristics, and is independent of any 
implementation of the Nested QoS model. In case of dispute, the workload 
can be profiled to find the percentage of requests that satisfied each token 
bucket SLO specification, and compared with the percentage of requests that 
actually met the response time guarantee for that class. If a client sends more 
requests than allowed by the SLO, the extra requests will be automatically 
assigned to a class with a higher response time. However, all requests within the 
traffic envelope of a specified class will meet their stipulated deadlines. 

The token bucket parameters regulate the number of requests that pass through 
it in any interval. Initially bucket Bi is filled with si tokens. An arriving request 
removes a token from the bucket (if there is one) and passes through to Bi−1 
(or Q1 if i is 1); if there is less than one token in Bi at that time, the request goes 
into the queue Q i +1 instead. Bi is continuously filled with tokens at a constant 
rate ri, but the maximum number of tokens in the bucket is capped at si. 

The algorithm for request classification is shown in Figure 3. The implementation 
of token bucket Bi uses four variables Sigma[i ], Rho[i ], NumTokens[i ] and 
LastUpdateTime[i ]. The first two are the token bucket parameters as described 
above. NumTokens[i ] tracks the number of tokens in the bucket at any time. It 
is initialized to Sigma[i ]; an arriving request will decrement it by 1 provided that 
would not make its value negative. The variable LastUpdateTime[i ] tracks the time 
at which that bucket was last replenished with tokens. This is needed since the 
refilling of the token buckets will be done only at discrete times.

Procedure RequestArrival indicates the steps taken by the classifier when a new 
request arrives at time t. The classes are searched one-by-one in order, starting 
from the outermost class Cn, to see if the request can be admitted into that 
class. The request is placed in the lowest-level class that succeeds. If none of 
the classes can admit the request, it is simply dropped. The procedure first

“The request classifier is implemented 

using a cascade of token buckets 

attached to FCFS queues.”

“In case of dispute, the SLO 

specification can be checked against 

the percentage of requests meeting 

different response time guarantees. ”
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RequestArrival(Request r, Time t)

Begin 

for (i = n; i > 0; i--) {

     UpdateBucket(i, t);

     if (NumTokens[i] ≥ 1)

NumTokens[i] = NumTokens[i] - 1;

     else 

             break;

       } 

      Insert r into queue Qi+1 with deadline t + d i+1;

End

UpdateBucket(int BucketId, Time t)

Begin

ElapsedTime = t - LastUpdateTime[BucketId];

LastUpdateTime[BucketId] = t;

NumTokens[BucketId] += ElapsedTime * Rho[BucketId];

If (NumTokens[BucketId] > Sigma[BucketId])

    NumTokens[BucketId] = Sigma[BucketId];

End

Figure 3: Classification algorithm
(Source: Rice University, 2012)

makes a call to UpdateBucket to replenish the bucket with tokens that have 
been generated since its last update. If the number of tokens in the bucket Bi 
is less than one, the request is not admitted into class Ci and placed in queue 
Q i +1. The request is tagged with the deadline by which it should complete 
service; this is the arrival time t plus the response time guarantee for that class. 
Note that NumTokens accumulate continuously as real-valued quantities, even 
though they deplete as integers; and that, similarly, Sigma and Rho are, in 
general, real-valued quantities. 

Figure 4 shows the result of classification of a segment of the Exchange 
workload[2] as it goes through the token bucket network. Figure 4(a) shows the 
arrival pattern during the first 200 seconds of the original workload, aggregated 
in one-second intervals. The workload is passed through three cascaded token 
buckets B1, B2, B3 with parameters (36, 6000), (72, 6600), and (144, 7200), 
respectively. The parameters are chosen so that 90 percent of the workload 
requests are placed in class C1, 95 percent of the workload is classified as C2, 
and 100 percent of the workload is in class C3. Figures 4(b), 4(c), and 4(d) 
show the decomposed workload in classes C1, C2-C1 and C3-C2 respectively. 
These portions of the workload in queues Q1, Q2, and Q3 respectively will be 
assigned different response times, and as shown later in the section “Evaluation 
of Nested QoS,” results in significant reduction in capacity requirements.

“A request is tagged with the deadline 

by which it should complete service. ”
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Figure 4 (a)-(b) Decomposition of workload trace into classes
(Source: Usenix 3rd Workshop on I/O Virtualization, 2011)
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Request Scheduler
The scheduler services requests in the queues Q1, Q2, . . . , Qn based on their 
deadlines using an earliest, deadline first (EDF) policy. Each request is tagged 
with a deadline when it is inserted into one of the queues. Whenever the 
server becomes idle, the scheduler checks the request at the head of each these 
queues. It dequeues the request with the smallest deadline and dispatches it to 
the server. Using EDF scheduling results in the smallest capacity necessary to 

“EDF scheduling results in the 

minimum server capacity necessary to 

meet all deadlines.”
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Figure 4 (c)-(d) Decomposition of workload trace into classes
(Source: Usenix 3rd Workshop on I/O Virtualization, 2011)
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schedule all the requests by their deadline. In the section “Capacity Analysis of 
Nested QoS” we will compute the capacity required to ensure that all requests 
admitted under the Nested QoS policy meet their response time requirements 
when using an EDF scheduler.

Capacity Analysis of Nested QoS
In this section we derive an analytical formula for the capacity required to 
meet the response time guarantees in the Nested QoS model. The main result 
is stated in the Capacity Theorem that provides a tight upper bound on the 
capacity required to meet the specified deadlines in terms of the token bucket 
parameters. 

Capacity Estimation
Definition 1: Define hi(t) to be the number of tokens in bucket Bi at time t. By 
definition, hi(0) = si for all i = 1, . . . , n.

Definition 2: Define Nt(a, b) to be the maximum number of requests with 
deadline less than t, which enter any of the queues Q1, Q2, . . . , Qn in the 
interval [a, b).

Lemma 1 below states that bucket Bi has at most 1 token more than the 
number of tokens in Bi +1 at any time. The lemma can be proved by induction 
over the arrival instants of requests. For the base case, the Lemma holds since 
si ≤ si +1, for all i = 1, . . . , n - 1. The details of the proof are omitted.

Lemma 1: hi(t) ≤ hi +1(t) + 1, for all i = 1, . . . , n - 1.

The Capacity Theorem upper bounds the capacity required for servicing all 
requests admitted into the queues Q i of the Nested QoS model by the cascaded 
token buckets. The proof proceeds by upper bounding the number of requests 
entering the system whose deadlines are less than or equal to an arbitrary but 
fixed time t. These requests are partitioned into disjoint sets based on the time 
interval in which they arrive, and each set is associated with the set of requests 
admitted by a specific token bucket. By adding together the upper bounds on the 
number of requests admitted by each such token bucket the result will follow.

Capacity Theorem: The capacity C required scheduling all requests in the 
Nested QoS model satisfies:

C ≤ maxj=1,..,n{sj /dj + ∑1≤ k < j (1 + rk(dk+1 - dk))/dj , rj }

Proof: We bound the maximum number of requests that need to finish by time 
t, where t = 0 is the start of a system busy period. Let m, 1 ≤ m ≤ n, be the 
largest index for which t ≥ dm. Define ti = t - di, 1 ≤ i ≤ m, and for notational 
convenience let tm+1 = 0. Then Nt(0, t) = ∑1≤ i ≤m Nt(ti +1,ti). Now Nt(ti +1,ti) 
consists exactly of the requests that have been admitted by bucket Bi in [ti +1,ti). 
Hence,

Nt(ti +1,ti) ≤ hi(ti +1) + ri × (ti - ti +1) - hi(ti)

“The Capacity Theorem provides a 

tight upper bound on the capacity in 

terms of token bucket parameters.”
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Summing both sides for all i = 1, . . . , m

∑1≤ i ≤ m Nt(ti +1,ti) ≤ ∑1≤ i ≤ m ri × (ti - ti +1) + ∑1≤ i ≤ m (hi(ti +1) - hi(ti))

Rewriting the last summation of the right hand side of the equation:

∑1≤ i ≤ m(hi(ti +1) -hi(ti)) = ∑1≤ i ≤ m(hi(ti +1) - hi +1(ti +1)) + hm(tm+1) - h1(t1)

Now, from Lemma 1, hi(ti +1) ≤ hi +1(ti +1) + 1 so by substituting and dropping 
all negative terms:

∑1≤ i ≤ m Nt(ti +1,ti) ≤ ∑1≤ i ≤ m (1 + ri × (ti - ti +1)) + hm(tm +1)

Now,

hm(tm+1) = hm(0) = sm

ti - ti +1 = di +1 – di , i = 1, . . , m – 1

tm – tm+1 = t – dm

Hence,

∑1≤ i ≤ m Nt(ti +1,ti) ≤ sm + ∑1≤ i ≤ m  -1 (1 + ri × (di +1 – di )) + rm × (t - dm)

The capacity (C ) required to finish these Nt(0, t) requests by time t is upper 
bounded by Nt(0, t)/t. Hence:

C ≤ sm/t + ∑1≤ i < m (1 + ri × (di +1 – di ))/t – rm × dm /t + rm

Now, if (sm + ∑1≤ i < m (1 + ri × (di +1 – di ))) < (rm × dm) the inequality reduces to: 
C ≤ rm. Otherwise, the RHS is maximized when t takes on its smallest value, 
which is dm. In this case, the inequality reduces to:

C ≤ sm /dm + ∑1≤ i < m (1 + ri × (di +1 – di ))/dm

The above two inequalities must hold for all values of t, and hence for all 
possible values of m, 1 ≤ m ≤ n.

Putting it all altogether we get:

C ≤ maxm=1,..,n{sm/dm + ∑1≤ i < m (1 + ri(di +1 – di ))/dm, rm}

In an ideal situation, if the tokens are updated only in integer units, Lemma 1 
will be simplified to hi(t ) # hi11(t ) for all i 5 1, . . . , n 2 1; and the Capacity 
Theorem will be simplified to C # maxj51,..,n{j /dj 1 ∑1# k , j k(dk11 2 dk)/dj, j}. 
We will use this ideal case in the rest of the article. The following corollaries 
consider special cases of the above Theorem that provide for simplified capacity 
equations[21]. The first result considers the case when all the token buckets 
have the same rate r, and the second considers an interesting case when the 
parameters of the token buckets are multiples of a base value.

Corollary 1.1: The capacity required for all requests to meet their deadlines 
in the Nested QoS model, when all ri are equal to r, is given by: 
max1≤  j ≤ n{sj/dj + r × (1 − d1/dj ), r }.

Corollary 1.2: Let all ri be equal to r, and a  = di +1/di, b = si +1/si and 
l = b /a  be constants. The server capacity required to meet SLOs is no more 
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than: max1≤  j ≤ n{r, l j × (s1 /d1) + r × (1 − 1/l j)}. For l < 1, the server capacity 
is bounded by s1/d1 + r, which is less than twice the capacity required for 
servicing the innermost class C1.

The final corollary asserts that using an EDF scheduler, the capacity defined in 
the Capacity Theorem is sufficient to meet all deadlines. We omit the details of 
a simple proof by contradiction.

Corollary 2: If the server has capacity at least that derived in the Capacity 
Theorem, and requests are scheduled using an EDF policy, then all requests 
will meet their deadlines.

We finally show that the Capacity Theorem provides a tight upper bound by 
demonstrating a workload that requires the derived capacity in order to meet 
the stipulated deadlines. The adversarial workload consists of a burst of size sn 
at time t = 0, followed by a continuous request stream arriving at the uniform 
rate rn. Clearly, the capacity should be at least rn, since otherwise one more of 
the queues Q i, i = 1, . . ., n, will grow without bound. 

