
Intel® Technology Journal | Volume 16, Issue 2, 2012

Publisher	 Managing Editor	 Content Architect
Richard Bowles	 Stuart Douglas	 Rahul Khanna
		 Mohan J Kumar

Program Manager	 Technical Editor 	 Technical Illustrators
Stuart Douglas	 David Clark	 MPS Limited

Technical and Strategic Reviewers
Balint Fleischer
Rahul Khanna
Mohan J Kumar
Kshitij Doshi
Christian Le
John Ping
Mahesh Natu
Rafael De La Guardia
Kai Li
Mariette Awad
Patrick Yin. Chiang
Huaping Liu

Intel® Technology Journal | 1

Intel Technology Journal

Intel® Technology Journal | Volume 16, Issue 2, 2012

Copyright © 2011-2012 Intel Corporation. All rights reserved.
ISBN 978-1-934053-48-5, ISSN 1535-864X

Intel Technology Journal
Volume 16, Issue 2

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical,
photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either
the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center,
222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4744. Requests to the Publisher for permission should be addressed to the
Publisher, Intel Press, Intel Corporation, 2111 NE 25th Avenue, JF3-330, Hillsboro, OR 97124-5961. E-Mail: intelpress@intel.com.
This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold with the understanding
that the publisher is not engaged in professional services. If professional advice or other expert assistance is required, the services of a competent
professional person should be sought.
Intel Corporation may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the presented
subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied, by estoppel or
otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights.
Intel may make changes to specifications, product descriptions, and plans at any time, without notice.
Fictitious names of companies, products, people, characters, and/or data mentioned herein are not intended to represent any real individual, company,
product, or event.
Intel products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications.
Intel, the Intel logo, Intel Atom, Intel AVX, Intel Battery Life Analyzer, Intel Compiler, Intel Core i3, Intel Core i5, Intel Core i7, Intel DPST, Intel
Energy Checker, Intel Mobile Platform SDK, Intel Intelligent Power Node Manager, Intel QuickPath Interconnect, Intel Rapid Memory Power
Management (Intel RMPM), Intel VTune Amplifier, and Intel Xeon are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the
United States and other countries.
Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as
SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those
factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated
purchases, including the performance of that product when combined with other products.

For more complete information about performance and benchmark results, visit www.intel.com/benchmarks
†Other names and brands may be claimed as the property of others.

This book is printed on acid-free paper.

Publisher: Richard Bowles
Managing Editor: Stuart Douglas

Library of Congress Cataloging in Publication Data:

Printed in China
10 9 8 7 6 5 4 3 2 1

First printing: June 2012

2 | Intel® Technology Journal

Intel® Technology Journal | Volume 16, Issue 2, 2012

Intel® Technology Journal | 3

Notices and Disclaimers

ALL INFORMATION PROVIDED WITHIN OR OTHERWISE ASSOCIATED WITH THIS PUBLICATION INCLUDING, INTER ALIA, ALL SOFTWARE
CODE, IS PROVIDED “AS IS”, AND FOR EDUCATIONAL PURPOSES ONLY. INTEL RETAINS ALL OWNERSHIP INTEREST IN ANY INTELLECTUAL
PROPERTY RIGHTS ASSOCIATED WITH THIS INFORMATION AND NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE,
TO ANY INTELLECTUAL PROPERTY RIGHT IS GRANTED BY THIS PUBLICATION OR AS A RESULT OF YOUR PURCHASE THEREOF. INTEL
ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THIS INFORMATION
INCLUDING, BY WAY OF EXAMPLE AND NOT LIMITATION, LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR THE INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT ANYWHERE IN THE WORLD.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and
MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results
to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that
product when combined with other products.

For more information go to http://www.intel.com/performance

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These
optimizations include SSE2, SSE3, and SSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any
optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors.
Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for
more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED,
BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN
INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT.

A “Mission Critical Application” is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death. SHOULD YOU
PURCHASE OR USE INTEL’S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND
ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST
ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS’ FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY
CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION,
WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL
PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features
or instructions marked “reserved” or “undefined”. Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities
arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata, which may cause the product to deviate from published specifications.
Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.
Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-4725, or
go to: http://www.intel.com/design/literature.htm

Intel® Technology Journal | Volume 16, Issue 2, 2012

4 | Intel® Technology Journal

Table of Contents | 5

Intel® Technology Journal | Volume 16, Issue 2, 2012

Articles

Foreword... 7

Autonomic Foundation for Fault Diagnosis .. 8

Coordinated Optimization: Dynamic Energy Allocation in Enterprise Workload ... 32

A Robust Autonomic Framework for Memory Thermal, Power, and Throughput Management 52

Fuzzy Logic: Adaptive Fan Speed Control Methodology .. 82

A Novel Control Design Approach for Server Subsystems: The Concept of Active Disturbance
Rejection and a Case Study ... 98

Asymmetrical and Lower Bounded Support Vector Regression for Power Prediction ..118

Wireless Interconnects for Future Computing Systems ... 134

Nested QoS: Adaptive Burst Decomposition for SLO Guarantees in Virtualized Servers 156

Self-Organizing System-on-Chip Design .. 182

Workload Consolidation in Virtualized Computing Systems via Hierarchical Control ... 202

INTEL® TECHNOLOGY JOURNAL
Exploring Control and Autonomic Computing

Intel® Technology Journal | Volume 16, Issue 2, 2012

6 | Intel® Technology Journal

Intel® Technology Journal | Volume 16, Issue 2, 2012

Foreword | 7

IBM launched the Autonomic Computing (AC) initiative in October of 2001 as a call to action to address the massive
complexity of information systems. The thesis was that the rate of advance of information technology was increasingly
challenged by the complexity of deploying and operating useful information systems. The irony is that it is a problem born
out of success: exponential increases in processor power, storage density, and communication speeds over the prior two decades
had enabled incredible price performance improvements which, in turn, increased the appetite and demand for information
technology. The concern was validated by numerous studies that indicated data center managers were typically spending over
70 percent of their budgets on maintenance and operations, severely limiting the ability to deploy new and better systems. The
problem was simply stated as: “. . . the growing complexity of the I/T infrastructure threatens to undermine the very benefits
information technology aims to provide”1 and the response required was “. . . to design and build computing systems capable of
running themselves, adjusting to varying circumstances, and preparing their resources to handle most efficiently the workloads
we put upon them.”

At the time, the initiative was met with great fanfare from the press and industry analysts as well as major technology companies
and academia. The technical community developed key architectural paradigms, open standards, and models of autonomic
behavior for components and subcomponents as well as distributed systems as a whole. Nowadays the term autonomic computing
is rarely heard in information technology conferences, press, and analyst reports. Clearly, it is no longer the industry buzz word
of the day, which raises the questions: Was it just hype? A passing fad?

The answer is a resounding “No!” Continued focus and achievement in autonomic computing is alive and well in both the
information technology industry as well as academia. The discipline of AC is a key, underlying technology in a wide range
of industry initiatives, from hardware to software and from components to vast distributed systems. Perhaps the most visible
example is cloud computing whose very viability depends upon self-managing technologies that enable the massive scale and
dynamic operations inherent in deploying cloud computing. Sustained focus on self-management, higher levels of automation,
and attacking complexity remains critical for the ongoing advancement of information technology.

I can think of no better demonstration of the ongoing health of autonomic computing than this issue of the Intel Technology
Journal. The core concept of AC asserts that the key principles must be applied at every level of systems, from low level circuitry
to end-to-end systems. As a leading provider of processing and communications technology, Intel shows in these articles AC at
work across its broad spectrum of technology with impressive results. Applications of AC as diverse as fault diagnosis in circuitry,
energy and power optimization, automated mechanical controls, chip design, wireless communications, and workload and
resource management are presented. As a major force in the world of technology, Intel’s continued commitment to this arena is
welcome news for consumers of information technology, which really includes all of us.

Alan G. Ganek
Information Technology Consultant
Formerly:
   Chief Technology Officer, IBM Software Group
   Vice President, Autonomic Computing, IBM
May 2012

Foreword
Alan G. Ganek
Information Technology Consultant

1Autonomic Computing Manifesto, IBM Research, October 2001

8 | Autonomic Foundation for Fault Diagnosis

Contributors

Intel® Technology Journal | Volume 16, Issue 2, 2012

Increased integration, high speed interconnects, and new technologies like
corrupt data containment are making fault diagnosis more challenging in Intel®
Xeon® processor based server platforms. At the same time, users are expecting
higher reliability, availability, and serviceability from Intel Xeon processor
based systems. This article highlights some of these challenges in fault isolation
and proposes an autonomic framework based on fault diagnosis capability of
current and the future generations of the Intel server platforms.

Introduction
Autonomics is about components that manage themselves. The modern data
center is a very complex, dynamic, and heterogeneous environment. Autonomic
computing (AC) concepts have their roots in the biological systems and
suggest a way to deal with such complexity. As a result, the concept of
the autonomic data center generates lot of excitement in the industry. For
example, automation is one of the three elements of Intel’s Cloud 2015 Vision[1]
and autonomics is a key component of automation. A true autonomic data center
would be one that could operate itself such that it would meet stated business
goals. Such a data center must translate business goals into an expected state
and monitor the system state. If the observed state does not match the expected
state, it generates and executes remediation plans as needed. Self-managing data
centers reduce operational costs by minimizing human intervention. Designing
a true autonomic data center is a very ambitious undertaking and must be
decomposed into smaller problems. Generally, autonomic systems are said to have
the following four attributes: self-configuration, self-optimization, self-protection,
and self-healing. The self-healing aspect covers fault diagnosis and appropriate
recovery actions. This article focuses on the fault diagnosis aspect and autonomic
infrastructure built around fault diagnosis.

A modern data center consists of thousands of compute nodes (servers) and
storage units that are stitched together by a network fabric. These building
blocks are also complex systems themselves. For example, a server system may
contain multiple processors with several cores, gigabytes of memory, high
performance I/O cards and many software components. The horizontal nature
of the computer industry means that these hardware and software components
are sourced from multiple vendors. It is virtually impossible to ensure that a
system as complex as the data center will be error free. Much attention has
been given to being able to predict failures[2,3], but even the best predictive
failure analysis (PFA) cannot predict all failures in a modern data center. As a
result, system reaction to a failure is very important. After an autonomic system

“Self-managing data centers reduce

operational costs by minimizing

human intervention.”

Mahesh Natu
Data Center and Connected Systems
Group, Intel Corporation

Narayan Ranganathan
Data Center and Connected Systems
Group, Intel Corporation

Anil Agrawal
Data Center and Connected Systems
Group, Intel Corporation

Autonomic Foundation for Fault Diagnosis

Intel® Technology Journal | Volume 16, Issue 2, 2012

Autonomic Foundation for Fault Diagnosis | 9

fails, it must be possible to correctly diagnose the fault and fault diagnosis
must, therefore, be an essential part of data center automation. The sources of
failures include hardware, software, and operator errors. Hardware errors can
be attributed to design, production, environmental, or aging factors. Advance
detection of errors when the system is operational can reduce the downtime by
scheduling a preventive maintenance. While advance detection is important, it
is also required that the analysis take into account the root cause (source) of the
failure that may not be isolated during the observed warning or failure state.

Fault diagnosis generally consists of the following three essential tasks[4]:

•• Fault detection: Detection of the occurrence of faults in the functional
units, which lead to undesired or intolerable behavior of the whole system

•• Fault isolation: Localization of the fault to, say, a component. In
some literature, the terms fault isolation and fault diagnoses are used
interchangeably.

•• Fault analysis or identification: Determination of the type, magnitude and
cause of the fault. Determine whether the fault is transient or permanent.
This phase also involves root cause.

Identification of a failing component allows timely recovery via replacement,
either automated or manual. In autonomic computing parlance, this is an
example of self-healing. Self-healing is the ability of a platform to effectively
recover when a fault occurs. This self-healing can be either reactive or
proactive. A reactive self-healing platform attempts to correct or isolate a fault
once it has occurred. If a hard memory error can be isolated to a memory rank,
a platform can map out the particular memory DIMM allowing the system
to continue functioning or alert the data center administrator that the faulty
DIMM needs to be replaced. Accurate fault diagnosis reduces the mean time
needed for repair (MTTR) and thus increases system availability. The output
of fault diagnosis can be utilized to drive changes to the design of the system or
the failing component in a proactive manner.

From an autonomic computing perspective, the modern data center calls for a
hierarchical system model where the top level autonomic elements themselves
are constructed from smaller autonomic elements and so on. A data center that
is manageable relies on autonomic computing, server and networking building
blocks that are able to perform fault isolation. These building blocks in turn
require autonomic capabilities in their ingredients. Since Intel processors
provide the brains for the majority of servers and storage units, Intel is
embedding capabilities in these processors that improve fault isolation of these
systems. This article covers autonomics embedded in Intel processors that aid
in fault isolation.

Background
Autonomic computing provides a framework for self-configuration and
self-healing. Fault diagnosis, specifically, in-field diagnosis, has received a
lot of attention, such as, for example, Microsoft WHEA, APEI specification

“While advance detection is important,

it is also required that the analysis

take into account the root cause.”

“Self-healing is the ability of a

platform to effectively recover when a

fault occurs.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

10 | Autonomic Foundation for Fault Diagnosis

as defined by ACPI industry standard[5], Oracle FMA, and various BIST
techniques. This article attempts to connect autonomics techniques to fault
diagnosis. Fault diagnosis capability is maturing and the second generation
of Intel Xeon processors with integrated IBIST logic is being deployed
now[6]. Higher core counts and a higher level of integration within the next
generation of Intel processors continue to drive the need to build advanced
autonomic fault diagnosis hooks. Such capabilities will help in improving
the fault prediction capabilities and minimizing the time required for remote
diagnostics.

Despite best efforts, hardware components do fail in the field. The objective of
autonomic fault diagnosis is to establish the baseline (what is normal), monitor
fault symptoms, detect errors, identify failed components, plan and execute
service calls before an unplanned system failure occurs or to minimize service
outage.

Figures 1 and 2 illustrate this concept using the autonomic computing
framework at two levels. Figure 1 represents a data center (or a server pool
within a data center) view. A data center, especially a cloud, can be abstracted
as a provider of multiple services with mutually agreed upon service levels. As
a result, data center level monitoring often boils down to measuring the service
levels and determining if they meet the goals. If the service level falls below
expectations, the data center automation software can examine server health
logs and software error logs to determine the potential cause and work around
it; possibly by finding an unused server to host the service. In order to manage
complexity, data center level software needs to treat much of the individual
node as a black box. In other words, more efficient management is possible
if data center automation software can presuppose that the individual servers
have autonomic capabilities such as the ability to isolate faults to an individual
Field Replaceable Unit (FRU). Such a server is represented in Figure 2. The
monitoring phase makes use of extensive error detection circuitry in the
processor and other components. The section “Error Detection and Reporting”
describes this circuitry in detail. The analysis phase examines the contents of
error log registers and diagnoses the fault. Diagnosis includes determining
whether the fault is permanent or not. The section “Challenges” goes over some
of the challenging fault diagnosis scenarios. The planning and execution phases
can attempt to work around permanent failure by various methods. If the
server contains redundancy, the failing component can be mapped out on the
fly. If the server does not contain redundancy, it may be possible to map out
the component by rebooting in a degraded mode. If neither option is available,
the system can be brought offline until the failing part is manually replaced by
a technician.

“Higher core counts and a higher

level of integration within the next

generation of Intel processors continue

to drive the need to build advanced

autonomic fault diagnosis hooks.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

Autonomic Foundation for Fault Diagnosis | 11

Figure 1: Autonomic foundation for fault diagnosis – data center
context
(Source: Intel Corporation, 2012)

Managed Data Center

Analysis
(Software and

Hardware Error
logs)

Plan (identify
new service

host, estimate
capacity needs)

Knowledge
Execution

(migrate service,
add capacity)

Monitor
(Soft and

Hard Service
Failures)

EffectorsSensors

Figure 2: Autonomic foundation for fault diagnosis – server view
(Source: Intel Corporation, 2012)

Managed Server Platform

Analysis
(Fault Diagnosis)

Plan
(service calls,

Predict Failure)

Knowledge

Execution
(Field

Replacement,
map-out)

Monitor
(Corrected and

uncorrected
errors)

EffectorsSensors

Terminology
In order to expand further it is important to define a few key terms such as
failure, fault, and error. We borrow this terminology from Salfner[2].

Failures are commonly defined as follows: a system failure occurs when the
delivered service deviates from the specified service.

Failures are observable by the user, which can either be a human or another
machine. Prior to observing a failure, things may go wrong inside the system,
but as long as it does not result in corrupted output, there is no failure.

“A system failure occurs when the

delivered service deviates from the

specified service.”

“Failures are observable by the user,

which can either be a human or

another machine.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

12 | Autonomic Foundation for Fault Diagnosis

Faults on the other hand are the root cause of failures and are defined to be
a defective (incorrect) state. Often faults remain undetected for some time.
Once a fault has become visible it is called an error. Often errors are called a
manifestation of faults. Figure 3 shows the relationship between faults, errors,
and failures in the context of a managed server.

“Once a fault has become visible it is

called an error.”

Figure 3: Relationship between fault, error, and failure
(Source: Intel Corporation, 2012)

Observation

Detection

U
no

bs
er

va
bl

e
S

ta
te

O
bs

er
va

bl
e

S
ta

te

Auditing Fault

Managed Server Platform

Processors Memory I/O Devices Power
Distribution

Thermal/cooling
sub-system

Service Failure or
Degradation

Fatal or
Catastrophic Error

Transient
Fault

High Energy
particle strike

Unstable
Environment

Marginal
HW design

Incorrect
Design

Component
Defect

Operator
Mistake

SW Programming
Mistake

Soft
Fault

Permanent
Fault

Intermittent
Fault

Soft
ErrorTransient Error

Service
Failure

Miscellaneous

The key point is that faults are unobserved defective states. Faults can be made
visible through any of the following three stages:

•• Auditing (CRC, parity, checksums of data structures)

•• Detection (various types of errors: corrected, recoverable, fatal) – Detection
gets a lot closer to the source of a fault and is more precise in nature
compared to symptoms.

•• Monitoring symptoms – Symptoms, by their very nature, provide hints
and are much less precise than detection. Monitoring symptoms becomes
important when the ability to observe raw error sources is limited. Intel
Xeon processors strive to provide firmware and software with good
detection capabilities and thus minimize reliance on symptoms monitoring.

“Faults are unobserved defective states.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

Autonomic Foundation for Fault Diagnosis | 13

Such a design leads to better fault diagnosis. Due to this de-emphasis on
monitoring, Figure 3 does not include a symptom monitoring block for
clarity. However, there are error scenarios that are not handled by detection.
For example, an ROB timeout (see the section “Instruction Retirement
Watchdog Timeout”) can be indicative of a faulty interconnect or faulty
hardware or a software bug.

A good example for this is memory fault: consider a fault where one of the
DRAM devices on a DIMM has failed. If read/write operations do not access
that DRAM device content, the fault remains unobserved. Auditing would
make it visible. Memory patrol scrubbing in Intel Xeon processors is an
auditing technique. The memory patrol scrubbing engine walks through the
entire memory in the background. Scrubbing would bring the device failure
to light. In absence of ECC, such auditing would result in an uncorrected
error and a system failure would occur. If features such as ECC and Single
Device Data Correction are implemented (self-healing capabilities), the
system can work around a manifestation of this fault. In all these cases, Intel
Xeon processors detect and log the error. Once several DRAM devices have
failed, and an attempt is made to read data from it, an uncorrected error is
detected. In the case of “Independent memory channel” mode, this would
lead to system failure. In case features like mirroring are implemented (called
a self-configuring feature), then the desired service of data delivery can still be
fulfilled and hence no failure occurs.

Another interesting aspect of the precise definition of fault, error, and failure
is that usually there is no one-to-one mapping among faults and errors: several
faults may result in one single error or one fault may result in several errors.
The same holds for errors and failures: some errors result in a failure and some
errors do not. Even more complicated are cases where some errors only result in
a failure under special conditions, and some faults may cause failures directly.
Moreover, some faults remain inactive for the entire system lifetime.

For this reason, two distinct areas of research have evolved: root cause analysis
and failure prediction. Having observed some misbehavior by one of the means
shown in Figure 3, fault diagnosis tries to identify the fault that caused an error
or failure, while failure prediction tries to assess the risk that the misbehavior
will result in future failures. Fault isolation is similar to root cause in that it
attempts to localize the source of failure to a specific component or module in
the system.

Fault Isolation Capabilities of Intel® Xeon®
Processor Based Platforms
Since the launch of Intel® Xeon® processor 5500 family products (code
name Nehalem), Intel has been leading the industry in delivering efficient
performance (per watt and per dollar) and scalable platforms. Besides higher
core count and innovative power management, another dimension of Intel
innovation is a drive towards higher level of integration (such as integrated

“Memory patrol scrubbing in Intel

Xeon processors is an auditing

technique.”

“usually there is no one-to-one

mapping among faults and errors.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

14 | Autonomic Foundation for Fault Diagnosis

memory controller, graphic controller, and I/O module) within the same
processor package. Besides the benefits of a higher level of integration, there
is a challenge to overcome—a higher level of integration can lead to a higher
probability of fault and reduced observability for platform debugging and fault
isolation. Future process-shrink and operating voltage reduction will make
the fault isolation even more challenging. In order to address this challenge,
more sophisticated error handling capabilities will be required at the silicon
level to improve the fault isolation capability, thus reducing the downtime and
thereby improving the availability and serviceability. After successful launch
of Nehalem product family, the Intel Xeon processor E7 product family was
released with even more advanced RAS features addressing this challenge[7].
Intel has pursued a three-pronged strategy when it comes to fault isolation:

•• Enhancements in error detection and reporting – This covers machine
check architecture, memory error reporting, and I/O error reporting. These
capabilities allow software to capture detailed system state at the time of
error. From this state, software can localize the fault to a component and
attempt root cause analysis. This topic is covered under in the section
“Error Detection and Reporting.”

•• Improvements in diagnostics capabilities – These include interconnect tests
like IBIST. Software can trigger these on a failing system to get a more
accurate diagnosis. The section “Interconnect Diagnostics” describes IBIST.

•• Drive new standards that enable multiple software components to interact
and share knowledge – Platform firmware and the operating system
have visibility into different parts of the system. Platform firmware has
a better understanding of the physical aspects (for example, types of
DIMMs), whereas the operating system has more knowledge of the logical
aspect (memory page allocation). The Firmware First model[5] enables a
hierarchical error detection model that benefits the system. The section
“Error Handling Software Models” goes over these.

This section first provides a review of the error classification, then describes
the various error handling capabilities that exist in current generation of Intel
Xeon processors targeted for compute infrastructure (such as cloud computing,
high performance computing, and mission critical computing). It also draws a
parallel between the Intel Xeon and Intel® Itanium® error handling architecture
and highlights a few key challenges faced by the Intel Xeon processor
architecture as Intel drives towards a higher level of integration with every
generation of process shrink.

Error Classification
Errors can be classified within two broad categories: detected errors and
undetected errors (Figure 4). Undetected errors are important because none
of the error handling features would help in addressing such errors. Often
undetected errors are classified as silent data corruption (SDC). One of the
key objectives of a system designer is to minimize the SDC rate. As shown in
Figure 4, not all undetected errors are critical; for instance, an undetected error
within branch prediction logic may not impact the integrity of the computation.

“Intel has pursued a three-pronged

strategy when it comes to fault

isolation.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

Autonomic Foundation for Fault Diagnosis | 15

Figure 4: Error classification
(Source: Intel Corporation, 2012)

Critical
(SDC)

Benign

Recoverable
(UCR)

Fatal
(DUE)

Catastrophic
(DUE)

UncorrectedCorrected

Detected
(e.g., MCA, AER)

Undetected

Errors

MCA : Machine Check Architecture
SDC : Silent Data Corruption
DUE : Detectable but Uncorrected Error
UCR : Uncorrected Recoverable

Once an error is detected, hardware will try to correct the errors, for example,
memory single bit error (SBE) correction using ECC bits. This also includes
the corrected errors that require firmware/software assistance, such as PCIe
Link Layer Retry. In many cases, hardware/firmware/software may not be able
to correct the errors; such errors are called as uncorrected errors (UCEs). Often
uncorrected errors are classified as detected but uncorrected errors (DUEs).
There are UCEs that may be recoverable with the help of system software and
are classified as uncorrected recoverable errors (UCRs). The errors that are not
software recoverable are called fatal errors since they prevent reliable system
execution. Finally there are certain errors classified as catastrophic, where
a system reset is required to bring system back to predictable state, such as
processor internal errors (IERRs).

Error Detection and Reporting
This section covers the various error detection and reporting capabilities in
Intel platforms.

Machine Check Architecture
Beginning with the Intel® Pentium Pro processor, Intel incorporated Machine
Check Architecture (MCA) and has continued to enhance the MCA feature in
subsequent processor families such as Intel Xeon and P6 family processors[18].
The Intel Itanium processor family innovated further and incorporated
advanced Machine Check Architecture[9]. The MCA feature provides a
mechanism for detecting and reporting hardware (machine) errors, such as:
system bus errors, memory errors, parity errors, cache errors, and Translation
Look-aside Buffer (TLB)errors. It consists of a set of model-specific registers

“The MCA feature provides a

mechanism for detecting and reporting

hardware (machine) errors.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

16 | Autonomic Foundation for Fault Diagnosis

(MSRs) that are used to set up machine checking and additional banks of
MSRs used for recording errors that are detected. Figure 5 shows an example of
MCA registers configuration.

Figure 5: Machine Check Architecture error reporting registers
(Source: Intel Corporation, 2012)

IA32_MCG_CAP

IA32_MCG_STATUS

MSR_MCG_CONTAIN

Global

IA32_MCi_CTL

MC Bank N

MC Bank 1

IA32_MCi_CTL

IA32_MCi_STATUS

IA32_MCi_ADDR

IA32_MCi_MISC

IA32_MCi_CTL2

MC Bank 0

Once MCA is enabled, it will always log an error as soon as an error
is detected. However, MCA will signal an error based upon the settings
of the MCA Control register (IA32_MCi_CTL) and the types of error.
Signaling of an error typically involves interrupts and assertion of an
external pin.