The total number of requests that arrive in the interval [0, t] is (sn + t × rn). 

All these requests will be admitted by the outermost token bucket, and will be 
distributed among the queues as follows: Q i, i = 1, . . . , n, will receive 
(si - si-1) + t × (ri - ri-1) requests, where s0 and r0 are defined to be 0. 
Consider the number of these requests that have a deadline dm, for arbitrary 
but fixed m, 1 ≤ m ≤ n. These will be the requests in queues Qj, 1 ≤ j ≤ m, that 
arrived during the interval [0, dm – dj]. The number of such requests in Qj is 
(sj – sj-1) + (dm – dj  ) × (rj – rj -1). Summing over all the queues Q1 to Qm, the 
total number of requests with deadline dm is:

∑1≤ j ≤ m (sj – sj-1) + (dm – dj  ) × (rj – rj-1) = sm + ∑1≤ j ≤ m rj × (dj+1 – dj  ) 

The minimum capacity required to finish these requests by dm is sm/dm + 
∑1≤j<m rj × (dj+1 – dj  )/dm. This is within a small additive term of the capacity 
bound, showing that the capacity required to service this workload matches the 
Capacity Theorem.

Parameter Estimation
We now describe how the Nested QoS parameters of a workload will typically 
be determined. The client decides the number of classes, the fraction of the 
workload in each class, and the response time requirement for the class. By 
profiling the workload the provider translates these requirements to token 
bucket parameters and capacity estimates for the workload. 

We consider in detail the case of two guaranteed classes C1 and C2, satisfying 
fractions f1 and f2 of the workload and having response time guarantees d1 
and d2. First we estimate the capacity Ci required for fraction fi of the workload 
to meet deadline di, for i = 1 and i = 2 independently. This can be found 
by simulating the arrivals to a fixed-length queue (of size Ci × di ) and using 

“By profiling, workload requirements  

are translated to token bucket 

parameters and capacity estimates.”
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a greedy drop algorithm to handle queue overflow (see [14]). The capacity 
is varied (using a binary-search like method) till the fraction of requests 
overflowing the queue falls just below 1 - fi . The maximum of C1 and C2 is a 
lower bound on the capacity required by Nested QoS. 

The token bucket parameters are chosen to minimize the capacity required by 
the Capacity Theorem. Figure 5 describes the iterative procedure for a two-
class Token Bucket system. The capacity in this case is given by the maximum 
of: {s1/d1, s2/d2 + r1(1 - d1/d2), r1, r2}. To simplify this estimation, at each 
candidate capacity point, we let s1 and r2 assume the largest values compatible 
with the chosen capacity, and search for s2 and r1 that satisfy the {d i, fi  } 
objectives. This search is carried out by iterative trace simulation.

We begin with a capacity estimate C starting with the lower bound described 
above. We select the largest possible s1 that with capacity C can meet a 

“The token bucket parameters are 

chosen to minimize the capacity 

bound in the Capacity Theorem.”
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Figure 5: Iterative Calculation of Token Bucket Parameters and Capacity
(Source: Rice University, 2012)
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deadline d1, that is, s1 = C × d1. Next, we find the smallest value of r1 that 
along with the chosen value of s1 allows a fraction f1 of the workload to pass 
bucket B1. We choose r2 equal to C and then find the smallest s2 that along 
with the chosen value of r2 allows a fraction f2 of the workload to pass bucket 
B2. We compute the capacity C´ required by the Capacity Theorem using these 
parameters. If C´ > C, we increase C and repeat the procedure; else the required 
capacity is C and the token bucket parameters are as determined.

The capacity and token bucket parameters for a workload can be determined 
by off-line profiling of workload traces. These settings are then used during 
actual runtime operation. Such an approach is suitable for workloads that are 
relatively stable and whose overall statistical profile does not vary substantially 
from run to run. On the other hand, in situations where there may be periodic 
or unexpected changes in the workload during operation, it may be preferable 
to change the parameters adaptively to react to significant changes in workload 
behavior. In this environment, a monitoring agent triggers an alarm when 
the performance changes significantly; it may be sufficient to use a coarse 
measure like smoothed average latency rather than the exact SLO specifications 
to check for such situations. A runtime profiler is invoked to determine 
the new parameters necessary to meet SLO specifications with the changed 
workload characteristics, and additional capacity is requested for the workload 
if necessary. If the capacity request is granted, the token bucket parameters 
are changed based on the newly profiled values. In the section “Evaluation 
of Adaptive Parameter Setting” we evaluate the impact of adaptively setting 
parameters based on profiling a sample prefix of a workload.

Evaluation of Nested QoS
We implemented the Nested QoS model in a process-driven system 
simulator and evaluated the performance separately with five block-level 
storage workload I/O traces from the UMass Storage Repository[1] and SNIA 
IOTTA Repository[2]: WebSearch1(W1), WebSearch2(W2), FinTrans(W3), 
OLTP(W4), and Exchange(W5). W1 and W2 are traces from a web search 
engine and consist of user web search requests. W3 and W4 are traces 
generated by financial transactions running at large financial institutions. W5 
trace is from a Microsoft Exchange* Server. The parameters for each workload 
are shown in Table 1 below. The values were found by profiling the workloads 
to guarantee at least 90 percent requests in class C1.

“It may be preferable to change 

the parameters adaptively to react 

to significant changes in workload 

behavior.”

W1 W2 W3 W4 W5

s1 4.0 4.0 3.0 2.0 36.0

r1 (IOPS) 450 430 300 250 3600

d1 (ms) 10.0 10.0 10.0 10.0 10.0

For all workloads: ri +1 = ri, si +1 = 2si, di +1 = 10di .

Table 1: QoS Parameters for Simulated Workloads
(Source: Rice University, 2012)
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Capacity and Performance Tradeoffs
Figure 6 compares the capacity required by the workloads for the Nested and 
Single-Level QoS models. The latter requires all requests to meet the d1 response 
time. The capacity is significantly reduced by spreading the requests over multiple 
classes. Figure 7 shows the distribution of response times. In each case a large 
percentage (90–92 percent) of the workload meets the 10-ms response time bound, 
and (except for FT workload) only a small 0.5 percent (or less) requires more than 

“The capacity is significantly reduced 

by spreading the requests over multiple 

classes. ”
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100 ms. The capacity required for Nested QoS is several times smaller than that for 
Single-Level QoS, while the service seen by the clients is only minimally degraded.

Multiplexing Multiple Workloads
In a shared environment, each workload is independently decomposed into classes 
based on its Nested QoS parameters. The server provides capacity Φj for workload j 
based on its capacity estimate using the formula in the section “Capacity Analysis 
of Nested QoS,” and provisions a total capacity of ∑ jΦ j. A standard proportional 
scheduler [3, 7] allocates the capacity to each workload in proportion to its Φj . 
When workload j is scheduled, it chooses the request from its class queues with the 
smallest deadline. Figure 8 shows the organization for serving multiple clients.

“In a shared environment, each 

workload is independently decomposed 

into classes based on its Nested QoS 

parameters.”

Figure 8: Nested QoS model for multiple workloads
(Source: Rice University, 2012)
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An alternative to using a proportional scheduler is to use EDF scheduling globally 
across the queues of all the clients. The advantage of using global EDF scheduling 
is its ability to exploit the heterogeneity of the workloads to reduce the overall 
capacity requirements[5][10]. On the other hand, scheduling the queues globally using 
EDF makes it difficult to direct capacity changes to specific workloads[22]. A drop 
or increase in system capacity could be allocated unfairly to the workloads based 
on internal timing dynamics of the scheduler. In contrast, a proportional scheduler 
always allocates capacity based on the individual Φj settings of the workload.

In the following two sections we illustrate two basic properties of the Nested 
QoS framework: intra-client robustness to workload variation and inter-client 
isolation. We compare Nested QoS to two other well-known scheduling 
approaches: pClock[10] that uses EDF to guarantee response times of requests, 
and WF2Q[3] that is used for proportional share scheduling.

Robustness to Workload Violation
In the experiment, we use the two block-level workloads: W1 and W2. W1 is a 
financial transaction workload with a long-term average arrival rate of about 115 
IOPS; W2 is a proxy workload with a long-term average arrival rate of around 
21 IOPS. 

“Scheduling the queues globally 

using EDF makes it difficult to 

direct capacity changes to specific 

workloads.”
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The arrival patterns of the two workloads are shown in Figure 9(a). By 
profiling the workloads, the token bucket parameters for the three classes of 
W1 are set to (7, 130 IOPS), (14, 143 IOPS) and (50, 158 IOPS), while the 
parameters for the token buckets of W2 are set to (6, 120 IOPS),  

Time (s)

R
es

p
o

n
se

 T
im

e 
(m

s)

400

350

150

200

250

300

50

100

200 400 600 800 10000
0

W1 (Without Violation) W2

(a)

Figure 9: Arrival pattern for (a) Both W1 and W2 are well behaved. 
(b) W1 violates SLAs and sends more requests during time 
150–250 s
(Source: Rice University, 2012)
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(15, 125 IOPS), and (50, 130 IOPS). A system capacity of 276 IOPS is 
provisioned for the two workloads. With this capacity, all three methods 
(Nested QoS, pClock, and WF2Q) can guarantee that at least 90 percent of 
the requests finish within a 50 ms deadline, and 95 percent of the requests 
finish within a deadline of 500 ms.

In a second experiment shown in Figure 9(b), W1 is perturbed by artificially 
injecting additional traffic. Specifically, the instantaneous arrival rate of W1 
is increased to around 260 IOPS between times 150–250 seconds. During 
this period its arrival rate exceeds its long-term average, and violates the 
stipulated SLO based on the original W1 workload. The violation is relatively 
small and corresponds to less than about 10 percent of the entire trace.

First we will explore how Nested QoS isolates the bad regions of a workload 
where the instantaneous traffic rate exceeds stipulated SLO-based arrival rates. 
This isolation protects the good regions of the workload from the delay caused 
by the burst and maximizes the number of requests that meet their deadlines. 
A sever capacity of 276 IOPS is provided for all the three scheduling methods 
being evaluated.

Figure 10(a) shows the performance of the unmodified workload W1 using 
the three scheduling algorithms. As can be seen, with any of the schedulers 
more than 90 percent of the requests finish within the stipulated 50 ms 
response time bound. However, the picture changes significantly when a 
portion of the workload behaves badly. Figure 10(b) shows the response time 
distribution for the modified W1, which sends extra requests during the 
150–250-second interval. All methods show a degradation in performance in 
this situation, but the degradation is different in the three cases. Nested QoS 
still allows 90 percent of the requests to meet their 50 ms deadline; however 
pClock and WF2Q are noticeably degraded, and only about 76 percent of 
their requests meet the 50 ms deadline. The majority of requests that miss 
the deadline in the latter two schemes are delayed significantly, with response 
times exceeding 1 second. On the other hand, the roughly 10 percent of 
requests missing their deadline in Nested QoS still receive reasonable service 
and have response times roughly uniformly distributed between 50 ms and 
1 s, since they will be assigned to classes C2 and C3 before being relegated to 
best effort service. 

The measured response times during and after the badly-behaved region are 
shown in Figures 11(a) and (b) for the Nested QoS and pClock schedulers 
respectively. As can be seen, with Nested QoS most of the requests during 
this interval still meet their deadline, and only a few of them have longer 
response time. The well-behaved requests both before and after t = 150 s are 
not affected by the extra requests. In contrast, pClock delays all the requests of 
W1 not only during the interval (150–250)s, but all the way after the burst to 
about 270 s. This is because when the violation happens, Nested QoS diverts 
the extra requests to the higher level classes C2 and C3, isolating them from the 
well-behaved requests, allowing them to meet their guaranteed deadlines. 

“With Nested QoS most of the requests 

during this interval still meet their 

deadline.”

“Nested QoS diverts extra requests 

to higher-level classes, isolating them 

from the well-behaved requests.”
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Figure 10: Response time distribution for W1 (well-behaved) 
and W1 (with violation) with three scheduling methods: 
Nested QoS, pClock, WF2Q.
(Source: Rice University, 2012)

The performance of W2 is the same for both the original and the modified W1 
workload. We do not show the performance of W2 here because it is isolated 
from W1 as discussed in the next section. 
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guarantees the well-behaved part. However pClock delays all of 
W1’s requests from 150 s all the way up to 270 s.
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In general, Nested QoS outperforms the other two methods because of its 
ability to isolate the bad regions of a workload and protect subsequent well-
behaved portions from their effects. In contrast, traditional fair schedulers 
isolate workloads from each other but cannot protect a workload from its own 
bad behavior. Hence, a local violation in a small area of the workload can result 
in performance degradation over a sizable extended portion of the workload. 

“Nested QoS has the ability to isolate 

the bad regions of a workload and 

protect subsequent well-behaved 

portions.”
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Workload Isolation
Workload isolation is a basic requirement in shared server systems. In this 
experiment, we verify that Nested QoS can isolate well-behaved workloads from 
badly behaved ones. We look at the performance of the well-behaved workload 
W2 when W1 violates arrival requirements. A good method should insulate W2 
from the bad behavior of W1 and guarantee its performance. Figures 12(a) and 
(b) show the response time histogram of the badly behaved W1 and W2 with  
the three scheduling methods: Nested QoS, pClock, and WF2Q. Figures 12(c) 
and (d) show the response time cumulative distributions. We can see that  

“Workload Isolation is a basic 

requirement in shared server systems.”
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Figure 12: Response time distribution and CDF of W1, W2 with three scheduling methods: Nested QoS, pClock, and WF2Q 
(Source: Rice University, 2012)
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the well-behaved workload W2 is isolated from the bad behavior of W1. The 
performance of W2 does not change when W1 sends more requests. 

Evaluation of Adaptive Parameter Setting
In the section “Parameter Estimation,” we described an iterative procedure for 
selecting the token bucket parameters and estimating minimum capacities. 
Because of its fast convergence in determining the Nested QoS parameters, 
the method of parameter estimation described earlier can be used to adapt 
the capacity distribution from an elastic server, in response to changes in 
request arrival patterns. In this section we describe the results of dynamically 
setting Nested QoS token bucket parameters by profiling a short segment of 
a workload. For the experiment we used the first Financial Trace (FT) as the 
baseline. In order to emulate dynamic changes to the workload, the trace was 
speeded up twofold and threefold to obtain the modified traces FT2 and FT3 
respectively. 

Each workload consisted of first 100,000 requests from the original FT 
trace. This 100,000 request portion was split up into 10 segments of 10,000 
requests each. The first segment (“base FT trace”) was used a training 
segment for the remaining nine segments; the token bucket parameters 
were estimated by profiling this segment using the procedure described in 
“Parameter Estimation.” The entire trace was then simulated with these 
parameters, and the percentage of requests meeting their SLO-stipulated 
deadlines was measured. The results were then compared with the situation 
when the training was done statically based on the original, non-speeded-up 
baseline FT trace. For the experiment, the SLO required 90 percent of the 
requests workload to meet a 20 ms deadline and 95 percent to meet a 40 ms 
deadline. 

Figures 13 and 14 show the performance of FT2 and FT3 workloads in 
the two situations. In Figure 13(a) the percentage of requests meeting the 
20 ms deadline is shown for FT2 in two cases: (1) when the parameter 
estimation is done statically (static trained) and (2) when the training is 
dynamic based on the first segment of FT2 (dynamically retrained). With 
the static training the percentage of the workload complying with the 
SLO is between 70 percent and 85 percent compared to 90 percent in the 
adaptive case. Note that the SLO was set to achieve 90 percent in Class 1, 
so the adaptive training based on the first segment does a good job in this 
case. Figure 14(a) shows a similar comparison for FT3. In this case, the 
difference between the static and adaptive cases is more pronounced, with 
only between 50 percent and 70 percent of the requests meeting the SLO 
deadline for the static case versus the expected 90 percent in the adaptive 
case.

“The parameter estimation method 

can be used to adapt the capacity 

distribution in response to changes in 

request arrival patterns.”
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Figure 13: Workload FT2. Percentage of requests meeting (a) Class 
1 response time limit of 20 ms and (b) Class 2 response time limit of 
40 ms. SLO objectives are 90% for Class 1 and 95% for Class 2. 
(Source: Rice University, 2012)

Figures 13(b) and 14(b) show the results for Class 2, where a similar 
behavior between static and adaptive parameter settings can be observed. 
We also conducted experiments with different response times, 10 ms 
and 20 ms for classes 1 and 2 respectively, which are not reported. The 
trends in that case were similar though the differences were smaller. The 
smaller differences are understandable: the stricter response times of this 
experiment translated to having a larger baseline capacity (in order to 
meet the more stringent deadlines). The larger baseline capacity provided 
greater slack for the statically trained parameter set, and therefore produced 
smaller differences than the experiment reported in Figures 13 and 14.
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Figure 14: Figure 14: Workload FT3. Percentage of requests meeting 
(a) Class 1 response time limit of 20 ms and (b) Class 2 response time 
limit of 40 ms. SLO objectives are 90% for Class 1 and 95% for Class 2
(Source: Rice University, 2012)

Summary
The Nested QoS model provides several advantages over usual SLO 
specifications: (1) large reduction in server capacity without significant 
performance loss (2) accurate analytical estimation of the server capacity 
(3) providing flexible SLOs to clients with different performance/cost 
tradeoffs, and (4) providing a clean conceptual structure of SLOs using 
workload decomposition. Our work continues to explore relating workload 
characteristics with the nested model parameters, generalized parameter 
estimation and optimization within the framework of adaptive control theory, 
alternative scheduling strategies for multiple decomposed workloads to exploit 
statistical multiplexing, and Linux block-level implementation.



Intel® Technology Journal | Volume 16, Issue 2, 2012

Nested QoS: Adaptive Burst Decomposition for SLO Guarantees in Virtualized Servers   |   179

Acknowledgements
The research of H. Wang and P. Varman was partially supported by NSF 
Grants CNS 0917157 and CCF 0541369.

References
[1]	 Storage Performance Council (UMass Trace Repository), 2007.  

http://traces.cs.umass.edu/index.php/Storage.

[2]	 SNIA: IOTTA Repository, 2009. http://iotta.snia.org.

[3]	 J. C. R. Bennett and H. Zhang. WF2Q: Worst-case fair weighted fair 
queuing. In INFOCOM 1996, pages 120–128, March, 1996.

[4]	 C.-S. Chang. Performance guarantees in communication networks. 
Springer-Verlag, London, UK, 2000.

[5]	 R. L. Cruz. Quality of service guarantees in virtual circuit switched 
networks. IEEE Journal on Selected Areas in Communications, 
13(6):1048–1056, 1995.

[6]	 S. Golestani. A self-clocked fair queuing scheme for broadband 
applications. In INFOCOMM 1994, pages 636–646, April 1994.

[7]	 P. Goyal, H. M. Vin, and H. Cheng. Start-time fair queuing: a 
scheduling algorithm for integrated services packet switching networks. 
IEEE/ACM Transactions on Networking, 5(5):690–704, 1997.

[8]	 A. G. Greenberg and N. Madras. How fair is fair queuing. Journal 
ACM, 39(3):568–598, 1992.

[9]	 A. Gulati, C. Kumar, and I. Ahmad. Storage workload characterization 
and consolidation in virtualized environments. In Workshop on 
Virtualization Performance: Analysis, Characterization, and Tools 
(VPACT ’09), 2009.

[10]	 A. Gulati, A. Merchant, and P. Varman. pClock: An arrival curve based 
approach for QoS in shared storage systems. In ACM International 
Conference on Measurement and Modeling of Computer Systems 
(SIGMETRICS), June 2007.

[11]	 A. Gulati, A. Merchant, and P. Varman. mClock: Handling throughput 
variability for Hypervisor IO scheduling . In 9th USENIX Symposium 
on Operating Systems Design and Implementation (OSDI), Oct. 2010.

[12]	 J.-Y. Le Boudec and P. Thiran. Network Calculus: a theory of deterministic 
queuing systems for the Internet. Springer- Verlag, Berlin, Heidelberg, 2001.

[13]	 L. Lu, K. Doshi, and P. Varman. Workload decomposition for QoS in 
hosted storage services. In 3rd Workshop on Middleware for Service 
Oriented Computing (MW4SoC), 2008.



Intel® Technology Journal | Volume 16, Issue 2, 2012

180   |   Nested QoS: Adaptive Burst Decomposition for SLO Guarantees in Virtualized Servers

[14]	 L. Lu, K. Doshi, and P. Varman. Graduated QoS by decomposing 
bursts: Don’t let the tail wag your server. In 29th IEEE International 
Conference on Distributed Computing Systems, (ICDCS), June 2009.

[15]	 L. Lu, K. Doshi, and P. Varman. Decomposing workload bursts for 
efficient storage resource management. IEEE Transactions on Parallel 
and Distributed Systems, 22(5), 2011, pp. 860–873.

[16]	 D. Narayanan, A. Donnelly, E. Thereska, S. Elnikety, and  
A. Rowstron. Everest: Scaling down peak loads through i/o off-loading. 
In 8th USENIX Symposium on Operating Systems Design and 
Implementation (OSDI), 2008. 

[17]	 K. I. Park. QoS in packet networks. Springer, USA, 2005.

[18]	 H. Sariowan, R. L. Cruz, and G. C. Polyzos. Scheduling for quality of 
service guarantees via service curves. In Proceedings of the International 
Conference on Computer Communications and Networks,  
pages 512–520, 1995.

[19]	 J. Turner. New directions in communications (or which way to the 
information age?). Communications Magazine, IEEE 24 (10), pp. 8–15.

[20]	 B. Urgaonkar, P. Shenoy, and T. Roscoe. Resource overbooking and 
application profiling in shared hosting platforms. In 5th USENIX 
Symposium on Operating Systems Design and Implementation 
(OSDI), 2002.

[21]	 H. Wang, and P. Varman, Nested QoS: Providing flexible QoS in 
shared IO environments, Usenix 3rd Workshop on I/O Virtualization, 
(WIOV’11), June, 2011. 

[22]	 H. Wang and P. Varman, Flexible resource sharing in virtualized 
environments, ACM International Conference on Computing 
Frontiers, (CF’11), May, 2011. 

Author Biographies
Hui Wang is a graduate student at Rice University. Her research interests 
are in QoS scheduling, storage, and distributed and operating systems. She 
received her bachelor’s degree from Shandong University and master’s degree in 
computer science from Rice University.