The processor signals the detection of an uncorrected machine-check error by
generating a machine-check exception (#MC), which is an abort class exception.
The implementation of the MCA does not ordinarily permit the processor to be
restarted reliably after generating a machine-check exception (MCE). However,
the MCE handler can collect information about the machine-check error from the
machine-check MSRs. Starting with the Intel Xeon processor 5500 family, the
processor can report information on corrected machine-check errors and deliver
a programmable interrupt for software to respond to MC errors, referred to
as a corrected machine-check error interrupt (CMCI). Starting with the Intel
Xeon processor E7 family, the processors supporting machine-check architecture
and CMCI may also support an additional enhancement, namely, support for
software recovery from certain uncorrected machine-check errors. The MCA
handler flows within the Intel Xeon processor family differs from that in the
Intel Itanium processor family and these are briefly described in the section
“Error Handling Software Models.”

“Starting with the Intel Xeon processor

E7 family, the processors supporting

machine-check architecture and

CMCI may also support an additional

enhancement, namely, support

for software recovery from certain

uncorrected machine-check errors.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

Autonomic Foundation for Fault Diagnosis | 17

Memory Error Reporting
Intel Xeon offers the additional capability of logging and signaling memory
corrected errors for BIOS/firmware use. BIOS/firmware can program a
threshold for the corrected error count. Once exceeded, the processor issues
an interrupt to the BIOS/firmware allowing it to take appropriate action.
Such threshold-based implementation is very simple and power efficient;
however, it has its own limitation. Since typical servers operate 24/7 for many
years, even in a highly reliable design, a certain level of corrected errors are
unavoidable and will accumulate over time, thus triggering a “false alarm.” In
order to address this issue, the Intel Xeon processor has incorporated a more
sophisticated algorithm known as the “leaky-bucket algorithm” (shown in
Figure 6) where corrected errors are periodically decremented automatically
by the processor. This leaky-bucket autonomic capability eases BIOS/firmware
implementation of the memory failure prediction algorithm.

Figure 6: Memory-corrected error reporting using leaky-bucket algorithm
(Source: Intel Corporation, 2012)

Channel 1
Channel 2

Channel 0

LEAKY_BUCKET_CNTR_LO/
HI

CORR_ERR_CNT_0

CORR_ERR_TH_7

D O
>

D O
>

1

CORR_ERR_CNT_7

CORR_ERR_TH_0

Rank_0
Corr
Error

Rank_7
Corr
Error

Err0 SMICMCI/NMI

Message
Priority Logic

Processor FW
signals the event to

BIOS/FW

SMISPARECTL

ERR_OVERFLOW_STAT
(CORRERRORSTATUS Register)

=
>

=
>

PCI Express* Advanced Error Reporting
The server platforms based on the Intel Xeon processor 5500 product family and
Intel Xeon processor E7 product family used a dedicated chip called the IOH
(Input Output Hub) for various input/output functions such as PCI Express*
(PCIe) interconnects. This IOH chip incorporated advanced error reporting
(AER) capability as per the PCI Express specifications. The IOH chip incorporated
additional error logging capability above and beyond the errors defined in the
PCI Express Specification. In addition to the PCI Express cluster, this chip also
incorporated the Intel® QuickPath Interconnect (Intel® QPI) interface connecting

“Intel Xeon offers the additional

capability of logging and signaling

memory corrected errors for BIOS/

firmware use.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

18 | Autonomic Foundation for Fault Diagnosis

to the processor, cache structures for packet buffering and Intel® Virtualization
Technology for Directed I/O (Intel® VT-d) functions. All these additional
capabilities also required error detection and logging enhancements, which were
also provided as part of the PCIe advanced error reporting. See Figure 7 for a

Figure 7: PCI Express AER and additional local error reporting
(Source: Intel Corporation, 2012)

Local Group Error Reporting (Per sub-module):
VTd, Misc, IIO core, IRP0, and IRP1

Sev 0
Sev 1
Sev 2

PCI Express* Error Flow per root port

PCI Express* Additional Local Error Reporting

PCI Additional
Error Source

PCI Express*
AER Error

Source

PCI Express* Specification Based Error Reporting

Non Fatal
Error
LOGs

Fatal
Error
LOGs

Error
Mask and

Status

Error
Severity

Error
Source

Global
Mask,

Status,
and
Log

NMI

MCA

SMI

ERROR_N[0]

ERROR_N[2]

ERROR_N[1]

PCI
Devices

Error
Detect
Mask

Error
Mask
and

Status

Error
Sev

Error
Detect
Mask

Bridge
Control and

Status

Error
Mask
and

Status

Error
Sev

Error
Msg

XPGLBERRST

DEVCTL,
PCICMD,

ROOTCON

DEVCTL,
PCICMD,

RPERRCMD,
and RPSTS

Corr
Non-fatal

Fatal

Corrected
Non-fatal

Fatal

SYS
MAP

ERR
PIN
CTL

MSI Generation Logic

high level block diagram of the advanced error reporting. Following is a high level
summary of IOH error detection and reporting capability:

•• Detects and logs errors within coherency interfaces, PCI Express interfaces,
ESI interface, IOH core logic, Intel VT-d, and miscellaneous.

•• Provides the capability to mask error detection and reporting at the
individual error level

•• Local error reporting registers first log the status of corrected, nonfatal
(recoverable), and fatal errors within these individual submodules.

Intel® Technology Journal | Volume 16, Issue 2, 2012

Autonomic Foundation for Fault Diagnosis | 19

•• First and next error detection and logging for fatal and nonfatal errors.
Additional header information is logged for the first reported error.

•• Allows flexible mapping of the detected errors to different error severity

•• Allows flexible mapping to various kinds of signaling: SMI, NMI, MCA, or
ERROR_N[2:0]pins.

•• Incorporates PCI Express specifications–based advanced error reporting
with following key features:

°	 Detects, logs, and signals errors received from the downstream devices.
Signaling is done via Message Signaling Interrupt (MSI) at the local root
port level. This is considered an architecturally defined error reporting
mechanism and expected to be compatible with existing OS-based error
handling software. Refer to Figure 8 for a list of errors detected. The
processor is capable of reporting several additional internally generated
errors.

°	 Provides the capability to mask error detection, thus preventing further
reporting to architecturally defined error handling software.

°	 Allows flexible mapping of the detected uncorrected errors to different
error severity (nonfatal and fatal).

Figure 8: PCI Express specification–defined error types supported by Intel® Xeon®
processors
(Source: Intel Corporation, 2012)

Data Link Physical

Internal Transaction

ERR_COR

ERR_NONFATAL
ERR_FATAL

Correctable Errors

1. Rx Error

4. Replay Timer time-out

5. Replay No rollover

6. Advisory Nonfatal

2. Bad TLP

3. Bad DLLP

1. Poison TLP

4. Unexpected Completion

5. Completion Time Out

6. ACS violation

2. Unsupported Request

3. Completer Abort

1. DLLP error

4. Rx buffer overflow

5. Malformed TLP

2. Surprise Link Down

3. Flow control protocol

Data Link Physical

Internal Transaction

Fatal

Uncorrectable Errors

Intel® Technology Journal | Volume 16, Issue 2, 2012

20 | Autonomic Foundation for Fault Diagnosis

•• AER error logging, signaling via SMI/NMI, subsequent error clearing, and
rearming of the error logging logic attempts to accomplish following:

°	 Coalesce multiple errors of the same type, severity, and from the
same submodule to issue a single interrupt thus preventing multiple
interrupts for same kind of error event

°	 Prevent missing any interrupt due to an error from a different
submodule, or of a different type and different severity.

°	 Allows clearing of logged errors and simultaneously logging any new
error thus preventing loss of any valid errors

In addition to implementing PCI Express specification defined error types,
Intel Xeon platform IOH (Input Output Hub) incorporates logic to detect
several additional errors types to improve the system serviceability. Figure 8
shows the PCI Express specification–based error types available in Intel Xeon
platform IOH.

Interconnect Diagnostics
The industry is moving to faster interconnects. These naturally pose many
challenges due to reduced electrical margins and they also lead to increased
probability of interconnect-related faults. For example, faster interconnects
are generally more susceptible to lane-to-lane crosstalk. At the same time,
traditional methods for fault monitoring (such as test points) can no longer
be used because they greatly perturb the interconnects to be monitored.
Interconnect Built-In-Self-Test (IBIST)[6] enable detection of interconnect-
related faults. At the highest level, IBIST is an on-die feature (integrated into
Intel processors and chipsets) that enables chip-to-chip interconnect testing.
It uses a finite state machine (FSM) to produce precise, deterministic, and
arbitrary patterns on the I/O bus for testing purposes. It addresses both the
static and high frequency fault spectrum associated with high performance bus
topologies. When applied to PCIe, this means IBIST bypasses 8b10b encoding,
stressing the “raw bus” margin without 8b10b encoding protection. In
addition, pattern depth (120 bits) and width (2 to 4 lanes) are picked based on
empirical link analysis and prior Bit Error Rate Testing measurement standards.
The pattern richness is based on a prior known worst-case pattern and Bit Error
Rate Testing methodology. For example, it is customary during early test chip
and PCI Express specification development to run 2-4 lanes with different
random and deterministic patterns. When applied to Intel QPI, IBIST
supports protocol redundancy features that include failover clock, slow mode to
fast mode, and so on. When applied to DDR, IBIST supports advanced DDR
DIMM training patterns that allow the user to create and measure stress on
address lanes.

As opposed to traditional diagnostic approaches using debug probe points,
the on-line diagnostics approach provides a layered approach to access on-die
features.

IBIST can greatly improve in-field diagnostics. Systems deployed at a customer
location could fail due to interconnect-related faults, environmental stresses,

“Traditional methods for fault

monitoring (such as test points)

can no longer be used because they

greatly perturb the interconnects to be

monitored.”

“It is customary during early test

chip and PCI Express specification

development to run 2-4 lanes with

different random and deterministic

patterns.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

Autonomic Foundation for Fault Diagnosis | 21

or silicon aging. Moving the failed system from the host environment to a
service center may affect the reproducibility of the failure and may not be cost/
time effective. In-situ debug enables more effective and rapid fault diagnosis
isolation and allows execution of appropriate healing techniques to remedy the
failure if feasible. An efficient fault isolation mechanism reduces the No Defect
Found (NDF) conditions by lowering the field returns of expensive parts like
processors and memory DIMMs. In addition, IBIST hooks in Intel silicon can
be leveraged to proactively monitor interconnect health and configure tests
remotely. This improves the availability of the system and creates an efficient
serviceability environment. In case of mission-critical systems, emergency
response can be immediate and failures can be prevented without delay.

Error Handling Software Models
BIOS/firmware needs to be an integral piece of fault isolation because it
carries knowledge about the specific hardware and has better visibility into
the physical aspects of the server. On the other hand, the operating system
manages allocation of compute resources to various applications and has
better visibility and control into logical aspects of the server. Cooperation
between these two entities leads to better fault diagnosis. As a result, Intel
has been actively participating in definition of robust firmware–operating
system interfaces[5,9]. Intel Xeon processor–based platforms and Intel Itanium
processor–based platforms differ in their error handling firmware models.
Intel Itanium processor–based platforms implement clearly defined hardware/
firmware abstraction layers allowing a streamlined Firmware First Model (FFM)
for error handling[8]. However, since Intel Xeon processor architecture has
evolved over time it carries several legacy implementations that create challenges
in implementing a streamlined FFM model for error handling. This section first
briefly describes the Intel Itanium processor family firmware model and then
draws a parallel with that of the Intel Xeon processor family firmware model.
We also highlight a few key challenges in developing a robust FFM model.

Intel® Itanium® Processor Family Firmware Model
The Itanium architecture defines three firmware layers: the Processor
Abstraction Layer (PAL), the System Abstraction Layer (SAL), and the Unified
Extensible Firmware Interface (UEFI) layer.

•• PAL encapsulates processor functions that are likely to change between
processor implementations so that SAL firmware and operating system
software can maintain a consistent interface to the processor. These
include non-performance critical functions such as processor initialization,
configuration, and error handling.

•• SAL is the platform-specific firmware component provided by OEMs and
firmware vendors. SAL provides runtime services to the OS and provides a
consistent implementation-independent interface to the operating system.

•• UEFI is the firmware layer that provides a legacy-free API interface to the
OS loader for boot and runtime services. SAL and UEFI isolate the OS and
other higher level software from implementation differences in the platform.

“IBIST hooks in Intel silicon can

be leveraged to proactively monitor

interconnect health and configure tests

remotely.”

“Intel Xeon processor–based platforms

and Intel Itanium processor–based

platforms differ in their error handling

firmware models.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

22 | Autonomic Foundation for Fault Diagnosis

PAL, SAL, and the OS work together to handle machine check aborts,
processor corrected errors, and platform-corrected errors. Figure 9 provides an
overview of how the firmware and OS interact for machine check handling.

Figure 9: Intel® Itanium® processor family error handling firmware model
(Source: Intel Corporation, 2012)

PAL

SAL

Processor (HW)

Platform HW+SW Components
(Memory, Intel(R) QPI, IOH or PCH+ME, PCIe devices,

VR, Thermal/Cooling, BMC)

C
P

E
I

C
M

C
I

MCA

MCA

MCA

ERROR[1]_N

P
A

L
M

C
A

 C
al

l

S
A

L
M

C
A

 C
al

l

ACPI

OS Boot
Handoff

EFI Proc
Calls

OS Boot
Selection

SAL Proc
Calls

A
cc

ec
c

to
 P

la
tfo

rm

C
M

C
I

UEFI

Operating System Software

Intel®Xeon® Processor Family Firmware Model
The Intel Xeon processor product family error handling firmware model is
shown in Figure 10. The processor firmware layer essentially includes the
built-in firmware that provides an interface for BIOS/firmware to access
various MSRs (Model Specific Registers) and CSR (Configuration Specific
Register). As shown in Figure 10, one key differentiating aspect of the Intel
Xeon processor error reporting architecture is the parallel logging and signaling
of corrected and uncorrected errors to BIOS/firmware and OS. While this
approach fosters industry innovation and retains compatibility with legacy
software, it also causes an issue when both OS and BIOS/firmware attempt
to develop similar diagnostics features accessing the same information from
the processor, such as predictive failure analysis using memory-corrected error
logs. In order to build a robust error handling model, it is more appropriate to
develop a streamlined Firmware First Model. Intel Xeon processor E7 product
family takes a step in this direction by implementing logic where MCE
signaling would always result in, first, issuing a System Management Interrupt
(SMI) to the BIOS/firmware, thus allowing it to process error logs before
subsequently allowing an OS-based MCA handler to handle the errors that

“One key differentiating aspect of the

Intel Xeon processor error reporting

architecture is the parallel logging and

signaling of corrected and uncorrected

errors to BIOS/firmware and OS.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

Autonomic Foundation for Fault Diagnosis | 23

BIOS/firmware was unable to handle. A similar approach for corrected errors
would also be desirable in the Intel Xeon processor families.

Figure 10: Intel®Xeon® processor family Error Handling Firmware Model
(Source: Intel Corporation, 2012)

Processor (HW)

Processor FW

Other Platform HW+SW Components
(VR, Thermal/Cooling, BMC,

Parts of IOH and PCH)

Platform HW components
under direct control of
process or HW (Cores,

Memory, Intel® QPI)

PCI Express I/O
subsystem

MCA

SMI

M
C

E

SMI

M
S

R
 a

cc
es

s

C
M

C
I

E
R

R
O

R
[0

]_
N

/C
P

E
I

ACPI

OS Boot
Handoff

EFI Proc
Calls

O
S

 B
oo

t S
el

ec
tio

n

B
IO

S
 P

ro
c

C
al

ls

UEFI

Operating System Software

M
S

I

Firmware First Signaling:
1. SMI to BIOS FW (SMM)
2. BIOS issues MCE to OS or RSM

Parallel Signaling:
1. SMI to BIOS FW (SMM)
2. MCE to OS

BIOS FW (SMM)

Challenges
Despite the extensive infrastructure that is described in previous sections, there
remain certain challenges in the area of fault diagnosis. This section describes
two such scenarios.

Instruction Retirement Watchdog Timeout
Processor instruction retirement watchdog timeout (also known as three-
strike timeout) is one example of a failure scenario that is notoriously hard to
diagnose[10]. From the system standpoint, even though the processor generally
supports out-of-order execution, instructions are retired in order to ensure
correctness of program execution. If the processor is unable to retire an
instruction in 10–15 seconds, the processor determines that it is not able to
make forward progress, asserts the CATERR pin, and stops execution.

Fault isolation for this error case is challenging for several reasons:

•• Timeout is a symptom (see the “Terminology” section) and therefore less
precise than detected errors. As with any symptoms, there is a chance that it

Intel® Technology Journal | Volume 16, Issue 2, 2012

24 | Autonomic Foundation for Fault Diagnosis

may not correspond to a real error. A large timeout value must be chosen so
as to minimize false positives.

•• Generally speaking, the time elapsed between a transaction failure and the
corresponding error signaling is equal to the timeout value. Fault isolation
involves walking backwards from the signaling point to the point of fault.
In many cases, root cause analysis must consult the context prior to the
fault; that is, capture transactions prior to the failing instruction. Since it
is not possible to predict which instruction may timeout, proper analysis
would require the system to keep a running log of transactions for the
duration of the timeout. Since the processors and interconnect operate at
GHz frequencies, it is generally not possible to keep such a running log.
Moreover, such analysis might require visibility into the state of other
internal structures (like internal queues) around the time of failure, which
can be both challenging and difficult, if not impossible, to reconstruct at a
later time.

•• Since the point of fault and signaling could be far apart in time, it is
difficult to sort out component interdependencies. Empirical evidence
shows that the source of the error is often outside the processor even
though the processor is the one reporting the error. For example, it has been
observed that an I/O card hang can manifest itself as a retirement timeout.
When an I/O card hangs, the CPU instruction that accesses it (for example
a load operation or I/O port read/write) will not complete and it triggers
a retirement watchdog timeout. It is possible that the I/O card hang could
be either the result of a hard error in the I/O card or buggy software that
placed the card in a bad state or something else. This problem is mitigated
by implementing a hierarchical timeout scheme that provides better insight
at component boundaries.

•• Capturing system state at the signaling point itself may be challenging. The
timeout is an unrecoverable error condition and may cause system pathways
to be blocked. As a result, the error registers may either be inaccessible or
the system may not be able to guarantee reliable access to the error log
registers. This issue is often addressed by providing dedicated, sideband
pathways to the error registers. If an I/O card hang is responsible for the
failure, the error detection logic on the I/O card itself is also affected and
may not log any event. A system reset can reopen sensor access, but a reset
may destroy part of the system state and thus hamper fault diagnosis.

•• Intel processors and chipsets contain various hooks that can be used for
identifying faulty components in these cases. However, fault isolation and
determining root cause often requires intimate knowledge of processor
internals. These internal details often change from one generation of
the processor to another. In many cases, Intel struggles with making
such internal details of the chip available to external parties, even under
nondisclosure agreement (NDA). In some cases, Intel customers may
not have any interest and/or may not have the resources necessary to
process these details. In addition, exposing raw data without any analysis
and abstraction does not align well with the principles of an autonomic

“Empirical evidence shows that the

source of the error is often outside the

processor even though the processor is

the one reporting the error.”

“Fault isolation and determining

root cause often requires intimate

knowledge of processor internals.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

Autonomic Foundation for Fault Diagnosis | 25

computing system. An autonomic computing system is expected to
perform and manage itself as much as possible and hide complexity from an
external agent. Khanna et al. propose Diagnostics Hardware Abstraction[6]
(DHA) as a solution. When applied to processors and chipsets, DHA
can provide a generic set of APIs that provide platform manufacturers
access to fault diagnosis primitives without having to worry about internal
implementation details like registers. DHA enables portability across
platforms and architectures and more accurate fault isolation. One example
of a DHA API could be a function that examines the internal state of the
processors upon an instruction retirement watchdog timeout and identifies
the most likely source of the fault.

Data Poison Forwarding
Data poisoning (known as Corrupt Data Containment) is a method for
synchronously signaling an uncorrectable error with the data from a source
of data to its destination. The data poisoning technique is commonly used
in mainframes and high-end servers[8]. It is now finding its way into x86
processors. Data poisoning generally provides two benefits[11]: (1) reduction in
the number of false DUEs and (2) better error localization. Typically, the data
poison indication is a bit per a certain granularity of data. The data granularity
is implementation dependent. The source of the data, upon discovering an
uncorrectable error on that data, would set the poison bit and this poison
indication would travel synchronously with the data to its destination (the
requester of that data). Upon receiving poisoned data, the onus of what to do
is on the final consumer (receiver) of that data. As an example, the core, doing
a load operation, is the final consumer of that data. The consumer has three
options:drop the data and signal an error, drop the data without signaling an
error, or consume the data without signaling an error. As an example, a core
that gets poisoned data on a demand read should signal the error, whereas for a
prefetch read, it may drop the data and not signal an error with no immediate
consequences. As another example, a graphics device that gets poisoned data
may consume the poisoned data since an error on a single pixel does not have
to bring the whole system down.

When data poisoning is enabled, the producer of the data does not signal an
uncorrectable error. It signals a lower severity, lower priority error and relies
on the consumer to signal a high priority/high severity error. The poisoned
packet may travel through one or more intermediate agents before it reaches
the consumer. For example, the packet may travel over Intel QPI or may be
temporarily stored in cache hierarchy. These intermediate agents are able to
observe the poison bit but will not report a high severity error.

Even though data poisoning reduces false DUEs, it introduces challenges in
implementing strong fault containment. Poisoned data can cross component
boundaries and the detection may be deferred until it is consumed. Addition of
sensors at key component boundaries can provide the missing data pieces, but
connecting these pieces for fault diagnosis purposes remains challenging because
it requires a deep understanding of how transactions flow inside of the processor.

“Data poisoning (known as Corrupt

Data Containment) is a method

for synchronously signaling an

uncorrectable error with the data from

a source of data to its destination.”

“When data poisoning is enabled, the

producer of the data does not signal an

uncorrectable error.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

26 | Autonomic Foundation for Fault Diagnosis

For example, the entity performing the fault diagnosis may need to understand
the complex caching policies and performance enhancements such as prefetching.
A robust framework such as DHA is expected to address this challenge.

Future
Increased computing demand is driving the complexity of computing systems
used in modern data centers. From the time these sophisticated computing
systems are powered on, it is expected that these systems would operate
24/7 for several years. During the whole lifespan, the state of the computing
system changes dynamically. Classical reliability theory and conventional
methods rarely consider the actual state of a system and are therefore not
capable of reflecting the dynamics of runtime systems and failure processes.
The distinction between “healthy” and “broken” is often indistinct and fuzzy,
and often there is a gradual transition between these two states; a system
often does not break down recognizably but deteriorates over time. Thus
we can say there is a fuzzy zone, a degraded state, separating acceptable and
unacceptable behavior of a system, which again depends on user preferences
and environmental changes. To allow for the dynamic properties of modern
computer systems, online failure prediction incorporates measurements of
actual system parameters during runtime in order to assess the probability
of failure occurrence in the near future in terms of seconds or minutes.
Simultaneously, modern systems are often designed to be fault tolerant and
include hooks to facilitate both manual and automatic reconfiguration and
repair from events that cause the system to violate its requirements and
functionality. Going forward, it is our intent to pursue areas like the ones
outlined below to improve overall fault diagnosis, system reliability, and health.

Improved Fault Classification
Successful reconfiguration or repair largely depends on accurate fault diagnosis;
that is, correctly identifying the modules exhibiting the observed erroneous
behavior. Many algorithms, including those discussed in earlier sections of this
article, exist for autonomic diagnosis. More importantly, merely identifying the
hardware modules affected by or exhibiting the faulty behavior is not sufficient
and it is desirable to further classify the faulty behavior as either permanent
or transient or induced from another module. Further, the fault treatment
for these cases often needs to be different. For example, with a transient fault,
where a module might only momentarily be prone to behaving erroneously,
one might choose to deal with it by allowing future use of the affected module
after recovering any data error caused by the transient fault, but not so for a
permanent fault. It is not uncommon for modules to be replaced as faulty but
later proven to be free from permanent faults, when tested in the repair shop.
Many vendors including processor vendors and DIMM vendors report that
they cannot find any defects in the returned parts.

Treating transient faults as permanent can, thus, have a high cost. The cost
of unnecessary component replacement includes the cost of the component
itself, the labor cost, and indirect costs resulting from system downtime.

“Classical reliability theory and

conventional methods rarely consider

the actual state of a system and are

therefore not capable of reflecting the

dynamics of runtime systems and

failure processes.”

“It is not uncommon for modules to be

replaced as faulty but later proven to

be free from permanent faults.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

Autonomic Foundation for Fault Diagnosis | 27

Customers are often not aware of these hidden costs and insist on replacing any
component that has exhibited an uncorrectable error.

Previous work in this space[12] suggests that in many computer systems,
transient faults are often the cause of errors in a great majority of cases.
Published measures of the ratio between the frequencies of transient and
permanent faults can vary from 4 to 1000. However, discriminating between
transient and permanent faults is often difficult. Designers have used several
techniques, spanning from simple retry to thresholding. They count errors, and
when the count crosses a preset threshold a permanent fault is assumed[13,14].
For channel errors, a retry is generally effective. Pizza et al. have proposed
a procedure based on Bayesian inference and takes into account factors like
test coverage and rate of occurrence of faults to achieve a more optimal fault
classification[15]. More work is needed in this area before customers relax the
current requirement to swap out any component with an uncorrected error.

Efficient Distributed Diagnosis
Probing is a mechanism that is commonly used to get information from the
system in order to monitor its health. In order to achieve better system health
monitoring and improved diagnosis of the system on-line, it is necessary to
improve the observability of the system by deploying more and specialized
probes, sensors, and diagnostic agents on system components. Given the highly
interdependent nature of system components, it is extremely important to
make these diagnosing agents work together with consistency and efficiency,
or efficient distributed diagnosis. The general idea is to use sensor readings
together with mathematical models of the system to predict the health of the
system and generate real-time actionable information.