Kshitij Doshi is a principal engineer in the Software and Services Group 
at Intel Corporation. He has a Bachelor of Technology degree in electrical 
engineering from Indian Institute of Technology (Mumbai), and a master’s 
degree and PhD in computer engineering from Rice University. His research 
interests span operating systems, optimization of performance, power, and 
energy in enterprise solutions, database architectures, and virtual machines. He 
can be contacted at kshitij.a.doshi@intel.com



Intel® Technology Journal | Volume 16, Issue 2, 2012

Nested QoS: Adaptive Burst Decomposition for SLO Guarantees in Virtualized Servers   |   181

Peter Varman is a professor in the Departments of Electrical and Computer 
Engineering and Computer Science at Rice University. From 2002 through 
2005 he was Program Director for computer systems architecture at the 
National Science Foundation in Washington DC. During 2011-2012 he was 
a scholar in residence at VMware in Palo Alto, where he worked on issues 
relating to resource management for virtualization and cloud computing. 
He has also held short-term visiting positions at IBM T.J. Watson and IBM 
Almaden Research Labs, Duke University, and NTU, Singapore. His research 
interests span the areas of virtualization and res ource management, cloud 
computing, computer architecture, storage systems, and applied algorithms. 
He earned a Bachelor’s of Technology degree in electrical engineering from IIT, 
Kanpur and a PhD from the University of Texas at Austin.



182   |   Self-Organizing System-on-Chip Design

Contributors

Intel® Technology Journal | Volume 16, Issue 2, 2012

Self-organization in the context of computing systems refers to a technological 
approach to deal with the increasing complexity associated with the deployment, 
maintenance, and evolution of such systems. The terms self-organizing and 
autonomous are often used interchangeably in relation to systems that use 
organic principles (self-configuration, self-healing, and so on) in their design and 
operation. In the specific case of system on chip (SoC) design, organic principles 
are clearly in the solution path for some of the most important challenges in areas 
like logic organization, data movement, circuits, and software[47]. In this article, 
we start by providing a definition of the concept of self-organization as it applies 
to SoCs, explaining what it means and how it may be applied. We then provide a 
survey of the various recent papers, journal articles, and books on the subject and 
close by pointing out possible future directions, challenges and opportunities for 
self-organizing SoCs. 

Introduction
Autonomic computing has been a popular research topic, especially since 
the publication of the influential paper by Kephart and Chess[19] outlining 
IBM’s vision on how to deal with the increasing complexity associated with 
the deployment, maintenance, and evolution of enterprise systems. In a 
broader context, autonomic computing describes the application of advanced 
technology to the management of advanced technology[10]. Dobson et al.[10] 
include organic computing, bio-inspired computing, self-organizing systems, 
ultra-stable computing, autonomous and adaptive systems, to name a few, 
under the term autonomic.

In the specific case of SoC, organic principles (self-configuration, self-healing, 
and so on) have been proposed by various authors to deal with the enormous 
challenges of designing and actually delivering reliable, high performance and 
ultra low power systems as process variations, transient faults (soft errors), 
thermal effects, and aging become harder to manage with advanced process 
technology. Sander et al.[35] point to a recent shift in manufacturing technology 
from zero defects to a design for yield approach, accepting functional 
imperfection will happen. Variations in SoC occur at various temporal and 
spatial scales. Bull, et al.[3] classify various types of variations ranging from static, 
local inter-die process variations to fast, dynamic variations that develop in a few 
cycles or less, such as PLL jitter and capacitive coupling effects. Fault-tolerant 
circuits, buses, and caches are used to cope with these variations. Terms like 
resiliency, redundancy, adaptivity, approximate arithmetic, error detection, 
and error correction appear often in connection with these techniques. 
Constantinescu, et al.[6] warn about new error sources related to the increased 

“Organic principles are in the solution 

path for important challenges in logic 

organization, data movement, circuits, 

and software.”
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complexity of the fault-tolerance mechanisms themselves, which manifest in 
particular when circuits operate in “corner cases,” which are difficult to validate.

In the next section, the concept of self-organization is introduced, noting 
when it is useful for designing systems. The section “Proposals” presents a 
review of the literature, divided into four subsections, dealing with reliability, 
survivability, power/performance optimization, and temperature control. 
Future directions and open challenges are outlined in the section “Future 
Directions.” This is followed by a section where we draw some conclusions. 
Table 1 shows a glossary of terms used throughout the paper.

Acronym Description 

TDDB Time-dependent dielectric breakdown 
NBTI Negative bias temperature instability 
HCI Hot carrier injection 
RAMP An architecture-level model to track microprocessor lifetime 

reliability 
Vdd, Vth and 
Fmax 

Supply voltage, threshold voltage and frequency of an 
electronic component, respectively 

IPC Instructions per cycle 
EDP Energy-delay product 
MTTF Mean time to failure 
DTM Dynamic thermal management 
DVFS Dynamic voltage and frequency scaling 
BIST Built-in self test 
CMP Chip multiprocessor 
FPGA Field-programmable gate array

Table 1: Glossary
(Source: Intel Corporation, 2011)

Self-Organization
Self-organization is a property evident in several biological systems, such as 
insect colonies, flocks of birds, and schools of fish. It can be characterized as a 
global pattern (organization) emerging from local interactions (self ).

For engineering purposes, self-organization can be used as a guiding principle 
to design and control systems[13]. Components are designed in such a way 
that they will find solutions to problems as they interact. This is useful for 
“non-stationary” problems, where the requirements are dynamic and thus the 
predictability is limited. As elements interact, they self-organize adaptively to 
novel circumstances, ideally matching the scale(s) at which problems change.

Adaptation can be seen as a useful change in a system as a response to 
perturbations. Living systems are constantly adapting to changes in their 
environment, so they have been a source of inspiration for engineering adaptive 
systems. Self-organization is one method that can be used to build adaptive 
systems.

“Self-organization is a property 

evident in several biological systems, 

such as insect colonies, flocks of birds, 

and schools of fish.”

“For engineering purposes, 

self-organization can be used as a 

guiding principle to design and 

control systems.”
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Proposals
Figure 1 shows a hierarchical organization of the survey. The four sections on 
reliability, resiliency, power/performance optimization and temperature control 
correspond to the main objectives of most of the self-organizing proposals 
found in the literature. Some of the specific techniques, like task scheduling 
or voltage/frequency scaling, were used to achieve more than one of the above 
mentioned objectives.

Reliability

Survivability Task scheduling

Supervised self-organization

Aging compensation Adaptive body bias

Voltage, frequency scaling

Trust management
Holistic monitoring

SMART architecture

Resiliency

Degeneracy Isolation, deactivation &

re-routing

Early life failure  

detection

CASP

Error detection
Canary flip flops

Shadow registers

Power/performance

optimization

Adaptive body bias

Voltage, frequency scaling

Workload classification

Microarchitecture

reconfiguration

Scheduling

Temperature

control

Voltage, frequency scaling

Scheduling

Instruction level parallelism

Figure 1: A hierarchical organization of the survey
(Source: Intel Corporation, 2011)

Reliability
Srinivasan, et al.[39] proposed lifetime reliability awareness at the 
microarchitectural level to qualify processors instead of the traditional approach 
that uses a worst-case scenario. Reliability targets are satisfied by adapting 
dynamically to usage. They contributed an architectural level model (RAMP) 
that tracks reliability and a dynamic management technique that works in 
parallel with DTM. RAMP includes models of all the critical failure mechanisms 
(electromigration, stress migration, TDDB, and thermal cycling) to compute a 
processor’s MTTF as a function of temperature and utilization. They divided the 
processor in various structures and applied RAMP to each (floating-point unit, 
register files, branch predictor, caches, load-store queue, and so on). A complete 

“Reliability targets are satisfied by 

adapting dynamically to usage.”
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simulation tool would use the RAMP models plus a timing simulator (workload 
behavior) and power/thermal simulators (power/thermal profiles).

Survivability
Feng, et al.[12] proposed a reliability-centric scheduling system called Maestro, 
which assigns threads to cores in a CMP system based on estimated damage 
extent within the cores and thermal footprints of the running applications, 
shown in Figure 2. They reported significant peak temperature variations  
(10 percent to 40 percent) between processors and large variations (10 percent 
to 20 percent peak deltas) across modules inside the processors when running 
various fixed point and floating point SPEC2000 workloads (http://www.spec.
org). These variations are expected to have a drastic impact on mean time to 
failure. The scheduler requires circuit level sensors for health monitoring that 
explicitly exploit statistically measurable degradation in timing paths at the 
microarchitectural level. The authors focused on two failure mechanisms, namely, 
NBTI and TDDB. They examined three scheduling policies: 1) a greedy policy 
that preserves even the weakest core; 2) an adaptive policy that promotes survival 
of the fittest by maximizing lifetime reliability of the CMP; and 3) a naïve round-
robin policy as baseline. A 38 percent improvement in CMP lifetime and up to 
180 percent improvement in lifetime throughput was observed in Monte Carlo 
simulations of a 16-core CMP using either the adaptive or greedy policies.

Figure 2: Block diagram of the Maestro introspective reliability management system
(Source: HiPEAC 2010[48])
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“Circuit level sensors for health 

monitoring explicitly exploit 

statistically measurable degradation 

in timing paths at the 

microarchitectural level.”
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Aging Compensation
Sander, Bernauer, and Rosentiel[35] described a framework for self-adaptation 
in SoC towards electronic system level reliability. They considered the effect on 
reliability due to the characteristics of real applications, the environment and 
user behavior, on one hand, and the correct modeling of physical effects, on 
the other. 

Kumar, et al.[23] used adaptive body bias (BB) to compensate the effect that 
bias temperature instability has on circuit performance over its lifetime. 
Previously ABB had only been used for leakage/performance tradeoffs. Their 
adaptive technique was based on a lookup table to map Vdd and BB values to 
the cumulative time of NBTI stress (aging) on the circuit. BB can be used to 
speed up a circuit as it ages by decreasing its Vth and thereby using the available 
leakage slack, at a cost of a substantial power overhead, particularly towards the 
end of life of the device when higher BB values are needed (to recover speed). 
Hence adaptive BB is used in combination with adaptive supply voltage to 
minimize the total power overhead (active power plus leakage) such that the 
delay at any time is less than or equal to a delay specification for the device.

Khan and Kundu[21] proposed a framework to manage transistor aging, where 
the chip not only tests itself but also adapts to the changing conditions, 
providing higher performance for all applications during the initial years 
and graceful performance degradation as the device ages. The system level 
architecture is based on virtualization of a system reliability manager that
senses the impact of power delivery, temperature, and the workload on the 
hardware platform, and subsequently responds by adapting the supply voltage 
and/or operating frequency, as shown in Figure 3. Accurate estimates of 

“Adaptive body bias (BB) compensates 

the effect that bias temperature 

instability has on circuit performance 

over its lifetime.”

“A system reliability manager 

senses the impact of power delivery, 

temperature, and the workload on the 

hardware platform.”
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Figure 3: System reliability manager architecture
(Source: DATE09[49])



Intel® Technology Journal | Volume 16, Issue 2, 2012

Self-Organizing System-on-Chip Design   |   187

Fmax and Vth are essential, hence the software periodically runs system BIST and 
stress tests to update these values as the device ages. Simulations performed 
by the authors showed that worst-case MTTF rate of change is related to the 
workloads’ thermal and performance behavior. They proposed using workload 
information to determine when the reliability manager should be invoked to 
reconfigure the system.

Li, et al.[24] described a framework for diagnostics called CASP (concurrent 
autonomous chip diagnostics using stored test patterns). Among the key 
features of CASP claimed by the authors are that it’s designed for minimal 
performance and power impact so it can provide high test coverage with 
zero downtime (it can diagnose one or more cores as the others continue to 
operate). CASP was designed to take advantage of existing design-for-test 
functionality and for minimal design flow impact (on-line test controller, 
small off-chip buffer, architecture supplement to isolate core under test). 
The authors proposed using CASP to implement self-healing transistor 
aging, using common tune parameters (supply voltage and clock frequency) 
to compensate for aging and prevent delay- and fault-induced errors due 
to aging, maximize computational power efficiency (total number of clock 
cycles over lifetime divided by energy) and/or maximize system lifetime. For 
example, increasing supply voltage results in decreasing delay, increasing 
leakage current, and increasing aging. On the other hand, decreasing 
frequency results in decreasing bit error rate, decreasing power, and decreasing 
performance.

Yi, et al.[43] proposed an aging test strategy including delay measurement and 
adaptive test scheduler. They considered path delay increase as a function of 
time caused by NBTI, HCI, TDDB, electro- and stress-migration, and delay 
measurements as a function of voltage and temperature.

Trust Management
Pionteck and Brockmann[30] presented a methodological framework for trust 
management, consisting of architecture and specific methods. According to 
the authors, uncertainty (untrustworthiness) affecting SoC dynamic thermal 
and reliability management is caused by: 1) unpredictability of workloads, 
for example due to load changes and local loops for error compensation, 
2) sensors, 3) actors, 4) thermal dissipation, 5) the environment,  
6) physical models used for tuning thermal management systems, and  
7) by changes in chip properties (aging). Their proposed SMART architecture 
complements the traditional functional units with so called robustness 
units (RUs), which can be local, regional, or global, interconnected through 
a robustness network, as shown in Figure 4. Readings from sensors in an 
RU come supplemented with a trust level that varies between zero and 
one, representing the reliability of the sensors. Similarly, their proposed 
framework attaches to each actuator in an RU a trust level that is applied 
when predicting its influence on the hardware. Global RUs address global 
goals, like survivability and triggering actions to fulfill outer power and 
performance goals. The authors proposed fuzzy control techniques for trust 
level processing and robust learning classifier systems extended with the 
integration of dynamically changing trust levels.

“Increasing supply voltage results in 

decreasing delay, increasing leakage 

current, and increasing aging.”

“Decreasing frequency results in 

decreasing bit error rate, decreasing 

power, and decreasing performance.”
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Legend:
Functional Unit

Local Robustness Unit

Regional Robustness Unit

Global Robustness Unit

Robustness Network

Figure 4: Schematic chip structure
(Source: DSN-W 2010[50])

Kramer, et al.[22] proposed a cooperative, coordinated, system-wide monitoring 
infrastructure for self-organizing, massively parallel and heterogeneous systems, 
shown in Figure 5. Their proposed infrastructure is divided into low level 
monitoring (LLM) using associative counter arrays (ACA) to track any number 
of concurrent events, and high level monitoring (HLM) for data analysis based 
on an adaptive, rule-based approach. ACA provide cache-inspired uniform 
event coding to characterize the state of the system or application behavior. 
Their proposed organic processing cells include one LLM instance directly 
interfaced with an ACA in each component (such as CPU, cache, and so on). 
At a higher level, an HLM network consumes data from various LLM sources, 
using event lists for state evaluation and classification. Evaluation rules for state 
classification in the HLM nodes are derived at runtime and can be updated or 
new rules added at any time. 

Gherman, et al.[14] devised delay control structures and architectural support 
for concurrent self-test of in-order pipelines based on the opportunistic  
re-execution of operations during naturally occurring stall cycles.

Resiliency
Resiliency can be understood as the ability of systems of withstanding 
perturbations. In other words, a resilient system will continue to function in 
spite of changes to the system.

“Resiliency can be understood as the 

ability of systems of withstanding 

perturbations.”
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Degeneracy
Degeneracy is the ability of performing the same function by different 
components of a system. 

Polack[31] proposed adopting self-organizing techniques that previously had 
been successfully used in robot swarm organisms to achieve survivability in 
computer architectures. Survivability means that the system continues to 
provide some functionality in the presence of faults. This is possible because 
at least some of the robots (or the elements of the system) that are structurally 
different are able to perform the same function via degeneracy. Hence, 
critical elements adopt a survival mode under certain conditions. The system 
determines what functions can continue based on known relationships between 
health and tasks. Furthermore, immune-inspired fault tolerance systems in 
robotic swarm organisms are lightweight, making them attractive for use in 
self-organizing computer architectures.

Collet, et al.[5] described a self-organization approach for multicore chips 
in massively defective technologies designed to detect and tolerate both 
permanent faults (which escaped self-diagnosis) and transient faults on line. 
They assumed a system with possibly hundreds of uniform cores, caches, 
and routers where not only permanent defects but latent defects (time-
dependent device degradation and material wear out; system failure at any 
time in the field) are significant. Self-organization makes sense in this case 

“Degeneracy is the ability of 

performing the same function by 

different components of a system.”
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because increased complexity results in reduced (external) controllability 
and observability. They considered a 2D array topology (symmetrical) with 
cores, routers, and caches, focused on architectural fault-tolerance, given 
the fault-tolerance hierarchy of circuits, architecture, scheduling, allocation, 
and execution. The self-organizing approach included self-test, autonomous 
isolation, auto-discovery of valid routes, and deactivation of defective modules. 
The self-diagnosis sequence goes from interconnects to routers to cores. Their 
main contribution was that they separated the self-testing of interconnects and 
routers from the software-based self-test of cores. They used diagnosis based on 
BIST using a test data generator, test error detector, and a maximal aggressor 
fault model to detect crosstalk defects.

Gupta, et al.[15] created StageNet, which is a reconfigurable and adaptable 
substrate that replaces direct connections at pipeline stage boundary by 
crossbars, thereby enabling creation of logical cores (called StageNetSlices) by 
grouping pipelines in different ways. The proposed infrastructure can be used, 
for example, to isolate failures by routing around defects.

Early Life Failure Detection
Li, et al.[25] proposed concurrent autonomous chip self-test using stored test 
patterns as an efficient on-line self-test strategy for uncore (logic blocks including 
cache, DRAM and I/O controllers) that can be used both for aging and early life 
failure detection (see also the earlier section “Aging Compensation”). According 
to the authors, their method exhibits a high test coverage (with extensive patterns 
in off-chip nonvolatile storage), minimal system level impact (<1 percent area 
and power, <3 percent performance) with a frequent self-test (1 second every 
10 second). As opposed to a self-test targeting aging where self-test can be 
invoked every day, targeting early life failures (infant mortality) requires much 
more frequent testing, which poses a performance impact challenge.

Error Detection
Hashimoto[16] constructed an adaptive speed control with timing error 
prediction using canary flip flops (FFs), shown in Figure 6. When timing 
margin decreases, timing errors occur in canary FFs before the main FFs capture 
a wrong value, thanks to a buffer delay. A warning signal is then generated 
that speeds up the affected circuit; conversely the circuit is slowed down if no 
warnings occur. There is a tradeoff between the optimum number of canary 
FFs and area overhead. The author used a Markov chain model, taking into 
account the probability of path activation to determine timer error rate and 
power dissipation. The concept was tested in a silicon prototype where a timing 
warning signal was connected to a speed control unit which selected the body 
bias voltage applied to a Kogger-Stone adder circuit. Insertion location and time 
delay of a canary FF was configurable as it was determined that the critical path 
is not always the best location for optimum tradeoff between power and area. A 
46 percent power savings using adaptive speed control was observed compared 
to traditional guard-banded design for worst case.

Zeppenfeld, et al.[45] proposed an autonomic SoC architecture using a fault-
tolerant CPU data path, a learning classifier table (see also the section “Power 

“The self-organizing approach 

included self-test, autonomous 

isolation, auto-discovery of valid 

routes, and deactivation of defective 

modules.”

“Targeting early life failures (infant 

mortality) requires much more 

frequent testing, which poses a 

performance impact challenge.”
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and Performance Optimization”), and an autonomic element interconnect 
structure, shown in Figure 7. The authors analyzed many types of error 
detection (based on hardware redundancy, self-checking arithmetic circuits and 
time redundancy) in terms of footprint, timing, and transient error detection 
capabilities and the possibility of intellectual property reuse. They selected a 
shadow register technique with error correction that doesn’t require a complete 
pipeline flush but involves a constant pipeline stall penalty of two cycles. 

“A shadow register technique with 

error correction that doesn’t require a 

complete pipeline flush but involves a 

constant pipeline stall.”
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Minimum cycle overhead was considered critical to prevent the spreading of 
effects of an errant operation to other parts of the autonomic SoC. 

Power and Performance Optimization
Puschini, et al.[32] considered the following global multiple objective 
optimization problem: manage the power and temperature for hot spot 
reduction and performance control through task synchronization for a given 
application with functional dependencies in an MP-SoC with multiple 
processing elements, each of which includes processor, memory, and peripherals. 
Their proposed solution is to use DVFS for each tile computed at system 
level using game theory. Their design used processing elements connected via 
asynchronous network-on-chip with the required bandwidth and latency. They 
found that functional dependencies between tasks at the application level lead 
to processing element frequency adjustment to guarantee task synchronization. 
Hence, the tradeoff between temperature and task synchronization had to be 
considered when mapping applications to the MP-SoC.

Zeppenfeld, et al.[45] proposed a simplified form of learning classifier system
with a dynamically changing reward prediction, called a learning classifier 
table (LCT), which features a fast rollback actuation path from monitors to 
actuators. An aggregator on top of an autonomic element monitor generates a 
condensed monitor signal (necessary to cope with the rate of data capture) that 
is passed on to the learning classifier, which then generates the output that is 
fed to the actuator back in the functional element. The LCT consists of a list 
of condition, action fitness values corresponding to the rules of the learning 
system. The rule to apply is determined by weighted roulette wheel selection 
without explicit match set creation using a reservoir sorting algorithm. The 
goal of the methodology was to provide a balance between exploitation of 
learning and exploration. Hence, rule weighting in their proposed scheme 
is based solely on the predicted reward, which corresponds to the fitness of 
each rule. The use of genetic operators to modify the rules (as used in full-
fledged extended classifier systems) was proposed for a future investigation. 
Synthesis of the LCT in a Xilinx Virtex-II Pro FPGA revealed less than 
5 percent overhead compared to the standard Leon 3 processor core. To test 
the LCT they implemented a simulation in software (not in the FPGA) of 
a networking application that transferred packets from main memory to 
Ethernet MAC for transmission. Initially, all tasks were scheduled in one core 
(of the Leon 3 cores). The objective function to be minimized using the LCT 
consisted of a weighted sum of deltas in frequency, utilization, and workload 
for all the cores. They used a token ring structure to furnish the autonomic 
system’s interconnect needs. Sharing global data between autonomic elements 
was shown to be advantageous in their simulations. Going forward, the 
authors identified challenges in scalability, reliability, and LCT timing. For 
example, actuator actions take time to percolate through the system at various 
rates. So, when many autonomic elements are simultaneously generating 
actions, hierarchical interconnect structures simplify the learning process at 
the cost of possibly converging to local minima. This suggested a hierarchical 

“Functional dependencies between 

tasks at the application level lead 

to processing element frequency 

adjustment to guarantee task 

synchronization.”