Optimal Placement of Sensors
While it is generally desirable to have as many observation points as possible,
there is usually an upper limit imposed due to impact on system cost,
functionality, and performance. Hence, it is important to have an optimal
placement of the available sensors and agents in order to maximize the ability
to detect a failure as close to the error source as possible. One needs to identify
what the key points in the system are for adding these sensors. This subject of
optimal sensor placement (OSP) has been addressed extensively in literature
for aerospace structures, process control industry, nuclear power plants, and
physical infrastructure like bridges. It might be instructive to study the above
in order to learn what might apply to computer systems. For example, as
mentioned in the earlier poison forwarding discussion, optimally placing poison
sensors at key component boundaries can help with better poison fault isolation.

Better Error Correlation and Analysis through Modeling Techniques
System components are largely interdependent. Hence, we need to employ
modeling techniques that can represent and identify these interdependencies
while isolating the faulty component. The predictability model should
incorporate all components irrespective of the health coverage in order to
predict the fault sequence and transitions. This can be done by creating the

“Published measures of the ratio

between the frequencies of transient

and permanent faults can vary from

4 to 1000.”

“While it is generally desirable to

have as many observation points as

possible, there is usually an upper limit

imposed due to impact on system cost,

functionality, and performance.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

28 | Autonomic Foundation for Fault Diagnosis

model along with a profile that correlates the states based on observation
points from covered components. Training then hardens the profile and
evaluates missed and correct predictions. Many different models are possible
and have been explored. Patterson-Hine et al. propose a coarse-grain, graphical
dependency model in the context of an aviation subsystem[16]. In that case,
the interfaces and dependencies between subsystems and their components
were determined and modeled using multisignal flow graphs. The multisignal
modeling methodology is a hierarchical modeling methodology where the
propagation paths of the effects of a failure are captured in terms of a directed
graph. Propagation algorithms convert this graph to a single global fault
dictionary for a given mode and state of the system. This dictionary contains
the basic information needed to interpret test results and diagnose failures
reported by the monitoring system. Multisignal modeling allows the modeler to
hierarchically describe the structure of a system and then specify its functional
attributes via signals. This is ideally suited for building accurate low-cost models
that can be used by a reasoner in real-time to interpret test results and assess
system health. Khanna et al. proposed use of models like HMM (Hidden
Markov Model) to correlate the system test-point observations, mortality
characteristics, and state transitions to predict the most probable hidden fault
state sequence[17]. Such a modeling scheme consists of creating the HMM
components comprised of observed states, hidden states, and HMM profiles.
Observed states are created using the RAS indicators or observation points (for
example, BIT Errors per PCI Express transactions). Hidden states are created
by identifying the clusters of failure-prone components that can be inferred by
the observed state probabilities. An HMM profile that consists of transition
probabilities and observation symbol probabilities is created by training using
initial data and re-estimation with the system usage on multiple systems. HMM
is found to be more sensitive to change detection than pure discriminative
methods and also increases the quality of the model by constantly updating the
temporal correlations. Key steps involved in HMM modeling are:

•• Creating observed states that are analytically or logically derived from the
RAS indicators. These RAS indicators are test-points spread all over the
system. For example, there are BER sensors for interconnects, thermal
sensors for sockets, voltage sensors, and so on.

•• Creating hidden states by clustering the homogeneous behavior of single
or multiple components together. These components are comprised of
compute nodes, I/O nodes, memory devices connected by interconnects,
power rails, switches, and so on.

•• Creating a hidden state transition probability matrix using prior knowledge
or random data. This prior knowledge combined with long term temporal
characteristics form an approximate probability of failed components
transitioning from one failure state to another in the same component or a
different component.

•• Creating an instantaneous observation probability matrix that indicates the
probability of an observation, for a given hidden state.

“Multisignal modeling allows the

modeler to hierarchically describe the

structure of a system and then specify

its functional attributes via signals.”

“HMM is found to be more sensitive

to change detection than pure

discriminative methods.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

Autonomic Foundation for Fault Diagnosis | 29

References
[1]	 Intel Corporation, “Intel Cloud 2015 Vision.”

[2]	 Felix Salfner, “Event-based Failure Prediction: An Extended Hidden
Markov Model Approach”, Dissertation, 2008.

[3]	 Felix Salfner, Steffen Tschirpke. “Error Log Processing for Accurate
Failure Prediction”, USENIX Workshop on Analysis of System Logs.

[4]	 S. X. Ding, Model-based Fault Diagnosis Techniques Design Schemes,
Algorithms, and Tools, Springer Publications, 2008.

[5]	 ACPI Specification 5.0. www.acpi.info

[6]	 Rahul Khanna and Mohan J. Kumar, A Vision for Platform Autonomy:
Robust Frameworks for Systems, Intel Press, 2011.

[7]	 Intel Corporation, “Xeon® E7 Processor - RAS Servers White Paper”

[8]	 N. Quach, “High availability and reliability in the Itanium processor,”
IEEE Micro, vol. 20, no. 5, pp. 61–69, 2000.

[9]	 Distribute Management Task Force, “System Management BIOS
Specification.”

[10]	 Intel Corporation, “Processor Reorder Buffer (ROB) Time out Debug
Guide”, October 2010.

[11]	 Sridharan et al., “A Taxonomy to Enable Error Recovery and Correction
in Software,” Workshop on Quality-Aware Design (W-QUAD).

[12]	 D. P. Siewiorek and R. S. Schwartz, Reliable Computer Systems Design
and Evaluation, Bedford, MA, Digital Press, 1992.

[13]	 A. Bondavalli, S. Chiaradonna, F. Di Giandomenico and F. Grandoni,
“Discriminating Fault Rate and Persistency to Improve Fault
Treatment”, in Proc. FTCS-27, Seattle, USA, 1997, pp. 354–362.

[14]	 L. Spainhower, J. Isenberg, R. Chillarege, and J. Berding, “Design for
Fault-Tolerance in System ES/9000 Model 900”, in Proc. FTCS-22,
Boston, Massachusetts, 1992, pp. 38–47.

[15]	 Pizza et al., “Optimal Discrimination between Transient and Permanent
Faults,” High-Assurance Systems Engineering Symposium, 1998.
Proceedings. Third IEEE International, Nov 1998

[16]	 Patterson-Hine et al., “A Model-based Health Monitoring and
Diagnostic System for the UH-60 Helicopter.”

[17]	 Khanna et al., “Control Theoretic Approach to Platform Optimization
using HMM”, InTech, 04/2011

Intel® Technology Journal | Volume 16, Issue 2, 2012

30 | Autonomic Foundation for Fault Diagnosis

[18]	 Intel Corporation, “Intel® 64 and IA-32 Architectures Software
Developer Manuals”

Mahesh Natu is a platform software architect in the Data Center and
Connected Systems Group at Intel Corporation. He has been with Intel
Corporation for 16 years. He can be reached at mahesh.natu@intel.com

Narayan Ranganathan is a platform software architect in the Data Center
and Connected Systems Group at Intel Corporation. He has been with Intel
Corporation for 13 years. He can be reached at narayan.ranganathan@intel.
com

Anil Agrawal is a senior platform applications engineer in the Data Center
and Connected Systems Group at Intel Corporation. He has been with Intel
Corporation for 15 years. He can be reached at anil.agrawal@intel.com.

Intel® Technology Journal | Volume 16, Issue 2, 2012

Autonomic Foundation for Fault Diagnosis | 31

32 | Coordinated Optimization: Dynamic Energy Allocation in Enterprise Workload

Contributors

Intel® Technology Journal | Volume 16, Issue 2, 2012

Controlling how much power server machines draw has become increasingly
important in recent years. The accuracy and agility of three types of actions
are critical in power governance: (1) selecting which hardware elements must
run at what rates to meet performance needs of software, (2) assessing how
much power must be expended to achieve those rates, and (3) adjusting the
power outlay in response to shifts in computing demand. Observing how
variations in a workload affect the power drawn by different server components
provides data critical for analysis and for building models relating quality of
service expectations to power consumption. This article describes a process of
observation, modeling, and course corrections that is successful in achieving
autonomic power control in an Intel® Xeon®E5-2600 server machine meeting
varying response time and throughput demands during the execution of a
database query workload. The process we describe in the article starts with
fine-grained power-performance observations permitted by a distributed set
of physical and logical sensors in the system. These observations are used to
train models for various phases of the workload, with accuracy between 97 and
98.5 percent. Once trained, system power, throughput, and latency models
participate in optimization heuristics that redistribute the power to maximize
the overall performance/watt of the server.

Introduction
It has become vital to sharply curtail the power that servers consume during
periods of low utilization. The volume of information that must be processed
in real time has been growing geometrically[18] over the past few years, requiring
peak processing capabilities to rise in concert. Despite superior performance
per watt that newer platforms deliver, handling peak loads continues to
require higher power delivery and heat dissipation capacities per cubic
meter in enterprise IT and datacenter facilities, with 63 percent of the total
cost of ownership going towards powering, cooling, and electricity delivery
infrastructure[15]. In contrast to the traditional focus on delivering the highest
throughput or lowest response time unconstrained by power, these realities
have made it a more compelling proposition to minimize the amount of
energy consumed in relation to computational work performed while meeting
responsiveness targets. In particular, dynamically conserving power when some
machines do not need to be at full utilization translates directly into cost savings
and creates greater allowance for other, more power-constrained, servers.

We use the term power optimization to describe the act of targeting and
achieving high levels of power normalized performance at the application level.

“This article describes a process of

observation, modeling, and course

corrections that is successful in

achieving autonomic power control

in an Intel® Xeon®E5-2600 server

machine.”

Martin Dimitrov
Software and Services Group,
Intel Corporation

Kshitij Doshi
Software and Services Group,
Intel Corporation

Rahul Khanna
Software and Services Group,
Intel Corporation

Karthik Kumar
Software and Services Group,
Intel Corporation

Christian Le
Intel Architecture Group,
Intel Corporation

Coordinated Optimization: Dynamic Energy Allocation in
Enterprise Workload

Intel® Technology Journal | Volume 16, Issue 2, 2012

Coordinated Optimization: Dynamic Energy Allocation in Enterprise Workload | 33

For a software application, such as a business transactions service or a content
retrieval service, the performance metrics that are significant are the numbers
of requests serviced (throughput) and the turn-around delay (response time)
per request. The unqualified use of the term performance in this article will be
about these application level qualities-of-service metrics.

Optimizing power entails multiple dynamic tradeoffs. Typically, a system can
be represented as a set of components whose cooperative interaction produces
useful work. These components may be heterogeneous or be presented with
heterogeneous loads, and vary in their power consumption and power control
mechanisms. At the level of any component—such as a processing unit or a
storage unit, power needs to be increased or decreased on an ongoing basis
according to whether that component’s speed plays a critical role in the overall
speed or rate of execution of programs. In particular, different application
phases may have different sensitivity to component speeds. For example, a
memory bound execution phase will be less impacted by CPU frequency
scaling than a CPU bound execution phase. Under execution reordering that
most modern processors employ, the degree to which a program benefits from
out-of-order execution varies from one phase to another. Moreover, the rate at
which new work arrives in a system changes, and as a result, the overall speed
at which programs have to execute so that they can meet a given service level
expectation varies with time. Thus the power-performance tradeoffs that are
needed have to occur on a continuous basis.

Arguably, given the self-correcting and self-regulating aspects common in most
systems today, software driven power-performance should be unnecessary.
For example, Rotem et al.[26] present power control algorithms that transition
CPUs and DRAMs into lower frequencies or into ultra-low power modes
during low activity periods. While the circuit level self-regulation is highly
beneficial in transitioning components to low power states, software needs to
wield policy control over when and which activity should be reduced in order
to facilitate transition of hardware into power saving modes, as discussed next.

Harnessing power savings on less busy servers is a delicate task that is hard
to delegate to hardware based recipes. Servers are typically configured for
handling high rates of incoming work requests at lowest possible latencies;
and therefore it is not uncommon for them to have many CPUs and large
amounts of physical memory over which computations and data remain widely
distributed during both high and low demand periods. Due to the distributed
nature of activities, slowing down a single CPU or a single DRAM can have
unpredictable performance ramifications; thus it can be counterproductive
to push some part of a server into ultra-low power operation[19]. At the other
extreme, when power approaches saturation levels, hardware is ill-positioned
to determine or enforce decisions about which software activities can tolerate
reduced performance and which ones must continue as before. Thus software
must share with hardware the responsibility of determining when and in which
component power can be saved.

“Power needs to be increased or

decreased on an ongoing basis

according to whether that component’s

speed plays a critical role in the

overall speed or rate of execution of

programs.”

“Software must share with hardware

the responsibility of determining when

and in which component power can be

saved.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

34 | Coordinated Optimization: Dynamic Energy Allocation in Enterprise Workload

In this article, we propose an autonomic solution for fine-grained control over
power performance tradeoffs for server configurations. The solution, as we
describe in the section “Monitoring and Data Refining” and sketch in Figure 1,
consists of ingredients to observe, analyze, plan, and control the dynamic
expenditure of power in pursuance of an application level performance
objective that is specified as a Service Level Agreement (SLA). As described in
section “Experimental Setup and Results,” we use a time-varying database
query workload running on a recent generation Intel® Xeon® server, which is
an E5-2600 class machine[22]. We simultaneously change the power allocation
to CPUs and DRAM, and gather performance and power readings through
a set of distributed physical and logical sensors in the server. Using these
observations, we train models for various phases of the workload. Based on
our models, we implement an optimization heuristic that redistributes the
power to maximize the overall performance/watt of the server. Experimental
measurements show that our heuristic improves performance and power as
needed or as permitted by performance objective. The article is organized as
follows: the following section, “Related Work” summarizes and compares the
related work. The next section, “Background,” explains the modeling and
optimization planning approach. This is followed by the section “System
Architecture for Autonomic Power-Performance Control.” “Experimental Setup
and Results” describes the experimental results, and the article concludes with
“Summary and Future Work.”

Figure 1: Architectural elements of autonomic control
(Source: A Vision for Platform Autonomy: Robust Frameworks for Systems
(Intel Press, ISBN 978-1-934053-25-6))

Monitor

Sense Control

Analyze

Knowledge

Plan

Execute

Managed Element

Related Work
A vast body of research examines relationships and tradeoffs between processor
performance, power, and thermal events. We classify the work related to this
contribution as follows:

Platform performance events and power consumption: Several researchers examine
the usage of performance event and activity counts for predicting power

“We implement an optimization

heuristic that redistributes the power

to maximize the overall performance/

watt of the server.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

Coordinated Optimization: Dynamic Energy Allocation in Enterprise Workload | 35

consumption. For example, Bircher et. al.[10] identifies a set of microprocessor
performance events to estimate total system power. Bellosa et al.[11] demonstrate
strong correlations among performance events and power consumption for
Pentium® II. David et al.[12] utilize activity counters to predict DIMM power
and use the prediction to control DIMM power budget with a Runtime
Average Power Limiting (RAPL) approach. Economou et al.[13] correlate
AC power measurements with user-level system utilization metrics. Kang
et al.[14] show the use of optimized search algorithms and machine learning
techniques in a processor design exploration problem to reduce time needed
for determining the best configuration. Our work extends such approaches
by considering quality of service (QoS) parameters (such as Throughput and
Response Time) for an enterprise application.

•• Using SLAs to obtain power savings: Several approaches use QoS-based
metrics to drive power management in different systems, including real-
time systems[6][3][8][9][5], web servers[1], and parallel processing systems[7].
Flautner et al.[3] modify the Linux kernel to save energy by delaying
task execution, while ensuring that all tasks meet their deadlines. The
implementation of such a mechanism, however, is based upon a priori
knowledge of task executions (the deadlines are effectively a proxy for a
module that provides performance feedback), while ours is a dynamic
scheme. Workload consolidation has been explored as a means to obtain
power savings while maintaining SLAs. For example, Sharma et al.[1]
explore energy savings in web server clusters by consolidating load onto
fewer servers, and turning off the remainder or keeping them in low-power
states during low load conditions, so long as the SLAs are not violated. This
approach is complementary to our work as Sharma et al.[1] save energy by
limiting high activity to a few servers, while we target similar efficiency at
the level of individual servers. Hayamizu et al.[4] implement an SLA-based
hardware correction scheme that is similar to ours in principle. However,
their tuning mechanism reactively adjusts the frequency of operation,
resulting in some performance oscillations; in contrast, our mechanism is
less volatile as it observes and learns from workload behavior, over a period
of time. Other approaches supplement CPU performance feedback with
cache miss rates (or metrics to track memory behavior); using the miss rates
to build statistical dependence between frequency operating points and
memory performance and power consumption[2][8][9].

Our work differs from the previous approaches in this aspect: we propose
to use component energy metrics to show strong correlation between them
and quality of service parameters such as Throughput and Response Time
in an enterprise workload, using a machine learning approach. Many of
the traditional workload analysis methodologies consist of building upon
simulation results obtained from isolated components, involve manual
alignment of telemetry data, and include off-line post-processing. These
often result in long analysis times, over-corrections, suboptimal tuning and
larger guard-bands. In our work we systematically address the issues related
to the dynamic collection, processing, and analysis of time-series telemetry

“Several approaches use QoS-based

metrics to drive power management in

different systems, including real-time

systems[6][3][8][9][5], web servers[1], and

parallel processing systems[7].”

“We propose to use component energy

metrics to show strong correlation

between them and quality of service

parameters such as Throughput and

Response Time in an enterprise

workload, using a machine learning

approach.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

36 | Coordinated Optimization: Dynamic Energy Allocation in Enterprise Workload

data obtained in time aligned fashion from a variety of physical and logical
sensors in the system. Furthermore, we propose exploiting that correlation
to redistribute energy amongst the components on the basis of a machine-
learning model that is trained online.

Background
We will be concerned with identifying relationships between the total power
expended (P   ), and two measures of performance: response time (R) and
throughput (T    ). In this section, we describe the synthesis and optimization
techniques used to build these relationships. Model synthesis uses the
following:

•• Fine-grained and time-aligned power readings at multiple power rails of the
primary components (CPU and DIMM).

•• System-level readings corresponding to three quantities, each averaged over
a small time interval: (1) P, the total system power, (2) T, the application
level throughput, and, (3) R, the response time experienced by requests.

The power readings obtained are aligned with the {P, T, R } tuples, and this
entire data collection is then used to divide the {P, T, R } space into classes
(phases) so that within each class or phase, a linear function can relate P, T,
and R to the power readings. These linear relationships are used in optimization
planning, whose objective might be to minimize P (the total system power), or
maximize T (the application level throughput), subject to R (the response time)
not exceeding a specific threshold. Learning continues online and therefore
as workload evolves or changes, the models adapt, and optimization planning
adapts as well. The following two sections delve further into the model
synthesis and optimization planning operations.

Model Synthesis: Support Vector Machines (SVM)
Support Vector Machines (SVM) technique may be employed to divide the
{P, T, R} space into different phases and to obtain linear relationships
governing the {P, T, R} variables in each phase. SVM is a computationally
efficient and powerful technique invented by Boser, Guyon, and Vapnik[20]
that is employed for classification and regression in a wide variety of machine
learning problems. Given a data collection relating a set of training inputs to
outputs, an SVM is a mathematical entity that accomplishes the following:
(a) it describes a hyper-plane (in some higher dimension) whose projection into
the input space separates inputs into equivalence classes so that the inputs in a
given class have a linear function that maps them to outputs that is distinctive
for that class, (b) the hyper-plane whose projection is the SVM, maximizes
the distance that separates it from nearest samples from each of the classes,
thus maximizing the distances between classes; subject to a softness margin
described next, (c) a softness margin that allows a bounded classification error,
whereby a small fraction of the inputs, that should be placed one side of the
projection are instead placed within a bounded distance on the other side (and
therefore misclassified); this margin allows a pragmatic tradeoff between having

“Linear relationships are used in

optimization planning, whose

objective might be to minimize P (the

total system power), or maximize T

(the application level throughput),

subject to R (the response time) not

exceeding a specific threshold.”

“Learning continues online and

therefore as workload evolves or

changes, the models adapt, and

optimization planning adapts as

well.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

Coordinated Optimization: Dynamic Energy Allocation in Enterprise Workload | 37

a high degree of separation between classes (that is, better distinctiveness) and
having too many outliers.

For our analysis in this article, we consider ten power readings obtained from a
set of five sensors per processor, in our two processor machine. Equations (1)
express each of {P, T, R} as linear functions of the five power readings per
processor within each given class or phase. Of the five sensors per processor, three
sensor readings (Vccp, Vtt, and Vsa) yield power going into three broad groupings
of functions on the processor, while two sensor readings, both referred to as
Vddq measure power in DIMMs that are connected to and controlled from the
processor. The explanations of the various subscripts associated with these sensor
readings are deferred to Table 1, in the section “Monitoring and Data Refining.”
Variable J represents a given class; and {PJ (t), RJ(t), TJ(t)} represents a tuple from
sample numbered t in the training set; and the various power readings associated
with that sample are represented by V *(t) in equations (1) below:

	 CPU power	 Memory power
	 readings (6)	 readings (4)

P t KJ P
J() − = +

==
∑∑ α βPk

iJ
K
i

k ccp tt saCPU i
P
iJ

ddV t V()
, ,

qq
i

DRAM CH i

Rk
iJ

K
i

k ccp tt s

t

V t

()

– ()
, ,

J R
JR t K

=

=

∑
=() α

aaCPU i
R
iJ

ddq
i

DRAM CH i

Tk
iJ

V t∑∑ ∑+

=
= =

β

α

()

–J T
JT t K() VV t V tK

i

k ccp tt saCPU i
T
iJ

ddq
i

DRAM CH i

() ()
, ,== =

∑∑ + β∑∑

� (1)

where the phases J, constants, K*P , K*R, K*T  , and the coefficients a*
*
 and b *

*

are all estimated through SVM regression technique. The use of RAPL[12]
technique can allow us to simplify equations (1) as we explain further in the
section “Experimental Setup and Results”:

	 CPU power	 Memory power
	 readings (2)	 readings (4)

P t KJ P
J() − = +

=
∑ α βP

iJ
RAPL
i

CPU i
P
iJ

ddq
i

DRAM

V t V t() ()
CCH i

R
iJ

RAPL
i

CPU i
R
iJ

ddq
iV t V t

=

=

∑
∑− = +R t KJ R

J() α β() ())

()
DRAM CH i

T
iJ

RAPL
i

CPU i
T
iJV t VJ T

JT t K
=

=

∑
∑− = +() α β dddq

i

DRAM CH i

t()
=

∑

� (2)

where VRAPL(t) equals the sum, Vccp + Vtt + Vsa, of the power spent in processor
activities.

Optimization Planning
Energy and performance models have a number of degrees of freedom and
conflicting objectives that are difficult to optimize collectively. For example
consider the following objectives: (a) best performance/watt (b) staying within
a power limit (c) response time <= an SLA threshold. Conflicts can manifest
among these objectives, for example, with considerations such as:

•• How to obtain a given throughput within a system power budget?

•• How to obtain a given throughput under a response time threshold ?

“We consider ten power readings

obtained from a set of five sensors

per processor, in our two processor

machine.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

38 | Coordinated Optimization: Dynamic Energy Allocation in Enterprise Workload

In the common case P (total system power) is affected by both performance
targets: throughput and response time. Also in the general case, performance is
affected by both the power spent in processors and in DIMM modules. Thus
optimization planning must grapple with meeting a compound objective:
one in which power expended towards one objective may, in general, come
at the cost of another. As described later, our experimental setup escaped this
particular complexity. However, for completeness, in the next paragraph we
sketch how variant objectives can be targeted simultaneously.

Multi-Objective Optimization (MOP): A good introduction to MOP can
be found in David et al.[27], and the reader can skip this paragraph without
loss of continuity. Once the coefficients of the linear estimation model
for power, throughput, and response time are synthesized, multi-objective
optimization can proceed with an adaptive weighted genetic algorithm
(AWGA). In a genetic algorithm, a successful outcome is defined to be one
that that redistributes power in such a way that power, response time, and the
reciprocal of throughput are all meeting the viable limits. More generally, a
set of fitness functions {   fn

  
} one per objective n, determines the optimality of a

candidate setting (that is, a vector describing the distribution of power among
components) for each of the objectives. In AWGA, for a population f of
candidate settings {x},

f n

max = max(fn (x)|x ∈f) and f n
min = min(     fn (x)|x ∈ f)

compute respectively the fitness bounds for each of a set of n=1,2,…,N
objectives, where each x in f is a vector whose fitness function represents a
feasible power distribution among components such as CPUs, DIMMs, and so
on. One may then choose an N-objective fitness function F that evaluates an
aggregate fitness value. For example, in case of AWGA, F can be chosen as

F
f F

N F F
n n

min

n
max

n
min

n

N

=
−

⋅ −=
∑ ()

()
x

1

An evolutionary algorithm selects parents from a given generation of f (usually
employing elitism) from which to produce power-feasible offspring as new
candidates for the next generation. In the space of objectives, Fn

min and Fn
max

represent extreme points that are renewed at each generation. As the extreme
points fitness bounds {(Fn

min, Fn
max)|n=1,2,..N} are renewed at each generation,

the contribution (weight) of each objective is renewed accordingly.

System Architecture for Autonomic Power-
Performance Control
Achieving power-efficient performance and abiding by power and performance
constraints calls for real-time feedback control. As Figure 1 depicts, an
autonomic system implements continuous feedback-based course corrections
with following provisions:

•• Monitoring infrastructure, to sample or quantify physical and logical
metrics, such as power, temperature, activity rates, and, to obtain statistical
moments of the metrics.

“Also in the general case, performance

is affected by both the power spent in

processors and in DIMM modules.”

“Achieving power-efficient

performance and abiding by power

and performance constraints calls for

real-time feedback control.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

Coordinated Optimization: Dynamic Energy Allocation in Enterprise Workload | 39

•• Analysis modules to distill relationships among monitored quantities—such
as between power and temperature and performance, and to determine
whether one or more operational objectives are at risk.

•• A planning element to formulate a course of action such as suspending,
resuming, speeding up, or slowing down various parts of a system, in order
to effect a specific policy choice—for example, to limit power or energy
consumed or to improve performance.

•• A capability to execute the formulated plan, and thereby to control the
operation of the system.