“Proposed a simplified form of 

learning classifier system with a 

dynamically changing reward 

prediction, called a learning classifier 

table (LCT).”
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topology with islands of autonomic elements using local token ring structures 
connected to form archipelagos and so on. The authors noted that constraints 
are necessary to ensure system reliability and fault tolerance. These constraints 
include guards on directly adjustable parameters (such as voltage and 
frequency) and hard and soft constraints on indirectly adjustable parameters 
(such as utilization and temperature). The authors also distinguished between 
application-aware constraints (such as packet forwarding rate and video 
frame processing rate) and application-independent constraints. To cope 
with constraints, LCT proposes relative actions, preventing large jumps in 
parameters. Margins are still necessary between soft and hard constraints. 
Finally, the authors noted that the application of overlapping rules helps to 
reduce lookup latency, but its effect on learning behavior and system stability 
needs to be further studied.

Yoon, et al.[44] described an adaptive granularity memory system targeting 
improvements in throughput and power efficiency. The proposed system 
combines compiler, OS, cache hierarchy, and memory controller (for example, 
sub-ranking) tools to optimize the channel according to the granularity 
(locality) of the data. The authors reported gains in throughput and power 
efficiency of 44 percent and 46 percent, respectively, with respect to standard 
double data rate memory systems optimized for coarse grained access.

Yao, et al.[42] described an adaptive depth pipeline technique called pipeline 
stage unification (PSU) that according to the authors, provides lower power 
under light loads, is fast switching (order of nanoseconds) and uses a low 
cost method to categorize program behavior at high granularity. Based on 
processor IPC to categorize loads, the method achieved 13.5 percent EDP 
reduction compared to the same processor without PSU. For comparison, the 
authors noted that voltage changes in DVFS incur execution delays of tens of 
microseconds. PSU bypasses inactive parts of pipeline registers and use shallow 
pipelines under light loads (up to 5 times shallower compared to baseline 
with 20 stages). PSU latency can be broken down into a pipeline flush and a 
frequency scaling, which together translate into tens of cycles. It was observed 
that optimal depth (in terms of energy and performance) varies per application; 
hence, PSU uses an adaptive depth with three stage unification degrees. Based 
on the analyses presented by the authors, CPI (inverse of IPC) is a linear 
function of pipeline stages (CPI 5 CPI0 1 beta 3 n), with beta dependent 
on the application. In a similar way, power consumption can also be expressed 
as a function of pipeline stages. The analysis conducted by the authors showed 
that for large beta, shallower pipelines lead to improved EDP. Since CPI0 in 
their formulation is approximately constant across applications, relative beta 
for an application can be approximated as CPI/n, or (1/IPC)/n, which was the 
method used in their PSU implementation to categorize applications.

Ma, Wang, and Wang[26] proposed including L2 cache in partitioning a CMP 
chip level power budget based on workload characteristics, using a power 
capping algorithm. In their proposed scheme, performance contributed by 
each heterogeneous component needs to be measured dynamically, so that 

“PSU bypasses inactive parts of 

pipeline registers and use shallow 

pipelines under light loads.”

“Optimal depth (in terms of 

energy and performance) varies per 

application; hence, PSU uses an 

adaptive depth.”
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DVFS (per core) or cache resizing (which changes the number of active cache 
ways/lines/blocks) can be applied to enforce per component budget. According 
to the authors, CMP performance improves as function of power budget 
increase, for either core or cache, approximately as a linear or piecewise linear 
function. Hence, CMP performance in the short term can be approximated 
as the sum of the performance contributions from each component. They 
proposed using a recursive least squares estimator to calculate a performance 
contribution parameter vector for all the components. The resulting linear 
programming optimization problem to be solved was to maximize the sum of 
the performance contributions subject to the power budget of the whole chip. 
Power consumption could then be controlled using a proportional-integral-
derivative controller.

Temperature Control
Huang, et al.[17] argued in favor of considering temperature aware architectures 
all the way from the early design stages to end of life of the devices. They 
pointed out that, compared to power aware architectures, temperature depends 
on power density, is a nonlinear function of time (versus instantaneous), is 
most important when utilization is high, affects reliability (power swings 
due to power management), and generates hot spots. Temperature models 
are needed to account for effects such as leakage, thermal dissipation, and 
microarchitecture versus transistor level impact. Therefore, the choice of 
cooling solution affects the optimum processor architecture. The authors noted 
some of the challenges ahead. In particular, with respect to DTM, DVFS, and 
(core) hopping, there are well-established techniques. However, variability and 
accuracy of measurements are key issues that may negate the benefit of these 
techniques. The sizing of guard bands is another key issue, as it must account 
for many different failure mechanisms, such as timing errors, soft errors 
(thermal noise), excessive leakage, aging, and so on. Better modeling across 
multiple spatial and temporal scales is essential, according to the authors.

Coskun, et al.[7] investigated thermally-aware scheduling in MP-SoC. They 
proposed an OS-level solution that includes temperature measurements to 
decrease hot spots and temperature variations at reduced performance cost. 
The authors found that spatial temperature variations across the chip result in 
performance mismatches that lead to performance or logic failures. Timing 
failures result, for example, from NBTI and HCI. Circuit delays and voltage 
drop result from increasing circuit resistance associated with increasing 
temperature. The authors reported that raising temperature by 20°C resulted 
in a 5–6 percent increase in Elmore delay in interconnects, causing clock skew 
problems.

Mesa-Martinez, et al.[28] characterized various SPEC200x (http://www.spec.
org) applications based on several thermal metrics: 1) timing (maximum 
temperature and thermal gradient may cause throttling and skew/timing 
violations, respectively), 2) reliability (using RAMP to compute MTTF and 
average failures in time per block (architectural unit) weighted by area and 
added over all units), 3) energy (leakage based on the BSIM3 model described 

“Temperature depends on power 

density, is a nonlinear function of 

time (versus instantaneous), is most 

important when utilization is high.”

“Spatial temperature variations 
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mismatches that lead to performance 

or logic failures.”
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in the 1998 M98/51 technical report that can be found in http://www.eecs.
berkeley.edu/Pubs/TechRpts), 4) thermal time constant and 5) instructions per 
cycle (average and maximum).

Coskun, et al.[8] proposed a simulation framework that captures architectural 
level effects over tens of seconds or longer while also capturing thermal 
interactions among cores from scheduling policies. They found that different 
DTM techniques that provide nearly identical performance, power and peak 
temperature can differ by 2X in expected lifetime. Their model includes 
electromigration, TDDB, and thermal cycling. Lifetime based on this 
model was affected mostly by accounting (or not) for asymmetric thermal 
characteristics of cores (such as core location) and frequency of migration.

Reda, Cochran, and Nowroz[34] proposed a hard sensor allocation algorithm to 
determine the sensor locations where hot spots can be tracked accurately given 
a budget number of sensors. They further proposed a soft sensing technique 
that combined measurements from hard sensors in an optimal way to estimate 
temperature at any desired location.

Future Directions
Some general trends may be extracted from the various proposals reviewed 
in the previous section. Reliability and resiliency fall clearly in the domain of 
self-organizing systems. Self-test and self-healing are often cited as underlying 
control mechanisms. Survivability in the presence of variability, aging, and 
perturbations while maximizing lifetime throughput may be considered a main 
objective. Circuits and microarchitectural elements play a key role. Challenges 
have been identified in integrating circuit level and microarchitectural solutions 
for error detection and correction, fault isolation, and task scheduling under 
severe area, power, and performance constraints. Evolving models for aging and 
trust are critical to many of the proposed solutions.

Adaptive techniques are more commonly used for power, performance, and 
temperature control. However, the methods used are often the same ones 
(for example, DVFS, task scheduling) that are used for managing reliability 
and resiliency. In general, there is no silver bullet and tradeoffs must be made 
between reliability, power, performance, and temperature. The fact that there 
is not a single, static definition of performance complicates matters further. 
At a system level, we find increasingly heterogeneous solutions and strong 
interactions between the hardware, the operating system, and the running 
applications. Indeed, SoCs may be considered vertical systems. Constraints 
are necessary as the response times associated with typical control mechanisms 
(such as DVFS) are relatively slow, on the order of tens of microseconds. 
Scalability, reliability, and learning present important challenges.

With respect to temperature control, the choice of cooling solution has a 
large impact on power (for example, leakage), performance, reliability, and 
ergonomics. Maximum temperature (hot spot) and temperature gradients are 

“Survivability in the presence of 

variability, aging, and perturbations 

while maximizing lifetime throughput 

may be considered a main objective.”

“There is no silver bullet and tradeoffs 

must be made between reliability, 

power, performance, and temperature.”
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both important and difficult to measure in systems. Temperature sensors are 
generally not coincident with hot spot locations. Thermal models are therefore 
needed but time-dependent component variability and sensor/actuator 
accuracy must be accounted for. Guard bands are required to compensate for 
uncertainty in measurements and controls.

There are several open challenges in the use of self-organization to cope with 
the increasing complexity of SoC. Current approaches aim at increasing the 
adaptability, robustness, and survivability of systems. However, this comes at a 
certain cost, in the sense that additional components are required to deploy a 
self-organizing SoC.

For example, a naive attempt to increase robustness is with redundancy of 
components. Thus, if one component fails, duplicate copies can maintain the 
functionality. However, multiplication of entire circuits or chips also multiplies 
their cost, instead of exploiting multiple resources in parallel. More economical 
measures to increase robustness are being developed. 

Many approaches are inspired in living systems, since these exhibit the desired 
properties of engineered systems[40].

A list of some of the open challenges follows:

1.	 A formalization of the effect of different approaches in desired properties of 
adaptive and self-organizing SoC. 

2.	 Standardized performance measures for comparing different proposals.

3.	 Minimization of additional modules while increasing robustness.

4.	 Adaptation to different and changing physical properties of SoC from 
fabrication differences, from changes in temperature, and from aging.

5.	 General methodologies for designing self-organizing SoC, to be compared 
using 2.

Not only challenges can be envisaged, but also several opportunities. Self-
organizing SoC can contribute to the increase of reliability, performance, 
survivability, and robustness, while offering a reduction of power consumption, 
errors, and design time.

Conclusions
This article presented an overview of the literature related to self-organizing 
SoC. This literature was categorized in terms of reliability, resilience, power/
performance optimization, and temperature control. Each of these areas is 
relevant for producing self-organizing SoC, and should be considered in 
parallel. 

Building on the state of the art, a list of open challenges and several 
opportunities were mentioned. Future research is self-organizing SoC is 
promising to develop hardware of increased capacities.

“There are several open challenges in the 

use of self-organization to cope with 

the increasing complexity of SoC.”

“Self organizing SoC can contribute to 

the increase of reliability, performance, 

survivability, and robustness, 

while offering a reduction of power 

consumption.”
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We develop a hierarchical control framework for workload consolidation 
in virtualized environments. The hierarchy uses the concept of receding 
horizon control and comprises two levels: fully distributed controllers that 
independently optimize the CPU share provided to virtual machines (VMs) 
under their control, so that the system-wide CPU capacity is appropriately 
tuned to the incoming workload intensity; and a supervisory controller that 
reduces power consumption during periods of light workload by consolidating 
the workload on to fewer VMs and shutting down extra servers. We validate 
the framework on a heterogeneous cluster supporting three online services, 
showing that the system adapts quickly to dynamic workload changes and 
saves, on average, 20 percent in power-consumption costs over a three-hour 
period when compared to a system operating without dynamic control. The 
framework is quite scalable and accommodates the dynamic addition/removal 
of system components while maintaining overall system performance. 

Introduction
A preliminary version of this article appeared as a paper in the International 
Conference on Autonomic Computing (ICAC) titled “A distributed control 
framework for performance management of virtualized computing environments.”

Virtualization technology enables on-demand computing where resources such 
as CPU, memory, and disk space are allocated to applications as needed, based 
on the currently prevailing workload demand, rather than statically, based 
simply on the peak workload demand. By dynamically provisioning virtual 
machines (VMs) and turning servers on/off appropriately, data center operators 
can maintain the desired quality of service (QoS) while achieving higher server 
utilization and lower power consumption.

A promising method of automating system management tasks is to formulate 
them as online control problems in terms of cost/performance metrics[1][2]. 
Most proposed control architectures, however, are centralized designs aimed 
at managing the performance of a standalone server or a small-scale system 
comprising a few servers. Significant challenges must still be addressed to achieve 
real-time control of a large-scale computing system with multiple interacting 
components. For an optimization scheme to be of practical value in such a 
distributed setting, it must tackle the “curse” of dimensionality: the number 
of available tuning options is quite large and the corresponding search space 
grows exponentially with each new variable, making centralized controller 
designs intractable. Fortunately, control theory provides techniques that can 
reduce the computational burden of managing large-scale systems. Concepts 

“Operators can maintain desired QoS 

while lowering power consumption 

by dynamically provisioning VMs 

and servers to match the incoming 

workload.”

“Routine system management tasks 

can be formulated as optimal control 

problems and solved online.”

Rui Wang 
Drexel University

Nagarajan Kandasamy 
Drexel University 
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from approximation theory can be used to make relevant approximations when 
constructing dynamical models to predict system behavior and when optimizing the 
control variables issued to the system[3]. Another method is to structure controllers 
in decentralized fashion wherein the overall problem is decomposed into a set of 
simpler sub-problems and solved cooperatively by multiple controllers[4].

We develop and validate a control architecture for workload consolidation 
in virtualized computing environments using concepts from hierarchical and 
distributed control. Considering a heterogeneous cluster hosting multiple 
enterprise applications on VMs and processing a time-varying workload, the 
problem of interest is: (1) to maintain the applications’ response times under 
their respective thresholds (the QoS metric) by dynamically tuning the CPU 
shares provided to VMs so that the system-wide CPU capacity can handle 
the incoming workload intensity; and (2) to reduce power consumption by 
shutting down unneeded servers during light workload periods. This problem is 
decomposed via a control hierarchy as follows:

•• Controllers, implemented locally within each server, dynamically solve their 
respective subproblems of optimizing CPU shares to VMs under their control 
in a cooperative fashion such that the cluster as a whole offers the processing 
capacity needed to handle the workload intensity. Local controllers (LCs) are 
developed as non-communicating agents wherein each controller infers the 
actions of others in the cluster without explicitly exchanging messages. These 
fully distributed LCs comprise the L0 level of the control hierarchy. Each LC 
uses receding horizon (RH) control, a form of predictive control where the 
idea is to solve an optimal control problem over a given prediction horizon 
and then continuously extend this horizon forward[8].

•• Since LCs at the L0 level tune the CPU share of VMs to match the 
incoming workload, servers have spare processing capacity available during 
periods of light workload. A supervisory controller (SC), placed on top of 
the L0 level, uses this opportunity to increase server utilization and reduce 
energy consumption by consolidating the workload on to fewer VMs/
servers and shutting down unneeded servers. The SC comprises the L1 
level of the hierarchy. The control laws governing the SC are simplified 
to provide approximate solutions that the LCs can refine further; the SC 
predicts the future workload and decides only which servers to operate 
such that the cluster possesses enough processing capacity to satisfy this 
workload, leaving the LCs to fine-tune the CPU shares provided to 
individual VMs.

We validate the control framework on a heterogeneous cluster hosting three 
benchmark applications: Trade6, RUBBoS, and RUBiS. Experimental results 
demonstrate that the cluster, when subject to our workload traces and managed 
using the proposed approach, saves on average 20 percent in power-consumption 
costs over a three-hour period when compared to a system operating without 
dynamic control. The framework also shows excellent scalability and allows 
for the dynamic addition/removal of servers during system operation while 
maintaining the overall QoS.

“The workload consolidation 

problem is decomposed into simpler 

subproblems and solved by multiple, 

decentralized controllers.”

“Receding horizon control is used to 

solve the optimal control problem over 

a given prediction horizon.”
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The article is organized as follows. The next section, “Preliminaries,” introduces 
the testbed and the proposed control architecture. We develop the L0 and L1 
levels in subsequent two sections, “The L0 Control Level” and “The L1 Control 
Level.” Next, in the section “Experimental Results, the framework is validated, 
and we summarize our findings in the section “Conclusions.” 

Preliminaries
Figure 1 illustrates our system architecture, supporting three services, termed 
Gold, Silver, and Bronze. The Gold service is enabled by Trade6, a stock-trading 
benchmark. Trade6 resides in the IBM WebSphere* application server, which is 
hosted by VMs in the application tier. The Silver service is enabled by RUBBoS, 
a bulletin board application. The Bronze service is enabled by RUBiS, an auction 
site. The Silver and Bronze services each reside in the Apache application server 
hosted by VMs. We focus on resource provisioning within the application tier 
only, since this tier typically requires more CPUs than the database tier[5].
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Figure 1: The system architecture and the schematic of the local controller implemented on each server
(Source: Drexel University, 2012)

The application tier comprises four heterogeneous servers, each hosting three VMs. 
Virtualization is enabled by VMware’s ESX Server* and each VM is dedicated 
to supporting one of the three services. VMs residing on different servers but 
supporting the same service form a virtual computing cluster. The local controller 
(LC) on each server allocates CPU share (in GHz) to its VMs via the ESX server 
API. Referring to Figure 1, Server11 and Server12 are Dell PowerEdge* 2950 
machines with a total CPU capacity of 14 GHz; the per-VM CPU share ranges 
from 1.5 GHz to 5 GHz. Server21 and Server22 are PowerEdge 1950 machines 
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with a total CPU capacity of 11 GHz; the per-VM CPU ranges from 1.5 GHz to 
4 GHz. Servers in the database tier run SUSE Linux with DB2 or MySQL as the 
database. Each database is dedicated to a single service.

A workload generator sends a mix of requests to the applications, requiring both 
database reads/writes. Incoming requests to an application are dispatched to VMs 
within the corresponding virtual computing cluster in a weighted round-robin 
fashion with the weights proportional to CPU share, since a VM’s CPU share 
reflects processing capacity. At the start of each control step, an LC transmits its 
recent CPU-share decision to the dispatcher. 

Figure 1 also shows our hierarchical control solution comprising two levels:

•• L0 level: A fully distributed control structure where LCs on each server 
independently optimize the CPU share provided to VMs under their control 
to handle the incoming workload guarantee response-time requirements. 

•• L1 level: A supervisory controller (SC) that consolidates the workload and 
dictates which servers to turn on/off based on the system state and estimates 
of future workload intensity.

The SC and LCs cooperate to manage the cluster’s power consumption while 
satisfying QoS requirements. Since LCs tune the CPU share of VMs based on 
the workload intensity, servers have spare CPU capacity available during periods 
of light workload. The SC uses this knowledge to shut down servers not needed 
and consolidate the workload on to fewer servers. The SC operates on a longer 
timescale than LCs. The proposed scheme is highly scalable. First, the number 
of servers in the application tier can be increased without affecting the control 
structure. Secondly, an upper-level controller with essentially the same logic as the 
SC can be added on top to manage multiple L1-level server clusters by switching 
them on/off. This can be eventually extended to multiple levels for larger systems.

The L0 Control Level
Design of the L0 level uses this well-known property: given multiple subsystems 
whose local cost functions are quadratic and whose dynamics and operating 
constraints are uncoupled, having each subsystem independently optimize 
its local cost function can potentially achieve the global optimal[6][7]. The 
performance management problem considered here falls in this category. 
To improve the scalability of our framework, the LCs are developed as non-
communicating agents wherein the CPU capacity of other servers is inferred 
independently by each LC. Another issue is, if the LCs operate synchronously, 
they would observe the same external environment and system state, and take 
the same actions, causing the system to oscillate. Therefore, the LCs in our 
framework operate in an asynchronous fashion.

The scheme adopted by each LC, shown in Figure 1, follows receding horizon 
(RH) control. At time step k, the global request rate for all services, l, and the 
aggregate CPU capacity of other VMs in the virtual clusters co, are estimated 
over the prediction horizon h, and used by the system model to forecast future 

“Having each controller independently 

optimize its local cost function 

achieves the global optimal.”
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system states x̂. The optimizer then finds an optimal sequence of control actions, 
{ ( ) | [ , ]}c l l k k hs ∈ + −1 , representing CPU shares to VMs on this server in the 
next h steps. Then, only the first control action, c ks* ( ), is applied to the system 
and the rest are discarded. The process is repeated at step k + 1.

For a given application, the workload arrival rate l for the coming time step k 
is estimated by a Kalman filter[9] as λ̂(k). For a VM being offered a CPU share 
c (in GHz), we define the request rate it can handle while satisfying the desired 
response time as m ⋅ c, where m is a mapping factor. (The method used to obtain 
m is detailed in the section “Experimental Results.”)

From an LC’s perspective, the total CPU share offered by a virtual cluster 
for an application comprises two terms: the local VM’s CPU share cs, and co, 
the aggregate CPU share of other VMs in the virtual cluster. The LC needs 
to estimate co at step k without communicating with other LCs. Let ls(k − 1) 
and lo(k − 1) denote the request rate to the local VM and other VMs during 
the previous time step k − 1, respectively, and let cs(k − 1)

 
and co(k − 1) be the 

corresponding CPU shares. Then, the following condition holds:

λ λ λ
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The LC is aware of l(k - 1), ls(k - 1), and cs(k - 1), and so co(k - 1)
 
can be 

computed using the above condition. An EWMA filter then estimates ˆ ( )c ko  in 
the coming step k as

ˆ ( ) ( ) ( ) ˆ ( ),c k c k c ko o o= ⋅ − + − ⋅ −η η1 1 1 � (1)

where h is a smoothing factor.

For the LC, the dynamics at time k of a virtual cluster supporting an application 
can be represented as

ˆ( ) ( ) [ ˆ( ) ˆ ( ) ( )],x k x k T k m c k m c ks o s+ = + ⋅ − ⋅ − ⋅1 λ � (2)

where Ts is the sampling period and x̂ is the state of the application representing 
the accumulated error between λ̂  and m c m co s⋅ + ⋅ˆ . So, the LC aims to drive 
ˆ( )x k +1  to 0 by tuning cs so that the response time is satisfied while minimizing 

the corresponding CPU share.

Based on equation 2, the LC constructs a model that includes all the applications 
hosted on the server as

ˆ( ) ( ) ( ),x A x B uk k k+ = ⋅ + ⋅1 � (3)

where

A I B T I u c= = ⋅ − − = ( ), [ , diag( ), diag( )], ( ) [ ˆ , ˆs i im m k kλ oo sc( ), ( )] ,k k T  

the subscript i  =  g, s, b denotes the Gold, Silver, and Bronze applications, respectively, 
mi denotes the corresponding mapping factor, and T denotes transpose. To ensure 
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QoS while reducing the CPU share, the LC poses this problem as a quadratic 
programming (QP) problem, maintaining both vectors x and u near their set 
points x- and u-  , respectively, along the one-step prediction horizon:

min [( ( ) ( )) ( ( ) ( ))] ( ( ) ( )x x P x x u ul l l l k kT

l k

k

− − + −
=

+

∑
1

)) ( ( ) ( ))T k kQ u u− � (4)

where

P = p ⋅ diag(pi),    Q = q ⋅ I.