The section “Background” discussed the analysis and planning ingredients
listed above. Usually, a knowledge base supplements analysis and planning. The
knowledge base may be an information repository that catalogs the allowable
actions in each system state, or it may be implicit in the logic of the analysis,
planning, and control capabilities. In a system designed for extensibility, the
knowledge base would typically incorporate an adaptive mechanism that tracks
and learns from prior decisions and outcomes. The next section, “Monitoring
and Data Refining,” discusses the monitoring ingredients, and “Power Control
Mechanism” discusses the control ingredients, by using our system setup as an
example implementation to draw upon.

Monitoring and Data Refining
Fine-grained and lightly intrusive power-performance monitoring is a key
element of an adaptive power management infrastructure. While our setup has
a rich external capability for plumbing component power as we will detail next,
modern processors and platforms such as the E5-2600 series machines provide
internal logical sensors that can be used to estimate component power with
requisite accuracy. The data produced by raw monitoring is refined and then
used as feed for analysis and planning described earlier. We will describe the
refinement procedures alongside monitoring detail in this section.

The ideal monitoring mechanism operates in real time (that is, reports as recent
data as possible) and is not subject to the behavior(s) being monitored. In our
setup, logical sensors at the OS and software levels provide a near real-time
information stream consisting of rates at which common system calls, storage
accesses, and network transfers proceed. These logical sensors are supplemented
with power sensing through physical sensors. We use two externally powered
capabilities:

•• A Telemetry bus is used to collect data from physical (hardware) and logical
(software) sensors and send it to a monitoring agent. In particular, power
sensing is accomplished by sensing four types of voltage regulator (VR)
outputs at each processor chip, as summarized in Table 1.

•• The Monitoring agent, to which the telemetry data is sent processes the
data, organizes it as a temporally aligned stream of power and performance
statistics, and transmits the stream to a remote machine for further storage
or analysis.

“Modern processors and platforms

such as the E5-2600 series machines

provide internal logical sensors that

can be used to estimate component

power with requisite accuracy.”

“A Telemetry bus is used to collect

data from physical (hardware) and

logical (software) sensors and send it to

a monitoring agent.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

40 | Coordinated Optimization: Dynamic Energy Allocation in Enterprise Workload

Signal Description
VCCP For each multi-core processor socket, the sum of the power

drawn into that processor’s cores.
VSA For each multi-core processor socket, the power drawn by a

system agent, an entity responsible for power distribution and
control to the rest of the socket.

VTT For each multi-core processor socket, the power drawn for socket
level caching and data movements which include power taken up
in I/O and shared L3 cache.

VDDQ Each multi-core processor socket has several DRAM interfaces.
VDDQ measures the power drawn for memory attached to these
interfaces. Two signals per processor, each covering one pair of
channels at that processor sum up to provide power expenditure
for DRAM that the processor controls.

Table 1: Power Sensing Capabilities
(Source: Intel Corporation, 2012)

The monitoring infrastructure in our system provides us with the ability to
obtain five distinct power readings per multi-core processor. The first three are
described in the first three rows in Table 1, and they together add up to the
total power consumed by each processor. The three readings do not include
the power for the memory ranks that are controlled by the processor. Each
processor controls four memory channels with multiple DIMMs per channel;
each pair of memory channels furnishes one VDDQ signal as shown in the fourth
row of Table 1; summing those two VDDQ readings gives the power expended in
memory subsystem at each processor.

The data collected by these sensors is refined through successive
transformations as shown in Figure 2, and described below:

•• Sensor Hardware Abstraction (SHA) Layer: This layer interacts with the
sensors and communication channels. It uses adaptive sampling so
that measurements are only as frequent as needed, and it eliminates
redundancies.

•• Platform Sensor Analyzer: This layer removes noise, and, isolates trends,
which makes it easier to incorporate recent and historical data as inputs in
further processing.

•• Platform Sensor Abstraction: This layer provides a programming interface
for flexible handling of analyzed sensor data by control procedures
implemented above it.

•• Platform Sensor Event Generation: This layer makes it possible to generate
signals. Signals facilitate event-based conversations from control
procedures, thereby allowing further control to be hosted in a distributed
set of containers (such as local or remote controller software, OS modules,
and so on).

“The monitoring infrastructure in our

system provides us with the ability to

obtain five distinct power readings per

multi-core processor.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

Coordinated Optimization: Dynamic Energy Allocation in Enterprise Workload | 41

Figure 2: Sensor network model: sensor network layered architecture
(S1, S2 . . . Sn represent platform sensors: temperature, power, and so on)
(Source: A Vision for Platform Autonomy: Robust Frameworks for Systems
(Intel Press, ISBN 978-1-934053-25-6))

Application Layer

Platform Sensor Event generation

Platform Sensor Abstraction

Platform Sensor Analyzer
Sensor

Synthesis

Event
Registration

Trend
Analysis

Sensor Hardware Abstraction (SHA)

Platform Sensor Infrastructure

S1 S2 Sn-1 Sn

The successive refinements described above bridge the gap between the raw
data that sensors produce and the processed, orderly stream of performance and
power readings and alerts that software modules can receive and analyze further.

Estimation
While a machine can be readily upholstered with a metered power supply to
sense total power, an instrumentation capability that yields the fine-grained
decomposition of power as shown in Table 1 requires nontrivial effort. Besides,
adding many physical power sensors in production machines is neither
necessary nor practical in terms of cost.

Event counting capabilities in modern machines provide a potent alternative
means of estimating component power, when direct measurement is not
practical. One simple yet accurate way of estimating the power draw for
recent CPUs is to project it on the basis of utilization and P-state residencies,
based on trained models. Such training can be made more accurate by
including execution profiles that capture what fraction of instructions fall
into each of a small set of categories (such as SIMD, Load/Store, and ALU).
DRAM power can similarly be estimated on the basis of cache miss counts,
or DRAM operations that are counted at memory controllers and tracked
through processor event monitors. How accurately can one tie the power
consumptions to such proxy measures of power is a question we take up as part
of our future work; we note here that solutions such as the Intel® Intelligent
Power Node Manager[24] or the Intel® Data Center Manager[25] can also
provide measurements of power that we obtain through the added-in power

“Event counting capabilities in

modern machines provide a potent

alternative means of estimating

component power, when direct

measurement is not practical.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

42 | Coordinated Optimization: Dynamic Energy Allocation in Enterprise Workload

and temperature sensors in our experimental setup. DRAM power estimation
allows us to measure DRAM energy at DIMM granularity with sufficient
accuracy, which enables efficient control of DRAM RAPL states. Efficient
control of DRAM energy allows us to not only reduce the cost of hardware
infrastructure, but also improves the energy efficiency by reducing guard-bands
otherwise required to compensate for under-prediction. Furthermore, over-
prediction can also be reduced to avoid any performance degradation.

Power Control Mechanism
Once the desired power allocation among components is identified, the next
step is to implement the allocation. The processor provides at least two ways by
which privileged software can modify its power draw. The first is to change the
P-states and C-states as described in [23]. The second, a less intrusive method,
is to change the average power level using a control available in recent systems
such as the E5-2600 series. This control is known as Runtime Average Power
Limiting (RAPL) capability for CPUs and DRAM modules.

CPU RAPL provides interfaces to set a power budget for a certain time
window, and let hardware meet the energy targets[21]. Specifying power limit
as an average over a time window allows one to represent physical power
and thermal constraints. Privileged software can use the RAPL capability by
programming to an interface register the desired average level of power to
which the hardware can guide the processor via its own corrective frequency
adjustments[21] over a programmable control window. The window size
and the power limit are selected so that either at a single machine level or
at a data center level, correction in a machine’s power is driven quickly. In
practice, the window size can vary between milliseconds and seconds; the
former to satisfy power delivery constraints the latter to manage thermal
constraints. Note that by setting window size to one, RAPL can be used to
limit instantaneous power when necessary. The RAPL concept extends to
memory systems as well[22], aided by the integration of the memory controller
into each multi-core processor in several recent versions of Intel platforms.
Although CPU and memory energy can be regulated individually, it is
possible to build a coordinated approach where power regulation is a part of
a joint optimization function. While more details of RAPL technology are
beyond the scope of this article, Intel[21] and David et al.[12] may be consulted
for more information.

Experimental Setup and Results
The workload used in our study is the query-only portion of the Transaction
Processing over XML (TPoX) benchmark[16] version 2.0, with the Express-C
edition of IBM DB2 database management software[17]. As the workload driver
for TPoX draws very modest computational effort from the machine when

“A less intrusive method, is to change

the average power level using a control

available in recent systems such as the

E5-2600 series. This control is known

as Runtime Average Power Limiting

(RAPL) capability for CPUs and

DRAM modules.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

Coordinated Optimization: Dynamic Energy Allocation in Enterprise Workload | 43

using the query-only workload, for configuration simplicity the workload
driver is co-hosted together with the database management software on the
system under test; in any case, this can be changed easily. The choice of TPoX
benchmark as the workload for this study is motivated by its ability to impose
the kind of broad front stress on the computing system that is representative of
a modern enterprise—with its large numbers of threads, complex concurrency
interactions, and appreciable memory footprint. IBM DB2’s self-tuning
memory manager eliminated the need to perform any fine-tuning in our setup
as we varied the imposed workload. The system under test employed two CMP
processors, from the Intel Xeon E5-2600 series. The machine was furnished
with 64 GB DDR3 DRAM. A single Intel SATA solid-state disk drive with a
capacity of 160 GB provided the mass storage for database tables and log files,
with sufficient random I/O throughput to eliminate disk wait times during
workload execution.

For analysis and optimization planning, we simplify the model to reduce
the complexity of equations (1). The perturbations in system power (P) and
those in the application level response time and throughput that result from
experiments in which memory power changes to any degree are negligible in
comparison with those in which CPU power changes result. In part this is due
to low sensitivity of workload performance to the bandwidth and latencies of
DRAM accesses; in part it is due to the much smaller dynamic range of power
variation that is possible for memory compared to that which is possible for
the CPUs. Thus the second term(s) on the right hand side of equation (1) gets
absorbed in the constants (K*) on the left hand side. This reduction leads to
the following change from the equations (1):

	 CPU power readings (6)

P t K V t

R t

J P
J

Pk
iJ

k
i

k ccp tt saCPU i

J

()

(

− =
==
∑∑ α ()

, ,

))

()

− =

−
==
∑∑K V t

T t K

R
J

Rk
iJ

k
i

k ccp tt saCPU i

J

α ()
, ,

TT
J

Tk
iJ

k
i

k ccp tt saCPU i

V t=
==
∑∑ α ()

, ,

� (3)

A second simplification arises from the use of the RAPL technique. Under
CPU RAPL, hardware takes on the responsibility of ensuring that the sum,
Vccp + Vtt + Vsa, is maintained at the specified CPU RAPL value, for each of
the two processors (each processor is a multi-core chip). While we continue to
obtain the full set of power sensor readings (that is, Vccp, Vtt, and Vsa) as input to
model training, the individual variations in Vccp, Vtt, and Vsa are not as useful in
training as their sum (since it is the sum that can be controlled).

Hence in the SVM model formulation instead of fitting three separate
coefficients per processor (α * in equations (3)), one for each of Vccp, Vtt, and

“The choice of TPoX benchmark as the

workload for this study is motivated by

its ability to impose the kind of broad

front stress on the computing system

that is representative of a modern

enterprise.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

44 | Coordinated Optimization: Dynamic Energy Allocation in Enterprise Workload

Vsa, we train one coefficient per processor (a∼* in equations (4) below) that
multiplies their sum, Vsum = Vccp + Vtt + Vsa:

	CPU power readings (Vsum = Vccp + Vtt + Vsa )

P t K V t

R t K V

J P
J

P
iJ

sum
i

CPU i

J R
J

R
iJ

()

()

− =

− =
=

∑







α

α

()

ssum
i

CPU i

J T
J

T
iJ

sum
i

CPU i

t

T t K V t

()

()
=

=

∑
∑− =() 

α
� (4)

Model Training: Procedure and Evaluation
For the model training phase, we collected fine-grained and time-aligned
readings from the power monitoring sensors described earlier, and from a
database performance module that kept track of response times and request
completion rates. These readings provided the input-output training vectors,
{P*(t  ), R   *(t   ), T *(t), and V i

sum (t)} as denoted in equations (4). The training
data was obtained under a cross-product of two sets of variations:

•• Variation of Demand: We modified the TPoX workload driver so that it
would cause time-varying demand on the machine. The modification
consisted of using a different “think-time” parameter at different times; the
parameter controls how long each of a number of threads in the workload
driver waits between the completion of a previous request and the issuance
of a new request.

•• Variation of Supply: We varied the CPU and memory RAPL settings,
thereby varying the supply of power to CPU and DRAM. As we noted
earlier in this section, the variation in memory power had marginal effects
on system power, and on throughput and response time. We ascertained
it thus: in order to check for any correlation or dependency in the 10
predictors (component energy variables) of the original equation 1, we
selected the best among the predictors for throughput and response
time, and then tested sequentially how the addition of the next potential
predictor could improve accuracy, and wound up with VDDQ variables as
superfluous in this experimental setup.

We executed TPoX with think-time varying from 0 to 100. For each think-time
CPU RAPL limits were varied between 20 W and 95 W. SVM model training
on the basis of this data was then used to categorize the data into distinct
phases (J), following which the SVM model parameters for each phase,
{  

  K KR
J

T
J

P
iJ

R
iJ

T
iJ, , , ,α α α } were evaluated.

The SVM based classification yielded decomposition into three phases shown
in Figure 5. Accordingly, three different sets of modeling parameters (that is,
for J = 0, 1, 2) in equations (4) relate CPU RAPL parameters to total system
power, throughput, and response-time outcomes. Figures 3 and 4 show the
close agreement between estimated and measured results from the training.
Figure 3 shows how the total wall power estimated on the basis of RAPL

“We modified the TPoX workload

driver so that it would cause time-

varying demand on the machine.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

Coordinated Optimization: Dynamic Energy Allocation in Enterprise Workload | 45

Figure 3: Wall power measured versus estimated (as function of component power)
(Source: Intel Corporation, 2012)

0.4

0.5

0.6

0.7

0.8

0.9

1

0.3

N
o

rm
al

iz
ed

 W
al

l P
o

w
er

1 3 5 7 9 11 13 15 17 19 21

Time Instance

23 25 27 29 31 33 35 37 39 41 43 45 47

Measured Wall Power Estimated

Figure 4: CPU power actual needed versus estimated. Estimated CPU power is phase-wise, and based on the
throughput and target latency requirements.
(Source: Intel Corporation, 2012)

0.4

0.5

0.6

0.7

0.8

0.9

1

0.3

N
o

rm
al

iz
ed

 C
P

U
 P

o
w

er

P0 P0 P0 P0 P0 P0 P0 P0 P1 P1 P1 P1 P1 P1 P1 P1 P1 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2 P2

Workload Phase

CPU Power Estimated CPU Power

parameters via the first equation in (4) compares with that actually measured.
The comparison is shown under variations in demand and supply that were
introduced as described earlier in this section; the time instance values on the
x-axis have no particular significance except as sample points.

Figure 4 also shows how in each of three phases the measured and estimated
power values compare; in this case, the estimation is drawn in two steps: first,

Intel® Technology Journal | Volume 16, Issue 2, 2012

46 | Coordinated Optimization: Dynamic Energy Allocation in Enterprise Workload

the CPU RAPL values are estimated based on desired throughput and response
time by inverting the last two of the equations (4) and then the first equation
of (4) is used to derive estimated system power. The graphs show excellent
agreements between measured and estimated values at most sample points.

Figure 5: Model tree depicting three phases (P0, P1, and P2) in the workload characterized by throughput and
response time
(Source: Intel Corporation, 2012)

< 9914.02 ê 9914.02

1: AVG_THRUPUT

< 306137.27 ê 306137.27

3: cluster1 (6/0) [3/0] 4: cluster0 (5/0) [3/0] 0.2

0.4

0.6

0.8

1

0
A

ve
ra

g
e

T
h

ro
u

g
h

p
u

t
P0 P0 P0 P0 P1 P1 P1 P1 P1 P2 P2 P2 P2 P2 P2

AVG_THROUGHPUT RESP_TIME

5: cluster2 (9/0) [4/0]

Workload Phase

Model Tree (3-Phase)

2: RESP_TIME

On an average our machine learning regression function supported by SVM
machines delivers accuracy between 97 and 98.5 percent. Each phase is trained
for its own performance and latency model coefficients.

Optimization and Control
Figure 6 depicts an example consisting of four different workload conditions
in which a server may exist at some point. On the x-axis, tt 00, tt 10, and
tt 20 stand for three different think times of 0.0 ms, 10.0 ms, and 20.0 ms
respectively. The y-axis is used to show response times. The red colored multi-
segment line in Figure 6 connects four workload points (W1, W2, W3, and W4).
These four workload points are four randomly selected perturbations in
demand and supply: for example, W1 results from setting a think time of
20.0 ms and a CPU RAPL value of 40 watts; W2 results from a think time of
0.0 ms (driving a higher arrival rate than W1) and with a CPU RAPL value
of 50 watts, and so on.

“On an average our machine learning

regression function supported by SVM

machines delivers accuracy between 97

and 98.5 percent.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

Coordinated Optimization: Dynamic Energy Allocation in Enterprise Workload | 47

Figure 6: Response time at four arbitrarily selected points
reflecting four possible TPoX workload and server conditions
(Source: Intel Corporation, 2012)

0.016

0.017

0.018

0.013

0.014

0.015

0.010

0.011

0.012

tt20 tt00 tt20 tt10

R
es

p
o

n
se

 T
im

e
(s

)

W1 RAPL 40

W2 RAPL 50

W3 RAPL 70
W4 RAPL 80

If none of the response times for (W1, W2, W3, and W4) in Figure 6 exceeded a
desired performance objective—say a Service Level Agreement (SLA) target of
R = 20.0 ms, then it would be desirable to save power by reducing performance
so long as the higher response times still stay below the target of 20.0 ms. On
the other hand, if at any of these workload points the response time exceeds
a desired threshold, then it would be desirable to improve performance by
increasing the power at that point, in order to meet the SLA. In general, an
SLA may spell out throughput and response time expectations, and may
include details such as the fraction of workload that must complete within a
threshold amount of response time under differing levels of throughput. For
ease of description, we consider a simple SLA setting: that the response time,
averaged over small time intervals (that is, 1 second), not exceed a static target
value of 14.0 ms; this is shown in Figure 7 by the blue line, R = 0.014.

Figure 7: Illustration of improvement in the response time using
proactive control of CPU power using CPU RAPL.
(Source: Intel Corporation, 2012)

SLA

0.016

0.017

0.018

0.013

0.014

0.015

0.010

0.011

0.012

tt20 tt00 tt20 tt10

R
es

p
o

n
se

 T
im

e
(s

)

W1 RAPL 40

W3 RAPL 70
W4 RAPL 80

NEW W1 NEW W2

NEW W3

NEW W4

W2 RAPL 50

Intel® Technology Journal | Volume 16, Issue 2, 2012

48 | Coordinated Optimization: Dynamic Energy Allocation in Enterprise Workload

Figure 7 illustrates new workload points (shown in green) that result from
proactive power-performance control through the use of a trained SVM
model. New RAPL settings (higher CPU power) computed using the trained
model reduce the response times for W1 and W2 from their previous values
(by 15 percent and 7 percent respectively) to new values that are much closer
to the SLA, as shown in Figure 7. Similarly, the model training produces
lower CPU power settings for W3 and W4 that lead to power savings at the
cost of higher response times and to 11.5-percent improvement in energy
efficiency. Incidentally, the new setting for W4 misses the SLA target by a small
but not negligible margin, which could force a re-computation of the CPU
RAPL setting in a next iteration. Note that in order to reduce frequent course
correction a control policy may permit overshooting the SLA target by a small
margin in either direction. In the example of Figure 7, the new RAPL settings
for W1 and W2 reduced response times by 15 percent and 7 percent respectively
and the new RAPL settings. In this way phase-aware CPU power scaling yields
significant power reduction at all performance levels relative to isolated tuning.

Summary and Future Work
This article described an autonomic approach for fine-grained control over
power-performance tradeoffs at a single server level. It is comprised of
observing, analyzing, planning, and controlling the dynamic expenditure
of power while maintaining an application level performance objective. We
used a time-varying database query workload on state-of-the-art database
management software running on current generation hardware as the case
study vehicle for our example.

In summary, coordinated budgeting using phase-aware optimization can be
used to maintain system balance between performance and power-efficiency
targets. Experimental setup allows continuous monitoring of workload
and planning energy allocation by predicting the effects on performance. A
reconfigurable power allocation infrastructure directs power-control requests to
each component.

Future work will expand the value proposition of the approach to multiple
machine configurations, at the rack and data-center level. Since it would
entail measurement and control over a larger set of local and global objectives,
we will mix estimation alongside the use of hardware sensors, to simplify
monitoring. The expanded set of objectives will include a mix of workloads,
with compound SLAs covering response times, throughputs, and arrival rates,
and we anticipate the inclusion of multi-objective optimization techniques [27]
to satisfy diverse requirements.

References
[1]	 V. Sharma, A. Thomas, T. Abdelzaher, K. Skadron, Z. Lu, “Power-aware

QoS Management in Web Servers,” in In Proceedings of the 24thIEEE
Real-Time systems Symposium (RTSS.03), Cancun, pages 63–72, 2003.

“In order to reduce frequent course

correction a control policy may permit

overshooting the SLA target by a small

margin in either direction.”

“Phase-aware CPU power scaling

yields significant power reduction

at all performance levels relative to

isolated tuning.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

Coordinated Optimization: Dynamic Energy Allocation in Enterprise Workload | 49

[2]	 X. Fan, C. Ellis, A. Lebeck, “The Synergy Between Power-aware
Memory Systems and Processor Voltage Scaling,” in Workshop on Power-
Aware Computing Systems, pages 164–179, 2002.

[3]	 K. Flautner, T. Mudge,“Vertigo: Automatic Performance Setting for
Linux,” SIGOPS Oper. Syst. Rev., 36(SI):105–116, 2002.

[4]	 Y. Hayamizu, K. Goda, M. Nakano, M. Kitsuregawa, “Application-aware
Power Saving for Online Transaction Processing using Dynamic Voltage
and Frequency Scaling in a Multicore Environment,” in Proceedings of the
24th international conference on Architecture of computing systems, ARCS’11,
pages 50–61, Berlin, Heidelberg: Springer-Verlag, 2011.

[5]	 C. Isci, G. Contreras, M. Martonosi, “Live, Runtime Phase Monitoring
and Prediction on Real Systems with Application to Dynamic
Power Management,” in Proceedings of the 39th Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO 39,
pages 359–370, Washington, DC, USA, IEEE Computer Society, 2006.

[6]	 W. Kim, D. Shin, H. Yun, J. Kim, S. Min, “Performance Comparison
of Dynamic Voltage Scaling Algorithms for Hard Real-time Systems”, in
Proceedings of the Eighth IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS’02), RTAS ’02, Washington, DC, USA,
IEEE Computer Society, 2002.

[7]	 J. Li, J. Martinez.,“Dynamic Power-Performance Adaptation of Parallel
Computation on Chip Multiprocessors,”International Symposium on
High-Performance Computer Architecture, 0:77–87, 2006.

[8]	 A. Miyoshi, C. Lefurgy, E. Van Hensbergen, R. Rajamony,
R. Rajkumar, “Critical Power Slope: Understanding the Runtime
Effects of Frequency Scaling,” in Proceedings of the 16th Annual ACM
International Conference on Supercomputing, pages 35–44, 2002.

[9]	 C. Poellabauer, L. Singleton, K. Schwan,“Feedback-based Dynamic
Voltage and Frequency Scaling for Memory-bound Real-time
Applications,” in Proceedings of the 11th IEEE Real Time on Embedded
Technology and Applications Symposium, pages 234–243, Washington,
DC, USA, IEEE Computer Society, 2005.

[10]	 W. Bircher and L. John, “Complete System Power Estimation: A
Trickle-Down Approach Based on Performance Events,” in IEEE
International Symposium on Performance Analysis of Systems and Software,
April 2007, pp. 158–168.

[11]	 F. Bellosa, “The Benefits of Event-Driven Energy Accounting in Power-
Sensitive Systems,” in ACM SIGOPS European Workshop, September 2000.

[12]	 H. David, E. Gorbatov, U. Hannebute, R. Khanna, C. Le, “RAPL:
Memory Power Estimation and Capping,” in ACM/IEEE International
Symposium on Low Power Electronic Design, 2010.

Intel® Technology Journal | Volume 16, Issue 2, 2012

50 | Coordinated Optimization: Dynamic Energy Allocation in Enterprise Workload

[13]	 D. Economou, S. Rivoire, C. Kozyrakis, P. Ranganathan, “Full-System
Power Analysis and Modeling for Server Environments,” in Workshop on
Modeling, Benchmarking, and Simulation (MoBS), 2006.

[14]	 S. Kang and R. Kumar, “Magellan: a Search and Machine Learning-
based Framework for Fast Multi-core Design Space Exploration and
Optimization,” Proceedings of the Conference on Design, Automation and
Test in Europe, 2008.

[15]	 R. Bianchiny and R. Rajamony, “Power and Energy Management for
Server Systems,” in IEEE Computer 2004.

[16]	 TPoX, http://tpox.sourceforge.net/

[17]	 DB2 Express-C Edition http://www-01.ibm.com/software/data/db2/
linux-unix-windows/edition-express-c.html

[18]	 IDC, “The 2011 Digital Universe Study,” http://www.emc.com/
collateral/demos/microsites/emc-digital-universe-2011/index.htm

[19]	 D. Meisner, B. Gold, T. Wenisch, “PowerNap: Eliminating Server Idle
Power,” in ASPLOS 2009.

[20]	 B. Boser, I. Guyon, V. Vapnik, “A Training Algorithm for Optimal
Margin Classifiers,” in Proceedings of the fifth annual workshop on
Computational learning theory (COLT ’92), ACM, New York, NY, USA,
144–152.

[21]	 Intel® 64 and IA-32 Architectures Developer’s Manual: Vol. 3A.

[22]	 Intel® Core™ i7 Processor Family for the LGA-2011 Socket, Datasheet
Volume 2.

[23]	 S. Siddha, “Multi-core and Linux Kernel,” Intel Open Source
Technology Center

[24]	 Intel® Intelligent Power Node Manager, http://www.intel.com/content/
www/us/en/data-center/data-center-management/intelligent-power
-node-manager-general.html

[25]	 Intel® Datacenter Manager (DCM), http://software.intel.com/sites/
datacentermanager

[26]	 E. Rotem, A. Naveh, D. Rajwan, A. Ananthakrishnan, E. Weissmann,
“Power Management Architecture of the 2nd Generation Intel® Core™
Microarchitecture, formerly code named Sandy Bridge” http://www
.hotchips.org/archives/hc23/HC23-papers/HC23.19.9-Desktop-CPUs/
HC23.19.921.SandyBridge_Power_10-Rotem-Intel.pdf

[27]	 A. Konak, D. W. Coit, A. E. Smith, “Multi-Objective Optimization
Using Genetic Algorithms: A Tutorial,” Reliability Engineering &
System Safety, volume 91, issue 9, Elsevier, 2006.

Intel® Technology Journal | Volume 16, Issue 2, 2012

Coordinated Optimization: Dynamic Energy Allocation in Enterprise Workload | 51

Author Biographies
Martin Dimitrov obtained his B.S. degree in computer science from Bethune–
Cookman College in 2004 and his PhD in computer science from the
University of Central Florida in 2010. Martin joined Intel in 2010 as a systems
engineer. Currently, Martin works in enabling and optimizing enterprise
software for Intel server platforms. In addition, Martin is an active researcher
in the Greenpoint initiative, which aims at optimizing system energy through
collaborative software-hardware approaches. Martin can be contacted at
Martin.P.Dimitrov@Intel.com

Kshitij Doshi is a principal engineer in the Software and Services Group
at Intel Corporation. He has a bachelor of technology degree in electrical
engineering from the Indian Institute of Technology (Mumbai) and a master’s
degree and PhD in computer engineering from Rice University. His research
interests span operating systems, optimization of performance, power, and
energy in enterprise solutions, database architectures, and virtual machines. He
can be contacted at kshitij.a.doshi@intel.com

Rahul Khanna is a platform architect at Intel Corporation involved in
development of energy efficient algorithms. Over the past 17 years he has
worked on server system software technologies including platform automation,
power/thermal optimization techniques, reliability, optimization, and
predictive methodologies. He has authored several technical papers and
book chapters in the areas related to energy optimization, platform wireless
interconnects sensor networks, interconnect reliability, predictive modeling,
motion estimation, and security, and he holds 27 patents. He is also the
co-inventor of the Intel IBIST methodology for high-speed interconnect
testing. His research interests include machine learning based power/thermal
optimization algorithms, narrow-channel high-speed wireless interconnects,
and information retrieval in dense sensor networks. Rahul is a member of
IEEE and the recipient of three Intel Achievement Awards for his contributions
in areas related to advancements of platform technologies. He is the author of
book A Vision for Platform Autonomy: Robust Frameworks for Systems. He can be
reached at rahul.khanna@intel.com

Karthik Kumar is a software engineer in the Software and Services Group
at Intel Corporation. He obtained a bachelor’s degree in engineering from
Anna University (India), and a master’s degree and PhD in computer
engineering from Purdue University. His research interests span energy and
performance optimization in computer systems. He can be contacted at
karthik.kumar@intel.com

Christian Le is server power and thermal architect in Intel’s Data Center and
Connected Systems Group. He has spent 16 years designing system thermal
and power management solutions. He is currently focused on datacenter power
optimization and platform autonomics technologies. He can be reached at
Christian.le@intel.com

52 | A Robust Autonomic Framework for Memory Thermal, Power, and Throughput Management

Contributors

Intel® Technology Journal | Volume 16, Issue 2, 2012

Advances in technologies are driving integration of more features and higher
performance into smaller chip designs that are resulting in increasing power
and thermal density and design complexity. Mobile computing devices require
higher performance with more battery life while the need for higher performance
servers places more demands on data center–server efficiency due to rising
costs of energy, operation, and infrastructure. Holistic dynamic thermal and
power management explicitly couples thermal and power management from
the chips to computer to server and to the data center. Additional challenges
are placed on hardware and software development and validation time as design
complexity and density increase. A common architecture for power and thermal
management facilitates more efficient hardware and software development,
validation, and reuse across segments. This article proposes a common memory
open and closed loop thermal management (OLTM, CLTM) integrated thermal
and power capping with a technique called running average power limiting
(RAPL) architecture. These traditional power and thermal features are described
as part of an autonomic framework for power and thermal management
integrated with advanced interrupts/signaling and power limiting (RAPL)
concepts. We introduced efficient RAPL that enforces power limits over a sliding
time widow, while minimizing performance impact in highly dynamic and
transient data center workloads. We also introduce the concept of a standard
software interface through standard configuration architecture (SCA) that
produces a uniform telemetry and event signaling infrastructure across client and
server segments. We also introduce the design considerations for a data center
management data aggregation and workload autonomics framework that can
make use of power, thermal, and throughput constraints to influence reduction
of maintenance costs, to drive greater efficiencies for more flexibility, and to
dynamically scale resource pools.

Introduction
An explosion of Internet growth is expected due to the exponential growth in
the number of globally connected users, computing devices, and new emerging
segments. Contents will drive more performance, density, and energy efficiency
in data center and computing devices[1][2]. According to an EPA report to
Congress[3], the annual electricity use by data centers for 2011 is projected
to be nearly double from 60 billion kWh to more than 120 billion kWh,
representing a USD 7.4 billion annual electricity cost and an increase from
1.2 percent to 3 percent of electricity consumption in the US. The operational
cost for cooling and providing power to IT equipment is equivalent the cost
of equipment; the gap between operational versus capital costs will widen with
decreasing cost of computing and increasing demand and cost of electricity.

Christian Le
Intel Architecture Group,
Intel Corporation

Robin Steinbrecher
Intel Architecture Group,
Intel Corporation

Felipe Ortega
Intel Architecture Group,
Intel Corporation

Christopher Cox
Intel Architecture Group
PC Client Group,
Intel Corporation

Rahul Khanna
Software and Solutions Group,
Intel Corporation

Mrittika Ganguli
Data Center and Connected Systems
Group, Intel Corporation

A Robust Autonomic Framework for Memory Thermal,
Power, and Throughput Management

Intel® Technology Journal | Volume 16, Issue 2, 2012

A Robust Autonomic Framework for Memory Thermal, Power, and Throughput Management | 53

Memory power and thermal cooling is a significant portion of server power
consumption and better controlling these two key aspects via autonomic
functions is important to the future of green data centers. As an example, Figure 1
depicts projection for a typical Intel® Core™ i7 generation server where both
processor and memory constitute a significant portion of the platform power,
ranging from 32 percent at idle to 61 percent when active. Given that CPU
and memory provide high dynamic range, it is important to address both when
designing platform power limiting. Since servers rarely operate at their peak
capacity, efficient power capping is deemed as a critical management component
of modern enterprise computing facilities. Advancements on the thermal and
power management of processors[4] have resulted in features such as temperature
sensor feedback for fan speed control, dynamic voltage and frequency scaling for
proportional computing, and power meter and power control accessible in-band
to the OS[5] and out-of-band to node or data center agents[6] but stops short
of common interface. A holistic approach to power and thermal management
requires a robust, auto-discoverable framework that enables policy-driven
features using software standards, silicon hooks, and manageability containers
to accommodate thermal/power budget and performance tradeoffs. Common
framework facilitates more efficient hardware software co-design through reuse
and fosters software innovations scalable across the computing continuum.
Since memory is the less traveled path, in this article we present a robust thermal
throttling framework for memory that standardizes and enhances the throttling
features present in Nehalem (NHM), Sandy-Bridge (SNB) families to:

•• Maximize reusability across segments and across platforms

•• Balance efficient reuse of existing art and new development

•• Minimize cost for any particular segments

•• Define common memory power and thermal throttling algorithms

•• Running average power limiting (RAPL)

•• Leverage validation across generations and architecture divisions

•• Scale the architecture and interfaces across servers, desktop and mobile clients

Figure 1: Intel® Core™ i7 server power projections at idle and active modes
(Source: Intel Corporation, 2012)

Idle Power Active Power

Platform
49%

Platform
20%Processor

26%

Memory
6%Power

Delivery
19%

Power
Delivery

19%

Processor
41%

Memory
20%

“Memory power and thermal cooling

is a significant portion of server power

consumption and better controlling

these two key aspects via autonomic

functions is important to the future of

green data centers.”

“A holistic approach to power and

thermal management requires a

robust, auto-discoverable framework

that enables policy-driven features

using software standards, silicon

hooks, and manageability containers

to accommodate thermal/power budget

and performance tradeoffs.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

54 | A Robust Autonomic Framework for Memory Thermal, Power, and Throughput Management

Related Work
Thorough examinations of thermal and power relationships have demonstrated
the complex interdependence between thermal, power, and performance.
Shah[7], Sharma[8], and Patel[9] demonstrated the importance and sensitivity of
facility layout with respect to cooling and the relative difficulty in predicting
dynamic thermal loading for optimal design and efficiency. They described
how the horizontally scalable topology is driven by Internet computing and
the thermal impact as the density of this segment increases in scale and power
density and also addressed thermal management and multisystem resource
management as a must-have application to the success of this segment.

Proportional energy computing equates to adjusting energy consumed relative
to the amount of work being performed. Barroso[3] discussed the value of
energy and computing power utilization and the need to improve server
energy proportionality profiles. They called to the developer community to
come up with a metric at non-peak activity as well as to employ heuristics
to refine design through characterization of a system energy performance.
Ahuja[10] conducted experiments and projected reliable server operations at
higher data center ambient temperature up to 40°C to reduce cooling demands
on data centers to facilitate higher ambient operations recommended by the
American Society of Heating, Refrigerating and Air Conditioning Engineers
(ASHRAE). Shah et al.[7] analyze the hot and cold air mixture using the second
law of thermodynamics and present a metric of energy loss where thermal
manageability and energy efficiency are both considered simultaneously.

Although much focus has been given to server and data center energy
efficiency and cooling over the past decade, little progress has been made in the
standardization of the power and thermal interconnect scheme between the
computing device and data center. Recent works by Khanna, et al.[13][14] proposed
dynamic closed loop thermal management framework integrated into Sandy
Bridge-EP with a multiple dynamic thresholds scheme to optimize performance
and minimize fan energy. And they investigated a memory containerization
software scheme to allocate frequently executed object codes into temporal-
spatial memory domains (from ranks-to-channel) in order to optimize power
consumption. Another novel approach to a DRAM power sensor, employing an
estimation and calibration scheme for use in an energy-efficient running average
power limiting algorithm in software was proposed by David, et al.[15][16]. These
pioneering works pave the way for integrated thermal and power management.

The proposal in this article advances on these dynamic thermal management
(DTM) and power limiting techniques. Our approach gears the architecture
towards common memory architecture for power and thermal management
unified by power metric and standardized through a scalable interface across
desktop, mobile, and server/workstation segments. We propose a common
memory open loop and closed loop thermal management (OLTM, CLTM),
thermal and power interrupts and event signaling, open loop and closed loop
power limiting (OPL, CPL), running average power limiting (RAPL), and a
standard software interface with standard configuration architecture (SCA).

“Although much focus has been given

to server and data center energy

efficiency and cooling over the past

decade, little progress has been made

in the standardization of the power

and thermal interconnect scheme

between the computing device and

data center.”

“Our approach gears the architecture

towards common memory architecture

for power and thermal management

unified by power metric and

standardized through a scalable

interface across desktop, mobile, and

server/workstation segments.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

A Robust Autonomic Framework for Memory Thermal, Power, and Throughput Management | 55

Thermal and Power Autonomic Framework
Complexity in emerging computing systems requires the holistic solution to
manage competing dynamics of power, thermal conditions, RAS, resource
monitoring, and locality. Autonomics features are solutions built using
software-based models and industry standards that can enable automated
detection, optimization, correction, and tuning dynamically while making
smart decisions to enable high service reliability. The goal of an automated
system is to create expert hardware/software models that can automatically
perform proactive actions to converge to an optimal solution by analyzing the
specified policies and the current state of context the system is running.

The autonomic computing paradigm is modeled after the human autonomic
nervous system, where changes in behavior of the system are brought back to
an equilibrium state with closed loop control processes. An autonomic system
adapts through a set of behaviors that promote stability through managing the
system essential variables within their viable limits. The elements of autonomics
as defined by Khanna are:

•• Telemetry bus – Retrieve RAW sensors as well as send the control messages
to the respective devices using an efficient interconnect.

•• Monitor agent – Organize the RAW sensor data, synthesize the statistical
characteristics and distribute the data internally or externally.

•• Analysis agent – Analyze the local power consumption of each device
along with the corresponding performance. The analysis agent 1) builds a
database of historic trends that can be used to make future decisions, and
2) trains the model by taking a proactive action where power allocation
to a random device is incrementally changed and the corresponding
performance impact is measured.

•• Control agent – propagate power control message to the controlled device
in a timely manner. The control agent is specific to a device and the
power control methodology. A control function identifies the dynamic
range of the power control and the granularity at which it can be
controlled.

•• Performance analysis agent – creates statistical model of the performance
data to study the performance impact due to device power variation.
It measures the system performance with respect to the workload and
evaluates the fitness function that is the function of the change in
performance between successive measurements.

The goal of autonomic computing is to limit human intervention to
extraordinary situations and instead enables general policies and rules as input
for a self-management process. Figure 2 is a high level diagram of architecture
for a power, performance thermal autonomic. Thermal and power management
are the fundamental functional unit of an autonomic application, which
contains executable code, exports functional interfaces, behavioral attributes,
constraints, and control mechanisms. Thermal and power managed elements
have their own private operators that are not visible to other managed elements

“Autonomics features are solutions

built using software-based models and

industry standards that can enable

automated detection, optimization,

correction, and tuning dynamically

while making smart decisions to

enable high service reliability.”

“Thermal and power management

are the fundamental functional unit

of an autonomic application, which

contains executable code, exports

functional interfaces, behavioral

attributes, constraints, and control

mechanisms.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

56 | A Robust Autonomic Framework for Memory Thermal, Power, and Throughput Management

and can only be accessed through control functions exported via functional
interfaces.

•• Self-configuring – The system configures and reconfigures itself undervarying
and unpredictable conditions.

•• Self-optimizing – The system detects suboptimal behaviors and optimizes
itself to improve its operational characteristics while keeping the complexity
hidden.

•• Context awareness – The system has the ability to understand its operation
environment and ability to react to the environmental changes.

•• Open standards – Autonomic applications should be built upon open
standards so that they can be ported across heterogeneous environments
consisting of multiple hardware and software. Consequently, it should be
built on open protocols and interfaces.

The thermal and power autonomic elements represent the initial two stages of
maturity as defined by IBM.

•• Basic – The expert knowledge of managed elements and its environment is
embedded with the IT professional requiring human intervention on even
trivial functions.

•• Managed – Scripting and expert tools automate data sensing, execution,
and reporting operations. Once the information is collected, it is analyzed
by individual experts to formulate plans and decisions.

Figure 2: Thermal and power autonomics[31]

(Source: A Vision for Platform Autonomy: Robust Frameworks for Systems, Intel Press, 2011)

Delta
Detector

Platform Sensor Monitoring Agent

Calibration

Event

Synthetic
Counter

Comparator

Global
Counter

T

Power Budget
(AE)

Analysis (u-C)

Fuzzy
Fan

Control
Fan OS

Passive
Cooling
Control Applications

SLA & Policy Compliance Layer

Other
Agents

PERF

RAS
O.S Performance
Monitoring (AE)

Autonomic
Manager

Silicon Technology Layer Middleware Layer

Register

Publish

CLTM/
RAPL

T

“The system configures and reconfigures

itself undervarying and unpredictable

conditions.”

“The system detects suboptimal

behaviors and optimizes itself to

improve its operational characteristics

while keeping the complexity hidden.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

A Robust Autonomic Framework for Memory Thermal, Power, and Throughput Management | 57

Thermal and power management functions forms fundamental ingredients of
the autonomic infrastructure that play an optimization game to achieve energy
efficiency for a given work while operating under multiple constraints. We will
discuss the key features and interfaces to these elements, how to make them
ubiquitous to platforms, how to export them as open standards compatible
software for IT business processes, and how to automate power control as a
function of anticipated utilization, performance degradation, available wall
power, and cooling capacity.

Fundamentals of Thermal Design
Any cooling system must ensure that each and every component meets its
specification. Most components have damage, functional, and reliability
temperature specifications. The thermal management of the server ensures
compliance to these specifications while taking the appropriate actions to
manage that compliance. Figure 3 summarizes the thermal limits and the
actions to be taken if they will be exceeded.

When designing the cooling and thermal management system, one must
comprehend the design load conditions. For processors this is well defined
using the thermal design power (TDP) methodology. Intel characterizes
workloads and sets the TDP for each SKU to ensure all reasonable workloads
can be supported. For memory a similar process is employed based on likely
workloads. Bandwidth targets are defined based on these workloads so that
the thermal design can be sized appropriately. Memory vendor data is then
used to translate that bandwidth into TDP levels for each DIMM type. One
bandwidth target for a specific memory speed translates into widely different
TDP levels. A DRx8 DIMM may dissipate less than 5 W while an LR-DIMM
can consume 15 W for the same bandwidth. The thermal engineer must create
a reasonable thermal design that can cover all supported configurations.

Well-designed systems will use power and thermal management features to
ensure compliance to component specifications. Figure 4 shows a processor in a
system that will be used as an example. The three parts of the equation and the
design influences for each are:

•• System ambient – inlet temperature to the system: defined in ASHRAE’s
publication “Thermal Guidelines for Data Processing Environments,” this
includes any rack effects that can increase the air temperature delivered to
the IT Equipment (ITE)

•• Air heating – increase in air temperature due to upstream heat sources,
affected by component placement, upstream component power dissipation,
air movers, local air delivery

•• Self heating – increase in component temperature above local ambient
due to the heat dissipated on the device of interest, driven by component
packaging, power dissipation and thermal solution (such as a heat sink)

“The thermal management of the

server ensures compliance to these

specifications while taking the

appropriate actions to manage that

compliance.”

“Well-designed systems will use power

and thermal management features

to ensure compliance to component

specifications.”

Figure 3: Thermal management
(Source: Intel Corporation, 2012)

Damage
Limit

Functional
Limit

Reliability
Limit

Shutdown

Performance and
Power Management

Optimize Cooling
and PerformanceC

o
m

p
o

n
en

t
Te

m
p

er
at

u
re

Intel® Technology Journal | Volume 16, Issue 2, 2012

58 | A Robust Autonomic Framework for Memory Thermal, Power, and Throughput Management

Figure 4: Example component in a system and rack
(Source: Intel Corporation, 2012)

Self Heating

System
Ambient

(TsA)

Component

TComponent = Self Heating + Air Heating + System Ambient

Air Heating

The thermal engineer considers all supported system configurations along
with the design requirements such as redundancy to ensure that the
server can adequately meet the specifications based upon the target load
requirements.

Two important thermal and power characteristics are nonlinear and, as a result,
weigh heavily in the overall power efficiency of the cooling system:

•• Fan power is proportional to the cube of airflow (and fan speed), and

•• Component and heat sink convective thermal performance is proportional
to the inverse of airflow.

The combination of the two characteristics can cause extremely high fan power
consumption depending on the driving component thermal characteristics.
Optimization between performance and power can become highly complex as
a result.

An optimal design can be created by preferentially using features aggressively
or nonaggressively. The combination of the feature settings must support the
customer’s usage.

Thermal management can be adjusted to preferentially favor performance,
power efficiency, high reliability, or acoustics. In some cases the action taken
overlaps with that used between these preferences. These designs may overlap,
but they all involve tradeoffs between fan speed, component temperatures,
acoustic output, power consumption, and performance. Table 1 summarizes
key attributes of the designs.

“The thermal engineer considers all

supported system configurations along

with the design requirements such as

redundancy.”

“Thermal management can be

adjusted to preferentially favor

performance, power efficiency, high

reliability, or acoustics.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

A Robust Autonomic Framework for Memory Thermal, Power, and Throughput Management | 59

Design or Policy Fan Speed Power Management Result

Increasing Temperature Decreasing Temperature State Throttling

Performance Aggressive Non-aggressive Limited Protective Best performance at all times

Power Efficient Optimized Optimized Moderate to aggressive Optimized Least power consumption

High Reliability Aggressive Nonaggressive Moderate to aggressive Opportunistic Reduced down-time

Acoustic Nonaggressive Nonaggressive Moderate to aggressive Opportunistic Quiet, non-annoying operation

Table 1: System Thermal Management Tuning
(Source: Intel Corporation, 2012)

The controls for tuning to address these design preferences are fan speed, power
states, and throttling. In all cases thermal, power, or activity sensors prompt the
response to be taken. Some servers enable the customer to choose the design
or “policy” to be used by the server management hardware and firmware at
boot time. In an extremely sophisticated design the management controller or
another entity could track and learn the usage of the equipment and change
settings to either better optimize the server or notify the owners that their
server is not optimally configured. They could also suggest changes to the
settings, and ensure changes are approved before implementation.

Common Framework Power and Thermal
Management
The growth in the Internet has put considerable pressure on data center
cooling and power delivery capacity, which has driven up fixed infrastructure
costs and operational expenses. Servers rarely operate at their peak capacity
and efficient power capping is deemed as a critical component of modern
enterprise computing environments. Conventional practice is to overdesign
power and thermal characteristics on the conservative side due to complex
feature/thermal/power interdependencies and lack of optimal system power
modeling and/or system heuristics. Overdesigning at the system component
level results in overprovisioning of computer room air conditioning (CRAC)
in the data center as well as power supply sizing and operating efficiency[9][20].
Data collected by the Green Grid Association[21] on data center power usage
effectiveness (PUE) indicate peak and average efficiency of 40–50 percent
compared to theoretical or design power, which led to overprovisioning of
cooling and oversizing space by upwards of 50 percent. This data suggests
much optimization can be achieved by incorporating well-designed closed loop
system thermal and power management.

The challenge in facilitating a holistic approach requires defining thermal and
power telemetry with control mechanisms that are ubiquitous and hierarchical
within a data center. For example, analysis of power/performance dynamics
requires observation not only at chip granularity, but also at node and rack
granularity. At node granularity, resource equilibrium is maintained as a
result of complex interaction between competing silicon components. This is
analogous to inter-node interaction that maximizes the performance for a given
power/thermal budget. The fundamental goals of efficient energy management

“The growth in the Internet has

put considerable pressure on data

center cooling and power delivery

capacity, which has driven up fixed

infrastructure costs and operational

expenses.”

“The challenge in facilitating a holistic

approach requires defining thermal

and power telemetry with control

mechanisms that are ubiquitous and

hierarchical within a data center.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

60 | A Robust Autonomic Framework for Memory Thermal, Power, and Throughput Management

are to maximize energy used while guaranteeing that the power consumption is
never so high that the chips in a platform exceed its junction temperature limit.
Limiting platform memory power is a critical requirement for platform power
budgeting capabilities. Power budgeting allocates power amongst different
platform components to maintain an overall platform power limit.

A high level block diagram of common memory thermal and power limiting
high level architecture is shown in Figure 5. The architecture is comprised of
dynamic closed loop thermal management (D-CLTM) and dynamic open
loop thermal management (D-OLTM), both converging with platform power
limiting capability employing a running average power limiting (RAPL)
algorithm. The dynamic closed loop thermal management (D-CLTM) scheme
is based on traditional closed loop thermal throttling (CLTT) with the
capability for the software to reconfigure based on platform power and thermal
heuristics. Dynamic thermal management enables the highest performance
at lowest power implementation by reducing thermal guard bands, which
maximizes the energy efficiency. Well-defined states initiate thermal
management actions as a result of thermal events and finer well-managed
fan speed control along with thermal protection through throttling. Thermal
throttling must be driven by the need to protect both data and component
health.

Figure 5: Common framework for thermal and power management with running average power limiting
(Source: Intel 2010)

ME/
BMC

Temp
Thresholds

Platform
BIOS/FW

Configurable
CPU/MC/PCU

CPU Core

MC/PCU

Interrupts/
Events

FSC ∆Tmin/
CH

DIMM Power
Thresholds

Thermal State Machine

CPU

Power/Time Power/Time

Pn

Time
Window

Memory
Power

Time
Window

Power
Sensor

(closed loop)

RAPL Algorithm

Power
Sensor

(open loop)

Power Limiting

Platform Power

Fan

Alert

Signal#

Int/SMI

Memory

Mem
VR

Temperature

“Dynamic thermal management

enables the highest performance at

lowest power implementation by

reducing thermal guard bands, which

maximizes the energy efficiency.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

A Robust Autonomic Framework for Memory Thermal, Power, and Throughput Management | 61

The thermal state machine manages memory temperature data and provides
minimum temperature margin of the hottest DIMM in the channel for
platform fan speed control. A thermal sensor from memory subsystem (or
equivalent) provides closed loop feedback to the processor to manage memory
power or throttle activity to protect the memory from exceeding memory
temperature limits. The thermal state machine also contains programmable
registers for temperature DIMM thresholds, DIMM thermal limits, and the
time window. For platforms without memory temperature sensing capability,
DIMM power meter and running average power limiting algorithms serve as
the virtual thermal closed-loop process control. The thermal state machine
also contains the necessary logic and hardware for external memory thermal
events such as memory VR signal# or equivalent input to trigger throttling.
Out-of-band alerts are monitored by a platform management controller to
trigger temperature polling action for fan speed control. Single bidirectional
signal# can be encoded for input and output mode. Signal# event temperatures
are programmable to correspond to different DIMM temperature thresholds.
Interrupts are generated upon thermal threshold crossing to the OS via
SMI/MSI for in-band platform thermal management.