The variables p and q are weights reflecting the tradeoff between application 
performance and CPU share, and pi reflects the relative priority of application i. 
The optimizer must also consider constraints on the upper and lower bounds on a 
VM’s CPU share, and the fact that the sum of CPU shares offered to VMs within 
the host must not exceed the total CPU capacity. Solving equation 4, the LC 
obtains the optimal CPU share vector c ks* ( )  and applies it to VMs in the server.

The L1 Control Level
Powering up servers, instantiating the VMs, and finally launching applications, 
incurs significant dead time, typically ranging from five to ten minutes. So, if 
the SC needs a usable server during step k + 1, it must power on that host in 
advance; that is, at the start of step k. Such actions require predictive control 
where the decision must be made in anticipation of future workload intensity. 
The SC uses two-step RH control and its sampling time is set as 15 minutes so 
as to make timely but not overly frequent switching decisions. Figure 2(a) shows 
the overall scheme comprising these steps: 

•• With λ̂(l ) and the system model, a QP optimizer finds a sequence of 
control vectors, C (l ), representing the aggregate CPU share needed by the 
virtual clusters along the prediction horizon.

“Powering up servers and 

instantiating VMs requires making 

control decisions in anticipation of 

future workload intensity.”

Figure 2: The control scheme of the supervisory controller. To improve scalability, servers are logically grouped 
based on their processing capabilities.
(Source: Drexel University, 2012)
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•• The second control vector in C (l   ), denoted as C *(K + 1), acts as a 
constraint to a mixed-integer nonlinear programming (MINLP) problem 
that determines the set of servers to power on/off.

The first step adopts the method detailed in the previous section. From the 
SC’s viewpoint, the dynamics of a virtual computing cluster supporting one 
application at step k is

ˆ( ) ( ) [ ˆ ( )],x k x k T k m C ks+ = + ⋅ ( ) − ⋅1 λ � (5)

where Ts is the sampling period of the SC, C is the aggregate CPU share of the 
whole virtual cluster, and x̂ represents the accumulated error between λ̂  and m ⋅ C.

Thus the system model that includes all applications is

ˆ( ) ( ) ( )x Ax Buk k k+ = +1 � (6)

where

A I B I u C= = ⋅ − =, [ , diag( )], ( ) [ ˆ( ), ( )]T m k k ks i
Tλ .

The SC aims to guarantee the QoS and minimize the system wide CPU capacity. 
So it keeps x and u near the set points x- and u-  , respectively, along the two-step 
prediction horizon:

min [( ( ) ( )) ( ( ) ( ))] [( ( ) (x x P x x u ul l l l l lT

l k

k

− − + −
=

+

∑
2

))) ( ( ) ( ))]T

l k

k

l lQ u u−
=

+

∑
1

� (7)

The aggregate CPU share provided to service i should obey a lower and upper 
bound (as determined by the capacity of the cluster), and the total CPU share 
to all the services should not exceed the cluster’s maximum capacity. Solving 
equation 7, the QP optimizer gets C *(K + 1), the desired aggregate CPU share 
for the cluster at step k + 1.

A MINLP optimizer then guarantees C *(K + 1)
 
by determining the optimal 

set of servers to power on/off. To improve scalability, we logically group the 
heterogeneous application servers based on their CPU capabilities as shown in 
Figure 2(b) and solve this problem in two steps. We first determine the number 
of servers to keep operational in each group by optimizing:

min ( )
n hj j

j

c n⋅∑ � (8)
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n N

c c c

c c
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j j
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






∑ 1)

� (9)

Here, the subscript i denotes applications, and j = 1, 2 denotes Group 1 and 
Group 2, respectively. Nj is the maximum number of hosts in group j, while nj is 
the number of hosts to keep operational, and chj is the maximum CPU capacity 
of each host. Since power consumption depends on operating frequency,  
∑ j(chj ⋅ nj) approximates the power consumed by all operational hosts. A feasible 
CPU share to a VM supporting application i and residing in Group j is denoted 
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as cij while clj and cuj are the lower and upper bounds. (Note that cij is simply 
a value assumed by the SC to ensure a feasible solution. The optimal CPU is 
determined by the LCs in a finer timescale.) The last constraint in equation 9 
ensures that the aggregate CPU share offered by the operational VMs in each 
virtual cluster is no less than the desired C *(K + 1). After nj is obtained, the 
optimizer decides the status of individual hosts in each group by optimizing:

min ( )
s jk jk

k

s s−∑ – 2

� (10)

subject to

s

s n
jk

jk jk

∈

=





∑
 { , }0 1

� (11)

Here, s‒jk and sjk represent the current and next state of the kth host in Group j: 
sjk = 0/1 denotes that the host is off/on and so (sjk −  s‒jk   )

2 captures the corresponding 
switching cost. After sjk is obtained, the SC applies it to the hosts.

Experimental Results
The framework developed in the previous two sections has been validated on 
the testbed shown in Figure 1. The LCs in our experiments have a sampling 
period of two minutes and their starting times are each staggered by 30 seconds 
for asynchronous execution. The SC has a sampling period of 15 minutes and 
implements a policy to avoid frequent switching activity: once a server is turned 
on, it is held operational for at least four time steps (one hour); and if a server is 
turned off, it remains powered down for at least two time steps. In equation 1, 
h is set to 0.1 to focus more on the past observations. In equations 4 and 7, pi 
are set to 5, 3, and 1, respectively, to prioritize the three services, and p  = 2 and 
q  =  1, giving greater priority to satisfying the response time over assigning lower 
CPU shares. Finally, both x-  and u-   are set to 0. 

Profiling experiments were performed to obtain the mapping factor mi used in 
equations 3 and 6. Consider the response times achieved by a VM hosting the Gold 
service as a function of CPU share and request arrival rate. If the VM is assigned 
a fixed CPU share of 3 GHz, then for an arrival rate under 65 req/s we achieve 
a relatively steady response time below 200 ms. Once the rate exceeds 65 req/s, 
the response time jumps dramatically, indicating an unstable system. So, a 3 GHz 
VM can accommodate approximately 65 req/s. This procedure is repeated with 
different CPU shares. Since a stable response time of below 200 ms is achievable 
in our experiments, it is set as the QoS for Gold service. The Silver and Bronze 
services show similar profiles and their QoS goals are set as 250 ms and 300 ms. By 
analyzing the request rates accommodated by a VM as a function of CPU share, the 
factor is obtained as 20.8, 14.5, and 12.8 for each of the three services, respectively.

We drive the testbed using the dynamic workload shown in Figure 3(a). The 
workload mix for the three services has a 50:50, 80:20, and 90:10 ratio of 
database reads to writes, respectively. (Experiments with other workload traces 
are qualitatively similar.) Figure 3(b) shows the switching behavior of the servers 
as dictated by the SC. About 1800 secs into the run, the SC estimates that 
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three servers are sufficient to process the incoming workload and powers down 
Server22. At 3600 secs, the supervisory further fine-tunes the cluster’s CPU 
capacity to match the workload intensity by powering up Server22 (with a 
CPU capacity of 11 GHz) and turning off Server12 (with a slightly higher CPU 
capacity of 14 GHz).

Figure 3: (a) The workload supplied to the cluster (b) switching behavior 
of the servers as commanded by the SC
(Source: Drexel University, 2012)
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Figure 4 shows the aggregate CPU share provided to the Silver and Bronze 
virtual clusters in response to the workload traces. (The Gold cluster behaves 
similarly.) The plots show that even when the workload intensity is highly 
variable and bursty, each virtual cluster’s CPU capacity tracks this variability 
well. Note that the CPU capacity dips briefly when servers are turned off by the 
SC but then bounces back quickly (within two LC control steps) since other LCs 
appropriately tune the CPU shares of their VMs. 

Next, we characterize the performance of individual VMs in the Bronze virtual 
cluster. We denote a VM supporting the Bronze service and residing in the jth 
server (j ∈ (1, 2, 3, 4)) as VMbj, and the corresponding LC as LCk. Referring to 
Figure 5, we note that though the Bronze workload trends upward, a total CPU 

Figure 4: The aggregate CPU share provided by LCs to Silver and 
Bronze virtual clusters in response to the workload
(Source: Drexel University, 2012)
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capacity of less than 6 GHz is sufficient until 1800 sec. So, each LC provides the 
VM with the minimum 1.5 GHz CPU. At 1800 sec, VMb4 leaves the system 
as Server22 is switched off by the SC causing a dip in the total CPU capacity, 
and VMb4’s workload is distributed to other VMs resulting in transient spikes in 
response times. Meanwhile, LC1 estimates that the arrival rate is trending upward 
and infers that the current CPU capacity of the Bronze cluster is insufficient. 
So, it increases VMb1’s CPU share properly; LCs managing VMb2 and VMb3 
behave similarly as well. VM switching activities also happen at 3600 and  
7200 seconds, and are handled appropriately by the LCs as expected. During the 
entire experiment, the LCs cooperate very well and the response time is maintained 
mostly under 300 ms with very few QoS violations, as shown in Table 1. 

Control type Services QoS violations Power savings

Gold 23 (1.91%)

Practical Silver 15 (1.25%) 506 Watth
Bronze 41 (3.41%) (20%)
Gold 58 (4.82%)

Oracle Silver 35 (2.91%) 759 Watth
Bronze 30 (2.49%) (30%)

Table 1: Performance of practical and oracle controllers.
(Source: Drexel University, 2012)

Our final tests were aimed at comparing the practical controller implementation 
against an “oracle” with perfect knowledge of other controllers’ actions and 
future workload arrivals at both the L1 and L0 levels. As Table 1 shows, the 
practical controllers maintain a very low percentage of QoS violations, and 
save, on average, 20 percent in power consumption at the application tier 
when compared to a system operating without dynamic control where servers 
are always powered on. (The power savings achieved, of course, also depend 

“The control scheme saves 20 percent 

in power consumption costs while 

incurring few QoS violations.”
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on the specific workload traces.) When compared with the oracle, the practical 
ones achieve higher QoS satisfaction but less power savings. This is because 
the Kalman filters slightly overestimate the workload to cover the variability, 
making the LCs more generous when assigning CPU shares and the SC more 
conservative when turning off servers. The oracle does not use prediction and is 
more accurate when allocating CPU shares and switching servers, saving about 
30 percent in power consumption. 

Our scheme is an attractive option for controlling large systems. Since each 
LC is only responsible for VMs residing in a single server, the corresponding 
execution time is only 0.01 seconds; for a sampling period of 120 seconds, the 
control overhead is 0.008 percent. Moreover, the execution time of the SC as 
a function of cluster size is small as well: an SC managing 80 servers incurs a 
control overhead of 1.949 percent for a sampling time of 900 seconds and only 
6 percent when managing 100 servers.

Conclusions
We have developed a two-level framework to manage the performance/power 
of virtualized computing environments using concepts from hierarchical and 
distributed control. We have validated the control framework on a cluster of 
heterogeneous servers hosting multiple applications. Experimental results show 
that, the structure adapts quickly to dynamic workload changes, guarantees QoS 
most of the time, and saves, on average, 20 percent in power consumption costs. 
The framework is quite flexible in that it can scale up to multiple levels and 
tolerate the dynamic addition/removal of system components while maintaining 
the overall system performance. 
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