Memory RAPL Architecture
Power capping provides benefits in the data center, acting as a safety valve by
protecting the power distribution hierarchy against overdraw and enabling
effective usage of the available power and thereby increasing rack population.
Dynamic power capping is a primary power control requirement that must be
addressed by a power management solution. Running average power limiting
(RAPL) is a feature for limiting the power consumption to a programmable
level of various hardware elements based on the energy consumed over a
programmable time window. RAPL heuristically controls memory power while
maximizing bandwidth and smoothing the effects of bandwidth limiting.
Efficient enforcement of power limits over a time widow reduces performance
impact for highly dynamic and transient data center workloads. Rather than
setting instantaneous limits, RAPL maintains energy credits, which are traded
to fulfill memory performance demands and accumulated when that demand
is low. If the average workload memory bandwidth requirements are within
the specified power limits, the system will not experience any performance
degradation even though its memory demand over short periods of time may
well exceed the average power limit.

Memory RAPL architecture is comprised of three principal components:
power measurement logic, a power limiting algorithm, and memory power
limiting control. Figure 6 illustrates memory RAPL architecture where power
measurement logic provides an accurate mechanism for measuring memory
power. Calibrated weights can also be used to implement a cost-effective
memory power measurement scheme. An alternative power metering scheme
can be implemented through instrumentation in the voltage regulator (VR)
with capability for accurate power metering. A power limiting algorithm

“The thermal state machine manages

memory temperature data and

provides minimum temperature

margin of the hottest DIMM in

the channel for platform fan speed

control.”

“Power capping provides benefits in

the data center, acting as a safety valve

by protecting the power distribution

hierarchy against overdraw and

enabling effective usage of the

available power.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

62 | A Robust Autonomic Framework for Memory Thermal, Power, and Throughput Management

tracks memory energy consumption over a sliding time window and
determines available power budget for the next interval. The algorithm aims to
deterministically maintain a power limit while maximizing memory bandwidth
and performance.

Figure 6: Memory RAPL architecture
(Source: Intel Corporation, 2010)

DIMM Energy

DIMM Energy

VR

DIMM Energy
Energy
Meter

Energy
Meter

Energy
Meter

OS/VMM, ME/BMC

RAPL in-band
Interfaces

RAPL out-of-band
Interfaces

RAPL Algorithm

Memory Power Limiting

Frequency/
Voltage Scaling

Core Off-lining
Activity

Throttling

Rank
Reordering

Sliding
Windows

Exponential

Energy Budget

VR VR

Socket

Multiple power limits may be active at any time, where each may be specified
on a different component of memory and at different time scales (for instance,
power delivery versus component thermals versus battery life or data center
power/thermals). For example, Figure 7 shows platform power budgeting
policy may set a power limit of 50 W over 100 milliseconds to allow some
burst of memory traffic while setting a lower component power limit of 75 W
over a ten-second time window to control the long time window average
power. RAPL technology provides the following benefits versus its predecessors
and alternatives:

•• Improved performance and correctness – Enforces mechanisms to maximize
performance/responsiveness within any power limit, and guarantees
correctness (deterministic power consumption limits) when required. This
is primarily achieved by moving low-level policy into the core logic where
we can take advantage of hardware granularity (temporal, spatial).

•• Decoupling – Provides a key feature (memory power limiting) that fully
decouples their external policy from our internal implementation. External
agents no longer limit power consumption using explicit memory throttling
registers, thereby freeing hardware to do this more intelligently than could
be done externally and without exposing available capabilities externally.

•• Encapsulation – Enhances capabilities and policies within our core logic
without impacting or needing to (re) enable the ecosystem. Infers both
time-to-market and differentiation opportunities.

“Multiple power limits may be active

at any time, where each may be

specified on a different component of

memory and at different time scales.”

“Improved performance and
correctness – Enforces mechanisms to

maximize performance/responsiveness

within any power limit, and

guarantees correctness.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

A Robust Autonomic Framework for Memory Thermal, Power, and Throughput Management | 63

•• Standardization – Standard memory power limiting mechanism and
interface across internal and external agents. We’re extending the Intel ISA
to include the notion of power limiting. RAPL exposes the time interval to
software and platform making it dynamically configurable. Furthermore,
it allows multiple limits to be set simultaneously to meet different thermal
and power constraints that arise in real physical deployments. Setting the
time interval statically and choosing the lowest common denominator can
either cause power excursions or unnecessary performance degradation.

Figure 7: Open and closed loop thermal and power limiting usages
(Source: Intel Corporation, 2010)

P
o

w
er

Time

e.g. TM2, PROCHOT, lmax Limit, etc.

RAPL1 (100W, 10ms)

RAPL2(75W,1s)

RAPL3(50W,100s)

Milliseconds to Seconds
(e.g. Tcase)

Seconds to Minutes (e.g. Tskin,
Battery Life, Data)

Component Thermals

Platform Power & Thermals

Milliseconds (e.g. VR & PSU)

Power Delivery

Instantaneous Power
Thermal, Electrical Failures

Memory Thermal Management and RAPL
For servers, memory power limiting with RAPL can be part of platform power
budgeting for data center optimization such as Intel® Intelligent Power Node
Manager[17] by limiting system power consumption so rack density may be
optimized. RAPL may additionally be used in platforms to limit DIMM power
as part of memory thermal management. For clients, memory RAPL can be
used to enforce basic battery life policies, enhance thermal management [18],
and pave the way to more advanced policies and efficient execution.

Platforms generally support four interfaces (MSR, MMIO, PECI/PCS, and
SCA) that allow both in-band and out-of-band programming of the RAPL
DDR domain power limits. Memory RAPL limits can be set by many internal
and external policy agents to limit memory power. Traditionally, it is the
responsibility of policy agents to implement any advanced control algorithms

“RAPL exposes the time interval to

software and platform making it

dynamically configurable.”

“For clients, memory RAPL can

be used to enforce basic battery

life policies, enhance thermal

management.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

64 | A Robust Autonomic Framework for Memory Thermal, Power, and Throughput Management

should there be desire and benefit. External in-band agents may include BIOS,
OSPM, and OS-based agents[18]. External out-of-band agents may include
PCH Management Engine, Baseboard Management Controller (BMC),
Embedded Controller (EC), and System Management Controller (SMC).

The complex control interface means that RAPL must be able to support
multiple limits at multiple timescales applied by multiple agents—as well as
a policy to resolve potentially conflicting power limits. To accomplish this,
memory RAPL algorithm operates as a policy on top of a set of memory power
limiting mechanisms. It systematically determines the maximum available
energy budget for different memory components using currently applied
power limits, recent workload behavior and the measured/calculated power
consumption. The CPU uses this available energy to limit memory power,
changing interface speed (such as DRAM frequency) or restricting memory
bandwidth (such as core off-lining and activity throttling).

Domains exposed and managed by memory RAPL include socket (all memory
attached to a processor for client) channel and DIMM. The processor/
memory-controller should contain the necessary logic/firmware, controls,
and interfaces (such as PCU, internal and external power sensors, and control
registers) to implement the underlying algorithms and policies. The number
of domains and power limits exposed in and out-of-band directly impact
complexity and cost of the memory RAPL feature.

Memory Power Limiting
The domain-specific energy budget computed by the RAPL algorithm is passed
to the memory power limiting logic. The power limiting logic is responsible
for ensuring that the specified energy budget is not exceeded during the next
time interval. The power limiting logic can use several mechanisms to limit
memory power including rank reordering, frequency scaling, core off-lining
and activity throttling. Each mechanism entails a different power-performance
tradeoff for different workloads and their use should be defined within a
policy that aims to maximize memory performance within specified energy
constraints. The benefits of RAPL are illustrated in Figure 8 where RAPL
allows for transient spikes in memory bandwidth at hardware time scales while
maintaining average power over a time window specified by software. This
allows the processor to deliver the required bandwidth to a workload when
memory demand goes up and accumulate energy credits when demand is
low or processor is idle. Setting a fixed bandwidth threshold to limit memory
power would have a more adverse impact on system performance.

“RAPL algorithm operates as a policy

on top of a set of memory power

limiting mechanisms.”

“The CPU uses this available energy

to limit memory power, changing

interface speed or restricting memory

bandwidth.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

A Robust Autonomic Framework for Memory Thermal, Power, and Throughput Management | 65

Figure 8: Memory RAPL power and thermal usage benefits
(Source: Intel Corporation, 2012)

Platform Budget

1 6 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 1

8

5

6

7

3

4

0

1

2

11

12

7

8

9

10

3

4

5

6

0

1

2

D
IM

M
 P

o
w

er
 (

W
)

M
em

o
ry

 B
W

 (
G

B
/s

)

Thermal Budget

Sustained BW

10ms RAPL 20ms RAPL BW

Standard Configuration Hardware Abstraction
Although sensor technology has matured over the last few years, it still
lacks interoperability standards for representation, resource allocation, and
constraint detection. Traditionally, most of the techniques used are specific to
a given architecture, application, or devices. Sensors can have specific response
characteristics that may be necessary elements in the quality of measurements.
These characteristics may depend upon design aspects or operating conditions.
For example, current measurements may exhibit high inaccuracies at lower
utilization, but fewer errors at higher utilization. Hence, this information can
be used to calibrate the sensor at higher utilization to reduce the overall error
rate. Software support for sensor solutions has been proprietary for individual
applications or device needs. The software designer is often faced with the
task of re-implementing the sensor characteristics with new, emerging, or
conflicting architectures. This has the potential to create software redundancy
and to limit reuse. Therefore, it is essential to be able to interact and cooperate
between autonomous entities in meaningful ways without too much
complexity. This requires a comprehensive framework capable of measuring,
quantifying, and describing the sensor’s properties and its statistical behavior in
a dynamic environment.

Common framework thermal and power autonomics defines the standardized
set of registers required for performing power/thermal throttling functions.
These registers are configurable resources in the platform that are mapped via
PCIe[19] configuration space. Standard Configuration Architecture (SCA) is a
novel methodology to utilize PCI vendor configuration space (VSEC IDs) to
allow discoverability and feature standardization across platform segments and

“It is essential to be able to interact

and cooperate between autonomous

entities in meaningful ways without

too much complexity.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

66 | A Robust Autonomic Framework for Memory Thermal, Power, and Throughput Management

generations. SCA provides a standard and consistent software-friendly interface
mechanism for product features. Each feature or group of relevant features
is co-located in one logical device, which then becomes easily configurable
by the software. In a traditional approach, each new platform would
redefine common features and how they are formatted in the configuration
registers. The constant change reduces the sustaining cycle and increases the
development effort greatly.

In general, SCA allows standardized discovery, organization, and consistency
of layout that result in consistent implementation at the feature level while
reducing platform software costs and enabling OS support. This section
defines various abstraction classifications that employ common infrastructure
mapped using the OEM-Standard PCIe capability structure. A common
software framework deals with various abstractions with an ability to shape (or
configure) the function based on various inputs. These abstractions perform
the management functions required to successfully (a) identify the thermal
and power capabilities, (b) securely upload/execute/modify functional/control
parameters, (c) are signaled upon a trigger condition, and (d) configure the
system parameters for execution containers, result storage, and scheduling.
Architecturally, these abstractions can be classified into the following
categories:

•• Discovery – These interfaces describe the attributes, granularity, and
operational domain of operation. For example, the thermal threshold
feature of a CPU can be controlled on an individual thread or collection of
threads that are programmed individually.

•• Observation – These interfaces provide the performance, power, and thermal
statistics that constitute the feedback loop within the control loop.

•• Control – These interfaces provide the ability to configure the operating
environment for process control (like energy throttling and task throttling)
as well as result collection. For example, power thresholds can be configured
in such a manner that they trigger a preconfigured policy (such as
throttling).

•• Status – This interface describes the summary behavior of the domain.
Status attributes are compressed to reduce redundant polling of the
individual component in order to capture the statistics of the component
that is behaving out of policy.

•• Interrupt – This interface allows the configuration of the thresholds that
define the trigger attributes of the system interrupts. Interrupts can be
configured according to the usage. Interrupts can be classified as (a) System
Management Interrupt (SMI), (b) Message Signaled Interrupts (MSI),
(c) Out-Of-Band Interrupt Signal (for example: CPUHOT).

Figure 9 illustrates a gradual evolution of memory thermal management
features for CLTM, OLTM with virtual temperature sensor (VTS) and RAPL
from current to future Intel architectures with underlying register format and
location changed. The SCA block diagram depicted in Figure 10 follows the

“A common software framework deals

with various abstractions with an

ability to shape the function based on

various inputs.”

Figure 9: Evolution of thermal management and
power capping
(Source: Intel Corporation, 2011)

Current

CLTM

VTS OLTT

Package RAPL

Future

CLTM

OLTM

Memory RAPL

Package RAPL

Intel® Technology Journal | Volume 16, Issue 2, 2012

A Robust Autonomic Framework for Memory Thermal, Power, and Throughput Management | 67

conventions of PCIe capability structure headers[19] combined with Intel VSEC
ID for thermal management bar pointing to MMIO (client) or CSR (server)
space where functional registers for thermal and RAPL are exposed. SCA
methodology aims to standardize and employ a scalable register definition for
future expansion.

Figure 10: Standard configuration architecture for thermal management and RAPL
(Source: Intel Corporation, 2011)

RAPL SCA CAPID

B0:D4:F0 (Existing PCI Device)
Memory Domain Thermal

Reporting Device w/Interrupt
Capability

B0:D0:F0
(Existing PCI Device)

Bus/Dev/Func
Additional Domains Thermal
Reporting Device w/Interrupt

Capability

MCHBAR MMIO Space

Thermal Management
SCA Structure

Memory RAPL
SCA Structure

Additional RAPL
SCA Structures…

Thermal Report SCA CAPID

RAPL SCA CAPIDThermal Management SCA

TMBAR MCHBA TMBAR

Thermal and Power Events
Event processing is accountable for processing an event cloud in an effort to
establish a meaningful pattern, sequence of events, or a situation. It employs
heuristics that relate temporal properties of events, correlation between
events, event-driven processes, and so on. A computation-oriented event
processing is responsible for runtime evaluation of a stream of data entering
the system. For example, runtime computation of exponential averaged data
in response to inbound events falls in this category. A detection-oriented event
processing is responsible for identifying events patterns or situations. For
example, identifying a workload pattern based on the distribution of burst
in traffic falls in this category. An event is normally an asynchronous signal
from hardware that indicates the need for attention to the subscriber of an
event. A hardware event (interrupt) causes the processor to save its context
and execute a registered interrupt handler. Thermal and power events reduce
the amount of data flow over the communicating channels and are integral to
the scalable architecture in the future data center. An application can set up
signals with dynamic properties. A signal handler (or interrupt handler) can

“Event processing is accountable for

processing an event cloud in an effort

to establish a meaningful pattern,

sequence of events, or a situation.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

68 | A Robust Autonomic Framework for Memory Thermal, Power, and Throughput Management

poll the data it is interested in for a short duration of time eliminating the
need to continuously poll, reducing software overhead, and reducing hardware
power consumption. A summary of programmable DDR thermal events are as
follows:

•• Thermal status change for policy-driven thresholds

•• DDR refresh rate change to 2x

•• Assertion of MEMHOT# input pin(s)

•• Policy-free temperature thresholds (for active and passive cooling heuristics)

Using event mechanisms, we can reduce the amount of data flow over the
communicating channels. An application, based on its understanding of the
actionable thresholds (sensor averages and so on), can set up signals with
dynamic properties. These signals, when triggered, cause the software execution
of a signal handler (or interrupt handler) that can poll the data it is interested
in for a short duration of time. Upon understanding the cause of the alert, it
can take an actuator action and optionally change the signal properties for the
next trigger.

Various properties of signaling are:

•• Signal Type represents the type of signal that needs to be propagated
when a certain threshold policy is fulfilled. These types include System/
Platform Management Interrupt (SMI/PMI), Non-Maskable Interrupt
(NMI), Machine Check Interrupt (MCI), Message Signal Interrupt (MSI),
SSP Interrupt (ARC, ME, and so on), and Out-Of-Band management
Interrupt.

•• Signal Attributes represent the attributes that define the complex (and
measurable) threshold of a component whose address is defined by the
device path. The fulfillment of the complex threshold crossing triggers an
alert that is routed according to the Signal Type settings.

•• Signal Handle represents the aggregation of multiple signals requested by
various applications operating independently

In many cases (particularly in Intel architecture), registers related to event
mechanisms can be triggered based on thresholds and hysteresis. Mainly these
triggers invoke system-level interrupts such as System Management Interrupt,
SMBUS alerts, Machine Check Interrupt, and special signals (MEMHOT,
PROCHOT, and so on). But since hardware supports only one set of threshold
registers per device, it is therefore necessary to create a multiple instance
model in a software middleware execution container that can handle multiple
thresholds and selectively notify multiple applications. Hardware triggers
can therefore be used intelligently to reduce the polling by the event service
provider (ESP) execution container. The ESP handler gets triggered at the
highest and lowest thresholds registered by multiple applications. As illustrated
in Figure 11, once triggered, the handler compares each registered threshold
and notifies the application if the threshold conditions are met. Additionally
it evaluates the current thresholds and resets the triggers for future invocation.

“Using event mechanisms, we can

reduce the amount of data flow over

the communicating channels.”

“Since hardware supports only one

set of threshold registers per device,

it is therefore necessary to create a

multiple instance model in a software

middleware.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

A Robust Autonomic Framework for Memory Thermal, Power, and Throughput Management | 69

A common framework proposed the following signals and interrupts allows
ubiquitous management of power and thermal features:

•• Signals – MEMHOT# (I/O) – As an output this signal indicates that a memory
throttling event is occurring. As an input this signal an external agent can force
the memory controller to throttle in order to decrease memory power.

•• Interrupt (SMI) – SMI is a legacy system interrupt that is broadcast to all
the cores. It stalls the CPU (and OS) for a short duration, where the SMI
interrupt handler can perform its service routing for any cooling functions.
This interrupt is generated by Memory-Controller upon any thermal
threshold crossing and causes the OS (or BIOS) to enter in SMM mode
where an Interrupt Service Routine (ISR) decides upon taking any cooling
action. These cooling actions extend from task throttling, identification
of HOT channels (or uneven distribution) that can be rectified by OS
dispatcher or memory allocator. Thermal thresholds related to SMI are
reactivated upon crossing the hysteresis levels.

•• Interrupt (MSI) – Message Signaled Interrupts (MSI) are software interrupts
that allow the device to write a small amount of data to a special address in
memory space. The chipset will deliver the corresponding interrupt to a CPU.

•• Interrupt (SCI) – Hardware power management events trigger an OS-visible
interrupt called a system control interrupt (SCI). Operating systems handle
simple SCI interrupts (for example, fixed-feature power button state
change) directly. Complex SCI interrupts are handled by the OS using
AML code associated with the interrupt.

Figure 11: Interrupts and event signalings
(Source: Intel Corporation, 2010)

SMBUS
SCI

BIOS

BMC

O.S

S
M

I

M
E

M
H

O
T

A
L

E
R

T

Hysteresis
DE-ASSERT

PECI/CSR

PECI/CSR

OS Task
Throttling

Load Migration
Rebalancing

ASSERT INTR
(SMI/MEMHOT)

PECI\PCIe

BIOS/O.S/
BMC

FANETC

I
S
R

FANFAN

Period
CSR DATA

DIMM
Temperature

Sensor
Temperature Sampling

Compare

>X
OR
<Y

Threshold
(X, Y)

Thermal Control
Algorithms

“Signals and interrupts allows

ubiquitous management of power

and thermal features.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

70 | A Robust Autonomic Framework for Memory Thermal, Power, and Throughput Management

Any thermal or power event can generate any one of these interrupts that
allows the manageability to be hosted from any operational container.

Data Center Abstraction: Policy-based Thermal,
Power, and QoS Management Using Optimal
Scheduling
Management policies are a set of rules used to manage distributed computing
environments in a scalable manner. Racks of server hardware, power supplies,
network switches in a cloud data center generally operate with a set of business
driven policies, intended to meet service level agreements (SLAs), reduce
maintenance costs, and drive greater efficiency in usage of compute resources
and energy. All the managed elements must work in tandem, governed by
business rules and management policies. Propagating these rules or policies,
device by device, is not scalable. Since the number of servers per data center
can run into tens of thousands and the number of customers using the cloud-
hosted services on the hardware could run into hundreds of thousands, policy
adherence via monitoring and management needs to be autonomous using
software and tools[22][23]. To support the communication of data, management
needs to be through standard protocols on all devices. This self-managed
system needs to be able to handle any changes in its environment with minimal
human intervention. The management system caters to conflicting goals of the
end user who is interested in receiving the SLA and the cloud and data center
provider who is interested in optimal usage of infrastructure. A non-policy
management environment requires extensive monitoring, different software
tools for different kinds of monitoring, and a coordination layer between them,
which adds complexity, validation effort, and time for the ISVs. Hence cloud
service providers (CSPs) tend to rank taking advantage of platform features low
on their priority list.

Specifically, one of the cloud usages to address is the ability to map specific
workloads to specific hardware to meet quality of service or throughput
requirements.

Consider a very common Infrastructure energy efficiency policy and a
SLA-based policy with a simple usage model:

Infrastructure Policy 1

IF (power consumed by rack1 >= 9.5 wkVA)
THEN Take action to maintain power by rack1

Action: Maintain power consumed by rack < 9.5 wKVA

This policy is implemented by infrastructure management software in the
following manner:

MaintainPowerofRack()
{
GetpowerConsumedbyEachServer()

“Racks of server hardware, power

supplies, network switches in a cloud

data center generally operate with a set

of business driven policies, intended to

meet service level agreements.”

“Self-managed system needs to be

able to handle any changes in its

environment with minimal human

intervention.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

A Robust Autonomic Framework for Memory Thermal, Power, and Throughput Management | 71

CheckLoadOnServer()
ActivatePowerPolicies()
PowerOffUnusedServer()
…..//more actions
}

Business Policy 2:

Premium Service SLA: XX IOPS per second, YY compute operations per
second, DD IO bandwidth, ZZ Mbps memory bandwidth.

Policy 2 usage in resource pool creation for premium service:

IF ((serverX system compute operations per second >= YY)
 AND (serverX system IOPS per second >= XX)
 AND (server system memory bandwidth per second > ZZ))
 THEN Include serverX in Premium Service pool

Policy 2 usage in resource workload scheduling enforced by a resource
management component

IF (serverX memory bandwith < ZZ)
THEN Schedule workload on ServerY

Now consider how both Policy 1 and Policy 2 are used in a load balancing
action:

If ((serverX system compute operations per second >= YY)
BUT (power consumed by rack1 >= 9.5 wkVA))
THEN LookforBestServerinList()//List of all servers fit for premium policy
IF (found)
THEN Move workload to next best server in Premium Service pool

As shown, Policy 1 and Policy 2 impact the optimal operation of racks and
each server in the rack. They also impact the energy usage and effective
allocation and usage of resource. The components affected by these policies
are the cloud workload scheduler, resource usage monitoring tools, and the
load balancer to maintain the performance SLAs and power usage. To locate
the right platform (CPU, chipset and board), traverse the DC hierarchy to its
location to set policies and aggregate the monitored data back to a meaningful
high level metric. This section will introduce:

1.	 A data center resource monitoring framework

2.	 A basic template for a workload map

3.	 An autonomic control mechanism at every level to meet a defined efficiency
metric

“To locate the right platform (CPU,

chipset and board), traverse the DC

hierarchy to its location to set policies

and aggregate the monitored data

back to a meaningful high level

metric.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

72 | A Robust Autonomic Framework for Memory Thermal, Power, and Throughput Management

Data Center Group Resource Monitoring Framework
A typical data center hierarchy consists of compute nodes as rack mounted
servers or aggregated as a subgroup of server blades with common chassis or
SOC blades in a micro-server. A collection of nodes and node subgroups form
either a physical group (rack) or span racks to form a logical group. A cloud
workload scheduler working with a network zone will typically consist of such
a collection of physical and logical groups, as shown in Figure 12.

Figure 12: DC management hierarchy
(Source: Intel Corporation, 2012)

Group
Group

Group

Group
Group

Group
GroupRacks

Server Node
Server NodeuServer

uServer uServer

uServer

Zone

Zone

Zone

Zone

Cloud
OS

Cloud
OS

Cloud
OS

Cloud
OS

A scalable monitoring framework in a zone, group, node hierarchy would
consist of monitoring at the node and the groups, thus extracting the required
intelligence at each level. At every level of hierarchy, the managed element
would have specific ranks associated with it, which allows the zone level
management function to get a quick snapshot of the status. For example,
if the cloud OS scheduler requests a particular server with a particular QoS
requirement, it would look at the availability rank and QoS rank for the zones
it is managing (Figure 13). The zone’s QoS rank will be derived using the ranks
of the groups it is managing and that in turn from the nodes in the group.
A higher rank could be termed favorable for this use case. This mechanism
reduces the network span to address a system and also reduces the data set for
search. Needless to say, data collection at the nodes and groups is required to
be scalable and the data search distributed.

“A scalable monitoring framework in

a zone, group, node hierarchy would

consist of monitoring at the node

and the groups, thus extracting the

required intelligence at each level.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

A Robust Autonomic Framework for Memory Thermal, Power, and Throughput Management | 73

Figure 13: Monitoring and ranking
(Source: Intel Corporation, 2012)

Policy
Parameters
Per System

Core0

Cache

Core1

Cache

Core2

Cache

Monitor
Node

Rank Calc

Counters,
Monitors

Power,
Thermal

Group Policyservice

Control Layer
Set

VM1

Workload
Characteristics

SchedulerZone

Group

Group and Node
Ranking Service

Hl

VM2

VMM

HW

Sensing Layer

Intel Platform

LO

VM3
Node

Med

Node and VM DB

MEMMEMMEM

Data Model at the Group
A hypertable[24] “tablet” for monitored data collected at the node and group
will have data stored and collected in a format shown in Table 2.

Row Key time ID IP address Metrics Rank

T0 ComputeNode id =>“CN_UUID1”,
ServerGroupID => “SG_UUID1”,

MCU_add = “10.255.255”
BMC_Add = “10.255.255”
VMM_Add = “10.255.255”

Usage => “100”
MemBW => “80”
Stalls => “40”
Cycles => “100”

AvailabilityRank =>
“100”
QOSRank => “200”

T1 ComputeNode id => “CN_UUID2”
……

…… ….. …..

Table 2: Monitored Data Storage Format
(Source: Intel Corporation, 2012)

Workload Map
A significant amount of work has been conducted on analyzing workload
characteristics, user behavior, and performance of workloads in single- and
multisystem virtualized and nonvirtualized environments[28][25] (see Code 1).
User behavior and phases of workload execution, whether submitted as

Intel® Technology Journal | Volume 16, Issue 2, 2012

74 | A Robust Autonomic Framework for Memory Thermal, Power, and Throughput Management

pre-known inputs or learned by correlation during execution have been
discussed [26][27].

{“user session”: {
	 “jobs”: [{job:1},{job:2}],
	 “Instruction Sequence”: [],
“time”: [],
“machine_instruction_type”:[{mem_read:1},{mem_write:2},{ARM:3}],
“Phases”:[{phase1:“mem_read”},{phase2:”mem_write”}]
}}
{ “UsagePattern”:{
	 “CPUUsagePattern”: [],
	 “MemoryUsagePattern”: [] ,
	 “NetworkIOUsagePattern”: [],
	 “DiskIOUsagePattern”: []
}}

Code 1: An example workload map in JavaScript Object Notation (JSON)
(Source: Intel Corporation, 2012)

Autonomic Control Mechanism for Workload Placement
Autonomic workload placement in the data center has often been done to
optimize on cost, energy usage, or SLA[29][30]. The scalable and hierarchical
monitoring framework can be used to perform optimal workload placement
as shown in Figure 14. If workload runtimes and throughput are the cost
functions to optimize, then a workload autonomics manager sets those
parameters for providing an efficiency rank. The workload map and the
placement policies are set at the zone, group, and the compute node. As
workloads are placed, the efficiency ranks of the nodes are updated based on
monitored data. The “control” block in this flow may attempt to adjust the
workloads within a group by migrating to different systems, to maintain the
efficiency rank of the group. Node level control and throttling will also be
needed where in usage of shared resources like power, cache, and bandwidth
can be set as thresholds and throttled to maintain a node level efficiency rank,
thus reducing the cost of migration.

“If workload runtimes and throughput

are the cost functions to optimize,

then a workload autonomics manager

sets those parameters for providing an

efficiency rank.”

“Node level control and throttling

will also be needed where in usage of

shared resources like power, cache, and

bandwidth can be set as thresholds

and throttled.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

A Robust Autonomic Framework for Memory Thermal, Power, and Throughput Management | 75

Figure 14: Design of autonomic workload scheduling
(Source: Intel Corporation, 2012)

Workload Map

Workload Autonomics Manager

Cloud System Efficiency Rank Cloud Policy Manager

Efficiency Rank Policy Manager

Analysis
(Energy, Performance)

Node Core
(CPU, Mem, IO)

Server Group 1

Node
(CPU, Mem, IO)

Node
(CPU, Mem, IO)

Node
(CPU, Mem, IO)

Sensor Monitor
and Control

Performance
Monitors

QOS Monitor and
Control

Control

Data Center Trends and Technologies
To take full advantage of platform features requires an understanding of
future data center needs and possible interactions between the IT equipment
and the data center. Some of these interactions are easily understood and
managed while others require a high degree of communication and real-time
optimization between the ITE and data center. A holistic view will become the
norm when evaluating data center efficiency.

Presently, the data center and the ITE are viewed separately and there is no
agreed-upon way to measure overall efficiency. The data center can be evaluated
using power usage effectiveness (PUE), which is simply the ratio of total energy
entering the data center to the ITE load. The Green Grid has defined how
PUE should be stated based on how the measurements are performed. PUE
provides a good way to evaluate and compare infrastructure designs but does
nothing to address the efficiency of the ITE (the “1” in the PUE equation).
Separately, ITE compute efficiency metrics have been under evaluation by the
governmental entities such as the US government’s Energy Star to characterize
the efficiency using both power and performance so that servers can be directly
compared with each other.

In the future, collaborative design between the data center and the ITE must
occur. The data center and ITE must be fully aware of and communicative

“Platform features requires an

understanding of future data center

needs and possible interactions

between the IT equipment and the

data center.”

“The data center can be evaluated

using power usage effectiveness (PUE),

which is simply the ratio of total

energy entering the data center to the

ITE load.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

76 | A Robust Autonomic Framework for Memory Thermal, Power, and Throughput Management

with each other in order for real-time optimization to occur. That collaboration
will result in features and capabilities in the ITE that are available and usable
when needed to optimally meet the data center’s needs and vice versa. It is not
enough to have the features. An integrated data center will have the software
and algorithms using the data supplied by the ITE to optimally address the
real-time workloads.

Some of the most important thermal interactions requiring data center/ITE
collaboration and optimization are:

1.	 Server inlet temperature – Servers are designed to support specific
environments based on the temperature delivered at the inlet to the
server. When the data center is aware of inlet temperature (as delivered
by ITE sensors), cooling adjustments can be made to the room to ensure
compliance to the ITE specification and prevent reduced performance or
shutdown. Alternatively, workload can be moved to other servers not under
this type of stress.

2.	 Rack airflow demand – Airflow demanded by a server varies based on
workload and thermal conditions. (ITE thermal management drives server
fans to ensure compliance to component thermal specifications.) The data
center must be able to satisfy that demand or cooling may be compromised.
The result may be airflow recirculation in the data center leading to further
increases in IT airflow demands to ensure adequate cooling to the server.
Optimized, air-cooled data centers will enable delivery of precisely the
airflow required to cool the ITE.

3.	 Rack exhaust temperature – The air exhausting from a rack can be both a
safety and functional concern. If employees will be working in this space,
temperatures can easily approach burn limits, or may simply be too hot
for humans. Air movement can be increased to eliminate this concern.
Also, some equipment including cables and switches have temperature
limits that can be exceeded. Inclusion of exhaust temperature in the server’s
thermal management can alert the data centers of potential issues. More
importantly, awareness at a rack or data center level can create opportunity
for the data center to respond by improving flow to that rack or through
better distribution of the workload.

4.	 Thermally limited performance – When increased cooling within the
server is inadequate to meet thermal requirements power management
features such as throttling may engage to ensure thermal compliance. By
knowing whether power management features are engaging and how often,
determination can be made whether to redistribute workload to less-
stressed servers to better meet the workload demands of the data center.
In some cases it may be desirable to keep workload on thermally-stressed
systems for overall power reduction. (Running many servers under lower
load may be much more power-consuming than running fewer servers
under heavy loads.)

“An integrated data center will have

the software and algorithms using the

data supplied by the ITE to optimally

address the real-time workloads.”

“Awareness at a rack or data center

level can create opportunity for the

data center to respond by improving

flow to that rack.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

A Robust Autonomic Framework for Memory Thermal, Power, and Throughput Management | 77

The most important power/performance interactions requiring data center/ITE
optimization are:

1.	 Power supply capability – Power supplies are not typically designed to
support simultaneous worst-case consumption on all components. When
workloads approach the limits of the power supply to support them the
data center should be aware so that workload distribution can take place
assuming that is the desired response by the data center operator.

2.	 Power consumption – Similar to power supply budget, the capability for
delivering power in the rack or data center can be limited. The ability to
know power consumption at a rack level enables the data center operator to
redistribute workload prior to exceeding the capability for the data center
to deliver the power for that workload.

3.	 Power-thermal-aware scheduling – The holy grail of power/performance/
thermal management is the capability for scheduling workloads based on
awareness of how to complete the workload while consuming the least power
in the required time. Thermal, power, and performance characteristics all
weigh in the algorithms required to determine this. Without the previously
described sensor capability power-thermal-aware scheduling would be
impossible. Each power or thermal management feature in concert with the
sensors that support them plays its part in achieving an optimal data center–
ITE capability. The data center characteristics must be combined with the
ITE characteristics to be able to begin the process of optimization. The
capability for scheduling, adjusting, or moving workloads based upon the
power and thermal capability of the data center will distinguish future data
centers from present implementations where there is little or no awareness
between the ITE and the data center.

Conclusion
High power and density pose significant cooling challenges for system design
as well as for the facility housing the equipment. Designing a cooling solution
to manage temperature of these high power chips in a server is critical to
reliable performance and life of the equipment. This requires a well-designed
autonomous thermal management implementation that can enable minimal
thermal guard bands and the flexibility to configure the platform for
performance and power reduction. Dynamic thermal management presents
a fast growing approach that couples thermal management and explicit
management of energy consumed to optimize energy efficiency of the chip.
The challenge in facilitating a holistic approach requires defining thermal and
power telemetry with control mechanisms that are ubiquitous and hierarchical
within a data center. In this article we described the system approach to building
a standardized Memory power and thermal management infrastructure. We
described the RAPL methodology that enforces power limits over a time widow,
while reducing performance impact in highly dynamic and transient data center
workloads. RAPL scheme dynamically determines the maximum available
energy budget for different memory components using currently applied
power limits, recent workload behavior, and the measured/calculated power

“High power and density pose

significant cooling challenges for

system design as well as for the facility

housing the equipment.”

“Dynamic thermal management

presents a fast growing approach

that couples thermal management

and explicit management of energy

consumed to optimize energy efficiency

of the chip.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

78 | A Robust Autonomic Framework for Memory Thermal, Power, and Throughput Management

consumption. We also presented Server Dynamic CLTM architecture that
integrates thermal management within the processor and integrated memory
controller (IMC). We also reiterated the need for interface standardization
through standard configuration architecture. It allows standardized discovery,
organization, and consistency of layout that result in consistent implementation
at feature level while reducing platform software costs and enabling OS support.
The standardized approach also includes the ability to reduce the software
polling overhead by using standard events and interrupts. Event processing is
accountable for processing an event cloud in an effort to establish a meaningful
pattern, sequence of events, or a situation. It employs heuristics that relate
temporal properties of events,correlation between events, event-driven processes,
and so on. We illustrated the management models to drive the decisions
for optimal thermal management in a platform in the presence of acoustics,
environmental standards, power, and performance targets.

References
[1]	 J. G. Koomey, “Estimating Total Power Consumption by Servers in

the U.S. and the World”; http://enterprise.amd.com/Downloads/
svrpwrusecompletefinal.pdf.

[2]	 L. Barroso and U. Hölzle, “The case for energy-proportional
computing,” IEEE Computer, Jan 2007.

[3]	 U.S. EPA, “Report to congress on server and data center energy
efficiency,” Tech. Report, Aug. 2007.

[4]	 Intel® Core™ i7 Processor Family for the LGA2011-0 Socket Thermal /
Mechanical Specification and Design Guide. Document number
326199-001.

[5]	 ACPI Specification Revision 5.0, http://.www.acpi.info/spec

[6]	 DCMI – Data Center Manageability Interface Specification v1.0,
Revision 1.0, May 1, 2008, http://www.intel.com/go/dcmi

[7]	 Shah, A. J., Carey, V. P., Bash, C. E., Patel, C. D., 2003 (submitted),
“Exergy Analysis of Data Center Thermal Management Systems,”
IMECE 2003–42527, 2003 International Mechanical Engineering
Congress and Exposition, Washington, DC.

[8]	 R. Sharma, C. E. Bash, C. D. Patel, R. S. Friedrich, and J. Chase,
“Balance of power: Dynamic thermal management for internet data
centers,” Hewlett-Packard Laboratories Technical Report: HPL-2003-5.

[9]	 Patel, C. D., Sharma, R. K, Bash, C. E., Beitelmal, A, “Thermal
Considerations in Cooling Large Scale High Compute Density Data
Centers,” ITherm 2002 – Eighth Intersociety Conference on Thermal and
Thermomechanical Phenomena in Electronic Systems, May 2002,
San Diego, California.

“The standardized approach also

includes the ability to reduce the

software polling overhead by using

standard events and interrupts.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

A Robust Autonomic Framework for Memory Thermal, Power, and Throughput Management | 79

[10]	 N. Ahuja, G. Govindaraju, T. Traush, C. Rego, S. Ahuja, B. Carn,
“Energy Savings through High Ambient Data Center Operations,”
DTTC, 2010.

[11]	 R. Khanna, M. Kumar, K. Li, J. Tang, C. Le, “Memory
Containerization for Dynamic Power Optimization,” DTTC, 2007.

[12]	 “Data Center Energy Characterization Study,” Pacific Gas and Electric,
California, USA, Feb 2001.

[13]	 R. Khanna, R. Steinbrecher, F. Lopez, K. Cheng, C. Lel, “Dynamic
Closed Loop Memory Throttling to Optimize Power and Performance,”
DTTC, 2007.

[14]	 Rahul Khanna, Mohan J Kumar, Kevin Y Li, James Tang, Christian Le,
“Memory Containerization for Dynamic Power Optimization,” DTTC,
2007.

[15]	 H. David, E. Gorbatov, U. Hannebute, R. Khanna, C. Le, “RAPL:
Memory Power Estimation and Capping,” ISLPD, 2010.

[16]	 J. Lin, H. Zheng, Z. Zhu, E. Gorbatov, H. David, and Z. Zhang,
“Software thermal management of DRAM memory for multicore
systems,” In Proc. of the 2008 ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer Systems,
pages 337–348, 2008.

[17]	 Intel, “Intel Intelligent Power Node Manager 2.0 External Interface
Specification Using IPMI,” CDI #434090, 2010.

[18]	 Intel, “Intel Dynamic Power Performance Management (DPPM),”
CDI #405840, 2008.

[19]	 PCIe Base 3.0 Specification, http://www.pcisig.
comspecificationspciexpressbase3

[20]	 http://www.lbl.gov/

[21]	 http://thegreengrid.org

[22]	 DC Robinson and Morris Sloman, “Domains: a new approach to
distributed system management,” Proceedings, Workshop on the
Future, Trends of Distributed Computing Systems in the 1990s, 1988.,
pages 154–163. ieeexplore.ieee.org, 14–16 Sep 1988.

[23]	 Hanson, James E.; Whalley, Ian; Steinder, Malgorzata; Kephart,
Jeffrey O., “Multi-Aspect Hardware Management in Enterprise Server
Consolidation,” IEEE, 2010.

[24]	 Dionysios Logothetis, Kenneth Yocum, “Data Indexing for Stateful,
Large-scale Data Processing,” 5th international workshop on networking
meets databases (NetDB 2009). SIGOPS Oper. Syst. Rev. 43, 4 (Jan. 2010)

Intel® Technology Journal | Volume 16, Issue 2, 2012

80 | A Robust Autonomic Framework for Memory Thermal, Power, and Throughput Management

[25]	 Mohamed A. El-Refaey; Dr. Mohamed Abu Rizkaa, “Virtual Systems
Workload Characterization,” 18th IEEE International Workshops on
Enabling Technologies, 2009.

[26]	 Daniel Gmach; Jerry Rolia and Ludmila Cherkasova; Alfons Kemper,
“Workload Analysis and Demand Prediction of Enterprise Data Center
Applications, “In Proceedings of the 2007 IEEE 10th International
Symposium on Workload Characterization (IISWC ‘07).

[27]	 Helmut Hlavacs, Ewald Hotop, Gabriele Kotsis; “Workload Generation
by Modeling User Behavior,” http://www.bisante.org

[28]	 Maria Calzarossa, Giuseppe Serazzi, “Workload Characterization–A
Survey,” Italian Research Council C.N.R Progetto Finalizzato
SistemiInformatici e Calcolo Parallelo

[29]	 Josep Ll. Berral, Ricard Gavaldà, Jordi Torres, “Adaptive Scheduling
on Power-Aware Managed Data-Centers using Machine Learning,”
Universitat Politècnica de Catalunya and Barcelona Supercomputing
Center

[30]	 Norman W. Paton, Marcelo A. T. de Aragão, Kevin Lee, Alvaro A.
A. Fernandes, Rizos Sakellariou, “Optimizing Utility in Cloud Computing
through Autonomic Workload Execution,” Bulletin of the IEEE Computer
Society Technical Committee on Data Engineering, 2009.

[31]	 R. Khanna, M. Kumar. A Vision for Platform Autonomy. Intel Press,
2011. http://intel.com/intelpress.

Author Biographies
Christian Le is a server power and thermal architect in Intel’s Data Center and
Connected Systems Group. He has spent 16 years designing system thermal
and power management solutions. His current focus is on data center power
optimization and platform autonomics research.

Robin Steinbrecher is a server thermal architect in Intel’s Data Center and
Connected Systems Group. He is responsible for cooling architecture for
server products including thermal management, cooling capability, and power/
thermal optimization. He has developed silicon- and system-based methods
enabling optimal thermal control in servers. Robin has over twenty years of
experience in electronics cooling technologies at Intel and IBM, and now
focuses on integration of these technologies in data center applications.

Rahul Khanna is a platform architect at Intel Corporation involved in
development of energy efficient algorithms. Over the past 17 years he
has worked on server system software technologies including platform
automation, power/thermal optimization techniques, reliability, optimization,
and predictive methodologies. He has authored several technical papers
and book chapters in the areas related to energy optimization, platform

Intel® Technology Journal | Volume 16, Issue 2, 2012

A Robust Autonomic Framework for Memory Thermal, Power, and Throughput Management | 81

wireless interconnects, sensor networks, interconnect reliability, predictive
modeling, motion estimation, and security, and holds 27 patents. He is also
the co-inventor of the Intel IBIST methodology for high-speed interconnect
testing. His research interests include machine learning based power/thermal
optimization algorithms, narrow-channel high-speed wireless interconnects,
and information retrieval in dense sensor networks. Rahul is member of IEEE
and the recipient of three Intel Achievement Awards for his contributions in
areas related to advancements of platform technologies. He is the author of
the book A Vision for Platform Autonomy: Robust Frameworks for Systems. Rahul
Khanna can be reached at rahul.khanna@intel.com

Mrittika Ganguli is a Data Center Management Software Architect at
Intel’s Data Center and Connected Systems Group. She has over 16 years of
experience in software development, management, and architecture roles. Her
technical strengths and contributions are in server hardware management,
system software, and energy management software.

82 | Fuzzy Logic: Adaptive Fan Speed Control Methodology

Contributor

Intel® Technology Journal | Volume 16, Issue 2, 2012

This article studies an adaptive fan speed control technology to deliver scalable
acoustic control that is integrated in platforms. The technology consists of two
critical elements: algorithms that automatically adapt to system configuration
and loading, and direct coupling between acoustic fan speed control techniques
and power management.

The automatic tuning eliminates the need for manual tuning while reducing
the guard bands that are introduced by current static algorithms to account
for system-to-system variations. The automatic tuning capability combined
with the auto-discoverable thermal management capability enables a scalable
solution for optimal cooling. The objective of the fan controller is then to
maintain a positive headroom for each device at all times.

Introduction
Modern computer platforms can have several fans as part of their cooling
solutions. Cooling requirements in a platform vary continuously with time.
Hence it is advantageous to have a fan controller integrated in the platform to
set the fans to turn at low speeds when thermal conditions allow. The controller
can use either a feed-forward (FF) or feedback (FB) scheme to generate a pulse
width modulated (PWM) voltage signal to set the speed of each fan. Typical FF
controllers[1] apply linear interpolation between programmable low and high
fan speed limits to compute the PWM level as a function of the temperature
input. FB controllers[2] work on a thermal error signal defined as the difference
between the measured temperature input and a set point temperature. The
controller attempts to drive the thermal error to zero by adjusting the fan
speed, for example, using a PID control law. The increased complexity of
FB controllers relative to traditional FF controllers is justified because they
can have a significant performance advantage in terms or reducing thermal
guard bands and providing a smoother response. Attaining this benefit using
traditional FB control methods is complicated in practice because:

•• The thermal relationship between the fan speed input and the temperature
sensor output is nonlinear

•• The fans themselves feature static nonlinearities; for example, the speed is
bounded by upper and lower limits

•• The response of the fans is slow relative to the thermal error dynamics.
The result is that conservative tuning of the parameters and testing by the
system integrator are required to ensure reliable performance.

“A fan controller integrated in the

platform to set the fans to turn at

low speeds when thermal conditions

allow.”

“Conservative tuning of the

parameters and testing by the system

integrator are required to ensure

reliable performance.”

Rafael de la Guardia
Intel Labs, Guadalajara

Fuzzy Logic: Adaptive Fan Speed Control Methodology

Intel® Technology Journal | Volume 16, Issue 2, 2012

Fuzzy Logic: Adaptive Fan Speed Control Methodology | 83

In the case of servers in particular, the goal of fan speed control is to improve
performance and acoustics while making the overall systems more power
efficient without changing thermal requirements, altering server system
reliability, or negatively impacting performance[3]. From the point of view of
the thermal solution, server systems consist of cooling zones, at least some
of which may contain one or more cooling fans. Most modern dual- and
multiprocessor servers have from three to five fan domains controlled by
independent fan speed signals. During normal operation, as opposed to during
failure situations, fan speeds are driven by the (minimum) thermal margin in
each domain. Hence, the control system monitors ambient and/or component
temperatures and applies algorithms to reduce thermal margins without
increasing thermal risk. A combination of lookup tables and feedback control
algorithms are typically used[4].

In this article, we propose a solution to enhance the energy efficiency of servers
by reclaiming the thermal margins of the fans. We present a new fan speed
control system which manages the speed of the fans proactively by monitoring
both the usage indicators and the temperatures of the components. It employs
thermal models based on fuzzy logic to minimize the energy consumed by the
fans without violating the thermal constraints of the system. It achieves this at
equal performance and lower acoustic noise. In addition, the system is adaptive
and self-tuning, thereby eliminating the need for cumbersome manual tuning.
Thus, the cooling solution is automatically optimized for each individual
server system. The remainder of this article is organized as follows. In the
section “Adaptive Fuzzy Models” we describe a type of fuzzy systems called
Takagi-Sugeno that can be used to model the thermal interactions in a server
system. In the section “Model-based Predictive Control” we describe a model-
predictive control technique that uses a fuzzy thermal model to minimize the
total power in a system while maintaining positive thermal headroom. In the
section “Self-Tuning, Adaptive Fan Speed Control” we present some simulation
results that demonstrate the benefit of the system. The “Conclusions” section
makes some final observations.

Adaptive Fuzzy Models
In this section we describe a type of fuzzy system that can be used to
create and update models which describe the complex, possibly nonlinear
relationships between components found inside computer systems. These
models are data-driven in the sense that they can be fully designed, extracted,
or learned from data, which can be gathered from different sources: raw data
from measurements; context information, such as OS hints, applications,
and user input and environment; structured sources, such as technical
specifications; and streams, typically from an on-line processing context
(sample- or block-wise). Several methodologies can be used for model
training, such as statistical approaches, machine learning, and iterative least-
squares techniques. The result of training is the determination of optimal

“Modern dual- and multiprocessor

servers have from three to five fan

domains controlled by independent

fan speed signals.”

“The control system monitors ambient

and/or component temperatures and

applies algorithms to reduce thermal

margins without increasing thermal

risk.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

84 | Fuzzy Logic: Adaptive Fan Speed Control Methodology

parameter settings for the system. An important class of data-driven models
is comprised of evolving systems, which are automatically adapted, extended
and evolved dynamically on the fly based on new incoming data samples[5].
Compared to adaptive models, which include mechanisms to update some
model parameters, evolving systems can also be extended based on data;
that is, they can generate new structural components as needed in order to
improve accuracy. Hence, evolving models are a key element to enable self-
learning computer systems and machines.

Takagi-Sugeno Fuzzy Systems
Takagi-Sugeno (TS) fuzzy systems are widely used to build adaptive fuzzy
systems. Figure 1 presents the main elements of a TS system. Like other types
of fuzzy systems, TS systems include a set of rules of the general form IF
antecedent THEN consequent. The characteristic feature of TS systems is the
linear consequent functions, which are combined by the nonlinear fuzzy sets
and T-norm operators in the antecedent part of the rules to form a smooth
nonlinear model[5].

•• The i-th rule of a TS system is of the form

	 Ri : IF z1 is Zi1 AND . . . AND zp is Zip THEN

	 y zi i ij jj

P
= +

=∑ϕ ϕ0 1

•• Rules are combined by fuzzy inference

	 ˆ () ˆ ()f y w yi ii

c
zz zz= =

=∑ 1

•• Rules’ membership degree obtained by •
applying t-norm to antecedent part

	 w Z zi j

p

i j j() ()Tzz =
=1

•• Rule weights are normalized

	
w

w

w
i

i

jj

C
()

()

()
zz

zz

zz
=

=∑ 1

Figure 1: Elements of a Takagi-Sugeno fuzzy system
(Source: Intel Corporation, 2012)

Figure 2 shows two of the most common types of fuzzy sets used in the
construction of TS systems. Trapezoidal functions are simple to compute
and interpret but are not steady differentiable and may not cover the input
space sufficiently in the case of data-driven systems. On the other hand,
Gaussian functions have infinite support and are steady differentiable but their
interpretability is weaker.

“Takagi-Sugeno (TS) fuzzy systems

are widely used to build adaptive

fuzzy systems.”

“Like other types of fuzzy systems, TS

systems include a set of rules of the

general form IF antecedent THEN

consequent.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

Fuzzy Logic: Adaptive Fan Speed Control Methodology | 85

•• Trapezoidal •
fuzzy sets    

Z z

z a

b a
a z b

a z b

d
i j j

j i j

i j i j
i j j i j

i j j i j() =

−
−

< <

< <

if

if1

ii j j

i j i j
i j j i j

z

d c
a z b

−
−

< <

















if

otherwise0

Normalized Input

Fuzzy Partition with Five Trapezoidal Fuzzy Sets
1

0.4

0.6

0.8

D
eg

re
e

o
f

M
em

b
er

sh
ip

0.2

0
0 0.2 0.6 0.8 10.4

•• Gaussian fuzzy •
sets         Z z ei j j

z cj i j

i j()

()

=

− − 2

22σ

Figure 2: Trapezoidal and Gaussian fuzzy sets
(Source: Intel Corporation, 2012)

Normalized Input

Fuzzy Partition with Five Gaussian Fuzzy Sets
1

0.4

0.6

0.8

D
eg

re
e

o
f

M
em

b
er

sh
ip

0.2

0
0

0.2 0.6 0.8 10.4

To illustrate how to use a TS system we present a simple example. Figure 3
shows the rules and fuzzy sets for a simple system with two fans and one
temperature sensor. The inputs to the system are the scheduling variables z1
and z2 that represent the speed setting for each fan. The inputs are normalized

“The inputs to the system are the

scheduling variables z1 and z2 that

represent the speed setting for each fan.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

86 | Fuzzy Logic: Adaptive Fan Speed Control Methodology

so that they take values in the range between 0 (minimum speed) and
1 (maximum speed). The input space for each fan speed is partitioned into two
fuzzy values, Slow1 (respectively Slow2) and Fast1 (respectively Fast2).

R1 : IF z1 is Slow1 AND z2 is Slow2 THEN y1 = w10

R2 : IF z1 is Slow1 AND z2 is Fast2 THEN y2 = w20

R3 : IF z1 is Fast1 AND z2 is Slow2 THEN y3 = w30

R4 : IF z1 is Fast1 AND z2 is Fast2 THEN y4 = w40

Normalized Fan1 Speed Input

Fuzzy Partition for Fan1 Speed
1

0.4

0.6

0.8

D
eg

re
e

o
f

M
em

b
er

sh
ip

0.2

0
0 0.2z1 0.6

Fast1Slow1

0.8 10.4

 

Z11(z1) = Z21(z1) = 1 - z1

Z31(z1) = Z41(z1) = z1

Normalized Fan2 Speed Input

Fuzzy Partition for Fan2 Speed
1

0.4

0.6

0.8

D
eg

re
e

o
f

M
em

b
er

sh
ip

0.2

0
0

0.2 z20.6

Fast2Slow2

0.8 10.4

Figure 3: Elements of a Takagi-Sugeno fuzzy system
representing a thermal model
(Source: Intel Corporation, 2012)  

Z12(z2) = Z32(z2) = 1 - z2

Z22(z2) = Z42(z2) = z2

For simplicity, the consequents for the rules include only the singleton
consequent parameter, wi0. Using multiplication in place of the T-norm for the
conjunction operator, the weight of each rule can be computed as follows.

w1 = Z11(z1)Z12(z2) = (1 - z1)(1 - z2)� (1)

“For simplicity, the consequents for

the rules include only the singleton

consequent parameter.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

Fuzzy Logic: Adaptive Fan Speed Control Methodology | 87

w2 = Z21(z1)Z22(z2) = (1 - z1)z2� (2)

w3 = Z31(z1)Z32(z2) = z1(1 - z2)� (3)

w4 = Z41(z1)Z42(z2) = z1z2� (4)

For example, suppose that the normalized speeds are z1 = 0.1 and z2 = 0.9, as
shown in the figure. Then, using equations 1−4 the value of the rule weights
correspond to w1 = 0.09, w2 = 0.81, w3 = 0.01, and w4 = 0.09. Therefore,
the output of the fuzzy model, which in this case corresponds to a predicted
temperature, is given by

f ̂(z1, z2) = ŷ = 0.09 w10 + 0.81 w20 + 0.01 w30 + 0.01 w40� (5)

We’ll have more to say about the parameters wi0 in the next section.

Model-based Predictive Control
The fan speed control problem can be divided in two tasks. The first task is to
construct a Takagi-Sugeno fuzzy system that can be learned from data, with fan
speeds (or fan voltage or PWM) as inputs and device temperatures as outputs.
The second task is to design an optimum controller that will exploit the
predictive capabilities of the TS system to drive the fan speeds toward optimal
settings that will minimize a cost function while limiting the temperatures in
the system below the desired limits. The two tasks are described in detail in the
following two sections.

Adaptive Fuzzy Thermal Model
A thermal model describes interactions between active components, like the
CPU, memory, and fans. Every active component in a server system may have
a thermal/power relationship with every other active component; however
for the geometric and time scales involved in fan management, most of these
relationships are fairly weak and can be safely ignored. Identifying, for each
component, the key thermal relationships with the rest of the system and
constructing accurate thermal models are two of the most difficult challenges
to overcome for deploying effective fan management solutions.

Before going into the details, the main elements of the system can be
summarized as follows. When the fan speeds change, and therefore the airflow
inside a computer system changes, thermal relationships change in a nonlinear
way. Capturing these nonlinear interactions is necessary for an effective and
robust fan speed control system. The output of a fuzzy thermal model is a
predicted device or zone temperature. The past values of the output become
inputs to the thermal model, together with the past and present values of
the power inputs. These inputs provide an indication of the active power
consumed when some component is used. The parameters of the system can
be self-tuned on the fly using a least-squares parameter adaptation algorithm.
Using this fuzzy model, critical temperatures in the system are predicted ahead
of time, enabling proactive control versus a purely reactive approach.

“A thermal model describes

interactions between active

components, like the CPU, memory,

and fans.”

“When the fan speeds change, and

therefore the airflow inside a computer

system changes, thermal relationships

change in a nonlinear way.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

88 | Fuzzy Logic: Adaptive Fan Speed Control Methodology

Using the fuzzy thermal model, the temperature at time t + 1 predicted at time
t for a particular sensor is given by

ˆ .y w y w y w yC C= + + +1 1 2 2
. . � (6)

From Figure 1, Equation 6 corresponds to the output of a TS system with
C rules. For a system with p fans we have the following formula for the
membership degree of the i-th rule.

w Z zi ij jj

p
=

=∏ ()
1

� (7)

The symbol ∏ indicates multiplication over the corresponding fuzzy sets in
the antecedent part of the rules and the scheduling variables, zj, represent the
fan inputs applied at time t - d. The delay d represents the time delay between
an applied fan input and the resulting thermal response of the system. The
consequent of the i-th rule is given by

yi i= ϕ 0 � (8)

Where, as in the example given in the section “Takagi-Sugeno Fuzzy Systems,”
only the singleton consequent parameter was kept. Substituting equation (8) in
equation (6) and dropping the sub-index 0 from the singletons, the predicted
temperature can be calculated as follows.

ŷ w w wC C= + + +1 1 2 2ϕ ϕ ϕ. . . � (9)

To understand the meaning of the singletons, refer once again to Figure 3 and
consider the case when the fan input z1 is 0 and the fan input z2 is also 0. In this
case, the predicted temperature would be exactly ŷ = w1. Therefore, w1 corresponds
to the predicted temperature when the applied fan speed inputs are Slow1 and
Slow2, respectively. In general, the singletons correspond to local solutions of the
nonlinear TS system for a particular combination of fan inputs, which we refer
to as the scheduling variables. This insight leads to a method to determine the
value of the singletons for a particular system, for consider what happens when
the fan speeds are constant. It is well known that when this is the case, the future
temperature of an electronic component can be estimated accurately from a linear
function of the applied power (see for example Huang et al.[8]).

ϕi k
t k

k
t k

k

n

k

n
t a y b uba()+ = − ++ − + −

=

−

=

− ∑∑1 1 1
0

1

1

1 � (10)

Where wi is the temperature at time t +1 predicted at time t when the fan
inputs correspond to the antecedent of the i-th rule. The first term on the right
hand side is a regression of the observed temperature, y t+1-k, up to time t. The
second term is a moving average of the observed power, ut+1-k, up to time t + 1.
In vector form, equation 10 can be rewritten as

ϕ θi it t() ()+ =1 T Ψ � (11)

The superindex T on the right side of the equality is the vector transpose
operator. The parameters a1 ⋅ ⋅ ⋅ ana-1 and b0 ⋅ ⋅ ⋅ bnb-1 are collected in column
vector θi and the recent temperature and power measurements are collected
in column vector Ψ. Combining equations (9) and (11), the predicted
temperature from the fuzzy thermal model is given by

ˆ() , , ((), () . . .,T T T T Ty t w t w t wC C+ = ()1 2 1 2θ θ θ1  Ψ Ψ Ψ TT T T()) ()t t= θ Φ � (12)

“In general, the singletons correspond

to local solutions of the nonlinear TS

system for a particular combination of

fan inputs.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

Fuzzy Logic: Adaptive Fan Speed Control Methodology | 89

The parameters in equation 12 can be identified adaptively using a least squares
parameter adaptation algorithm. The book by Lughofer[5] is a good reference
to learn more about such algorithms and their particular application to fuzzy
systems. We’ll consider the identification problem in the section “Self-Tuning,
Adaptive Fan Speed Control.”

Optimum Fan Speed Control
Model predictive control (MPC) is a general approach to nonlinear optimal
control[6]. Applying MPC to fan speed control, the future output y(t + T    ) of
the system is estimated at time t using the fuzzy thermal model such that the
predicted output ŷ(t + T  ) is a function of the current observation vector ψ(t)
and of the fan speed z(t + k), where 0 ≤ k < T and z(t + k) = z(t + K - 1) for
K ≤ k < T. Hence the fan speed varies only within the control horizon K.

The control law is obtained by minimizing an objective function. This
minimization problem yields the optimum control sequence z* = { z*(0),
z*(1) . . . z*(K - 1)}. The control applied at instant t corresponds to z(t) = z*(0).
All that remains to be done at this point is define the optimization problem
to be solved in the MPC scheme. Since our interest in fan speed control is
using it to minimize system power, the cost function should include the power
consumed by the fans in cooling the system and the leakage power that is a
function of the electronic components’ temperature. Our cost function is then
defined as

L P k P y ka sk

k T
= +

=

=∑ (()) (())z
1

� (13)

The first term on the right side of the equality, Pa, is the power consumed by the
fans, which is a function of the fan inputs only. Therefore, for a given set of fan
inputs, z, we can measure the power consumed by the fans and associate the value
obtained with one of the rules of the fuzzy thermal model. In other words, each
rule in the fuzzy thermal model has a cost associated with it that represents the
power needed to drive the fans at the corresponding input’s levels specified in the
rule’s antecedent. Consider now the second term on the right side of the equality
in equation 13. Since leakage is a function of temperature, we can use equation 8
and associate to each rule in the fuzzy thermal model a cost term proportional to
the estimated leakage power. The total cost of each rule is therefore

Li = Pa(zi) + Ps(i  )� (14)

The optimization problem associated with MPC can now be stated as follows:

Minimize	 L w k d L ki ii

C

k

k T
= −

==

= ∑∑ (()) ()z
11

� (15)

such that	 w k k Tii

C
(()) ,z

=∑ = ≤ <
1

1 0 � (16)

and	 w k d y k y k Ti ii

C
(()) () ,limz − ≤ ≤ <

=∑ 1
0 � (17)

Equation 15 represents the total system power, including cooling power and
leakage. As mentioned in the previous section, the delay d represents the time
delay between an applied fan input and the resulting thermal response of the

“The control law is obtained by

minimizing an objective function.

This minimization problem yields the

optimum control sequence.”

“The cost function should include the

power consumed by the fans in cooling

the system and the leakage power.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

90 | Fuzzy Logic: Adaptive Fan Speed Control Methodology

system. Equation 16 is the normalization condition for the fuzzy weights.
Equation 17 represents the condition that the resulting temperature must be
within the thermal limits of the component. Notice that the optimization
problem defined by equations 15 through 17 can be solved using a standard
linear programming solver such as the simplex [7]. The solution of the
optimization problem is the set of fuzzy weights { w w wC1 2

* * *, , . . . } that should
be applied to the rules of the fuzzy thermal model. The final step is thus to
determine the optimal fan speeds as follows:

z t w Z w Z w Zj j j C C j() * * *= + + +1 1 2 2
. . . � (18)

Self-Tuning, Adaptive Fan Speed Control
In this section, we use an example to illustrate the implementation aspects of a
self-tuning adaptive fan speed control system. Figure 4 shows a thermal model
of a CPU with cooling solution.

Figure 4: Thermal model of a CPU with cooling solution
(Source: Intel Corporation, 2012)

Heat Sink

Chip Die
Power

TAmbient

Rconv.

The model can be represented as a thermal network in a similar way as is
done for example in HotSpot[8]. Figure 5 shows a thermal network model
representation of the CPU system depicted in Figure 4.

Figure 5: Thermal network model
(Source: Intel Corporation, 2012)

TA

Rconv

C3C2

R2R1

C1

T

P

The thermal network is a simplified way to represent the dynamic thermal behavior
of the system in terms of equivalent thermal resistances and capacitances. In

“The thermal network is a simplified

way to represent the dynamic thermal

behavior of the system.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

Fuzzy Logic: Adaptive Fan Speed Control Methodology | 91

the thermal-electrical analogy, temperatures correspond to voltages and power
corresponds to current. The CPU power includes the power loss due to leakage.

P F M Ns i s i() ()ϕ ϕ= × + � (19)

Fs is the leakage current. M and N are parameters obtained by curve fitting in
the piece-wise linear model[9].

The thermal model has a variable thermal resistance, Rconv, to represent the
effect of the fan on the system. In our model, Rconv is defined as an inverse
exponential function of fan speed.

R ()conv = −a zω α � (20)

The function v(z) in equation 20 corresponds to the CPU fan speed in RPM
that results from applying the fan input z. The parameters a and a depend on
the fan and heat sink characteristics. Fan power is proportional to the cube
of the speed in RPM, so if on average we change the fan speed from some
reference value RPM1 to a new value RPM2, we have from the fan law[10] that

RPM1/RPM2 = (Power1/Power2)3� (21)

Equations 19–21 plus the set of differential equations that can be derived
from the thermal network model of Figure 5 by applying the thermal-electrical
analogy describe the dynamics of the CPU thermal model. This model was
used to generate data to train an adaptive fuzzy thermal model based on the
scheme described in the section “Model-based Predictive Control.” Table 1
shows the parameters of the model.

Parameter Value

Thermal resistances &
capacitances (Fig. 5)

R1 = 0.305, R2 = 0.122, C1 = 1.141,
C2 = 19.45, C3 = 30.71

Fan equation (Eq. 20) a = 9000, a = 1.20
Ambient temperature TA = 22°C
Number of fan inputs p = 1
Number of rules C = 3
Control delay d = 1
MPC control horizon K = 1, T = 1
Fan power (per rule) Pa = {1.3, 2.4, 14.0}
Leakage power (Eq. 19) Fs = 1, M = 0.22, N = -4.5
Fuzzy sets Slow = (0, 0.025), Medium = (0.175, 0.057),

Fast = (1, 0.225)
Local models (Eq. 10) na = 12, nb = 12

Table 1: Model parameters
(Source: Intel Corporation, 2012)

The steps needed to generate the model from data are explained next. The first step
to generate a fuzzy thermal model for the system of Figure 4 is to partition the input
space using fuzzy sets. In this example we use Gaussian fuzzy sets, with the input,
z, corresponding to the normalized voltage or PWM input applied to the fan. The

“Fan power is proportional to the cube

of the speed in RPM.”

“The first step to generate a fuzzy

thermal model … is to partition the

input space using fuzzy sets.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

92 | Fuzzy Logic: Adaptive Fan Speed Control Methodology

fuzzy inputs can therefore be assigned linguistic values such as Slow, Medium, and
Fast. Hence, the following three rules for the fuzzy system are obtained.

IF z(t - d    ) is Slow THEN y1(t + 1) = 1(t + 1)� (22)

IF z(t - d) is Medium THEN y2(t + 1) = 2(t + 1)� (23)

IF z(t - d) is Fast THEN y3(t + 1) = 3(t + 1)� (24)

Recall that the output of the fuzzy model corresponds to the predicted
temperature that is obtained, via equation 9, by combining the output from
the local models. Depending on the nonlinearity, a large number of local
models may be necessary. While there are no general guidelines on how
to choose the number, position, and shape of the fuzzy sets, in the present
example the two extremes of the fan input range represent good choices for the
Slow and Fast sets. The fuzzy set Medium can be placed initially at an arbitrary
location between the first two. If necessary to improve the accuracy of the fuzzy
model, it can be updated and/or extended adaptively at a later stage.

In the case of a single input system, one local model can be associated with each
fuzzy set used in partitioning the input space. Each of these local models needs
to be identified adaptively. Identification, or training, can be done for both the
antecedent and consequent parts of the fuzzy rules. In general, local consequent
training is more robust than global training because of the inherent regularization.
For the present example, an affine projection algorithm[11] was used for local model
identification of the consequent parts. A standard gradient descent least-squares
algorithm was used to optimize the parameters of the Medium fuzzy set, while the
Slow and Fast sets remained fixed. Figure 6 shows the resulting fuzzy sets.

Figure 6: Partition of the fan input space using Gaussian
fuzzy sets
(Source: Intel Corporation, 2012)

Normalized Input

1

0.4

0.6

0.8

D
eg

re
e

o
f

M
em

b
er

sh
ip

0.2

0
0 0.2 0.6 0.8 10.4

FastMediumSlow

A near perfect sequence of odd length was used to generate a power trace
for local model training[12]. The linear model parameters (equation 11) were
identified adaptively using the following update equation[11].

“Identification, or training, can be

done for both the antecedent and

consequent parts of the fuzzy rules.”

“A near perfect sequence of odd length

was used to generate a power trace for

local model training.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

Fuzzy Logic: Adaptive Fan Speed Control Methodology | 93

θ θi it t r() () ()T= − + + −1 1Ψ Ψ Ψ I E � (25)

Where E is a ne × 1 error vector defined as

E = − − +((), (), ())Te t e t e t ne1 1 � (26)

Matrix Ψ is similarly defined (abusing notation) using the ne most recent values
of the measurements vector Ψ(t) from equation 11. For the present work ne = 2
was used. Matrix I is the ne × ne identity matrix and r is a regularization
parameter (in our case, r = 1e - 8).

After consequent and antecedent training were done, a different pseudo-noise
sequence was applied to test the fuzzy model as shown in Figure 7.

Figure 7: Simulation results using thermal network model and fuzzy
thermal model. Top: temperature from network model (blue line), predicted
temperature from trained fuzzy model (green line) and fan input (red line).
Bottom: CPU power input applied to thermal network model.
(Source: Intel Corporation, 2012)

30
700 750 800 850 900

40

50

60

70

80

90

30

40

50

60

70

80

90

Te
m

p
er

at
u

re
 (

C
)

P
W

M
 L

ev
el

 (
%

)

Highly Fluctuating Temperature Approx. Using Fuzzy Model

Time (s)

0
700 750 800 850 900

20

40

80

60

100

P
o

w
er

 (
W

)

Time (s)

“After consequent and antecedent

training were done, a different pseudo-

noise sequence was applied to test the

fuzzy model.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

94 | Fuzzy Logic: Adaptive Fan Speed Control Methodology

Having trained a fuzzy thermal model of the system, the next step is to
calculate the total cost of each rule using equations 14, 19, and 21. This is
the last preliminary step before the optimum fan speed control strategy can
be deployed to control fan speed. During operation in a system, the flow of
the adaptive fan speed control system is as follows. Once a second, the fuzzy
thermal model is used to predict the temperature d + 1 seconds ahead of
the current time, using CPU power and temperature data sampled every a
second. Based on these estimates, the linear optimization problem defined by
equations 15–18 is solved to determine the fan speed level that is applied in the
next second. If necessary, the fuzzy thermal model can be updated or extended
at any time to cope for example with hardware configuration changes or aging
of the components.

Figure 8 shows simulation results that illustrate the performance of an adaptive
fan speed control system compared to a standard PID (proportional, integral,

“The fuzzy thermal model is used to

predict the temperature d + 1 seconds

ahead of the current time.”

“If necessary, the fuzzy thermal model

can be updated or extended at any

time.”

Figure 8: Simulation results using PID (blue line) and adaptive (green
line) fan speed control. Top: total power is the sum of the active CPU
power, leakage, and cooling power to drive the fan. Middle: fan input.
Bottom: CPU temperature. The red lined represents the Tcontrol setting.
Fans should be at 100 percent whenever the CPU temperature is
above Tcontrol.
(Source: Intel Corporation, 2012)

Time (s)

0
0

50

100

10 20 30

P
o

w
er

 (
W

at
ts

)
Te

m
p

er
at

u
re

 (
C

)

40 50

Time (s)

0
0

50

100

10 20 30

F
an

 In
p

u
t

40 50

Time (s)

0
20

60

40

80

10 20 30 40 50

Intel® Technology Journal | Volume 16, Issue 2, 2012

Fuzzy Logic: Adaptive Fan Speed Control Methodology | 95

derivative) control. It can be observed that both methods successfully limit
CPU temperature but the adaptive control manages in addition to significantly
reduce the total power consumed by the system. Note that the parameters of
the PID controller were manually tuned for this particular example to ensure
that the thermal limit was not exceeded. On the other hand, no manual tuning
was necessary for the adaptive system, as expected.

Conclusions
This article presented an adaptive system for fan speed control and power
management. The system is self-tuning so thermal guard bands and system
power can be minimized in every system. The system is data driven so it can be
updated and extended automatically, enabling a scalable solution for optimal
cooling. The fan controller maintains a positive headroom for each device at all
times while minimizing total system power.

Acknowledgements
The author gratefully acknowledges the contributions to this project from
Willem Beltman, Murli Tirumala, Daryl Nelson, Karthik Sankaranarayanan,
and Christian Le. He also thanks David Gomez for reviewing the first draft for
technical content and making valuable suggestions that were incorporated in
the final version.

References
[1]	 Intel® Pentium® D Processor and Intel Pentium Processor Extreme

Edition 840 Thermal and Mechanical Guidelines, (Intel, May 2005).

[2]	 T. Byquist and N. Weber, “Advanced Fan Speed Control Tuning Lab,”
(Intel Developer Forum 2005).

[3]	 K. Man and G. Chandrasekaran, “Server fan speed control for
better performance and acoustics,” 2006 Intel Development Forum,
PTMS003

[4]	 Z. Wang, C. Bash, N. Tolia, M. Marwah, X. Zhu, and P. Ranganathan,
“Optimal Fan Speed Control for Thermal Management of Servers,”
Proceedings of the ASME InterPACK 2009, June 2009.

[5]	 Lughofer, E. Evolving Fuzzy Systems − methodologies, advanced concepts
and applications, Springer-Verlag, 2011.

[6]	 D. Q. Mayne, J. B. Rawlings, C.V. Rao and P. Scokaert, “Constrained
model predictive control: stability and optimality,” Automatica 36,
789−814 (2000).

[7]	 Luenberger, D. G. and Ye, Y. Linear and nonlinear programming, 3rd
edition, Springer-Verlag, 2008.

“The system is self-tuning so thermal

guard bands and system power can be

minimized in every system.”

“The fan controller maintains a

positive headroom for each device

at all times while minimizing total

system power.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

96 | Fuzzy Logic: Adaptive Fan Speed Control Methodology

[8]	 Huang, W., Sankaranarayanan, K., Skadron, K., Ribando, R. J., and
Stan, M. R. Accurate, pre-RTL temperature-aware processor design
using a parameterized, geometric thermal model. IEEE Transactions on
Computers, Vol. 57, No. 9, 1277–1288, 2008.

[9]	 Liu, Y., Dick, R. P., Shang, L. and Yang, H. Accurate Temperature-
Dependent Integrated Circuit Leakage Power Estimation is Easy,
DATE07, 2007.

[10]	 Smith, N. High Efficiency Electronic Cooling Fans. SEMI-THERM,
2009.

[11]	 Sayed, A. H. Adaptive Filters, John Wiley & Sons, Inc., 2008.

[12]	 Antweiler, C. and Antweiler, M. System Identification with Perfect
Sequences Based on the NLMS Algorithm, International Journal of
Electronics and Communications, vol. 3, May 1995, pp. 129–134.

Author Biography
Rafael de la Guardia is a senior hardware engineer in Intel Labs. Rafael joined
Intel in 2005, working in the area of adaptive systems. He received a doctorate
in engineering from the National Autonomous University of México (UNAM).
His email is Rafael.de.la.guardia@intel.com.

Intel® Technology Journal | Volume 16, Issue 2, 2012

Fuzzy Logic: Adaptive Fan Speed Control Methodology | 97

Contributors

Intel® Technology Journal | Volume 16, Issue 2, 2012

98 | A Novel Control Design Approach for Server Subsystems: The Concept of Active Disturbance Rejection and a Case Study

The fast data center growth and cloud computing implementations drive the
demands for a higher server system power efficiency to reduce data center
energy cost. In this article, a novel control strategy is explored for power
optimization to key components in a server system, using the voltage regulator
(VR) control as an illustrative example. The new approach is based on the
unique active disturbance rejection control (ADRC) principle, which actively
estimates, and compensates for, disturbances to the system caused by dynamic
load changes rather than passively reacting to them as most existing methods
do. Hence the controller is inherently efficient in rejecting the disturbances in
real time. Without any hardware changes, this methodology leads to substantial
power saving in a highly dynamic load environment in a simulation study.

Introduction
The US data center industry is in the midst of a major growth period
stimulated by increasing demand for data processing and storage[1][2]. Financial
services, Internet communication and entertainment, media, and global
commerce all drive fast growth of the data center, along with a significant
increase in energy consumption and its associated cost from the server system
and data center infrastructure. The server system power efficiency becomes a
frontline issue in server architecture, design, and research[3][4][5].

An Intel server system is shown in Figure 1. Under the hood of a modern
server, we see many subsystems or circuits that are separately controlled. The
server subsystem system controls can be characterized in several categories:
voltage regulator control, power energy control and optimization, and thermal
management and control. At the OS level, the control issues could be workload
control, performance optimization, and so on. Each of these subsystems
is quite different in its dynamics, but they all seek better control means to
improve efficiency, robustness, smartness, and yet, at the same time, retain
ease of use and intuitiveness. The improvement of control methodology or
strategy in each subsystem in the server could result in a major improvement
of the overall server system in terms of power efficiency, performance, and
adaptation.

Undoubtedly automatic control systems play a crucial role in server systems
and yet their design and tuning have not been the focus of our work until
recently. Our default solution for many years has been the conventional
proportional-integral-derivative (PID) controller that dates back to early
1900s[6][7][16]. It is still widely used in server subsystems today due primarily to

“The improvement of control

methodology or strategy in each

subsystem in the server could result

in a major improvement of the

overall server system in terms of

power efficiency, performance, and

adaptation.”

John Ping
Data Center and Connected Systems
Group, Intel Corporation

Zhiqiang Gao
Center for Advanced Control
Technologies, Cleveland State
University

Rahul Khanna
Software and Services Group, Intel
Corporation

A Novel Control Design Approach for Server Subsystems:
The Concept of Active Disturbance Rejection and a Case Study

Intel® Technology Journal | Volume 16, Issue 2, 2012

A Novel Control Design Approach for Server Subsystems: The Concept of Active Disturbance Rejection and a Case Study | 99

its simplicity and our familiarity with it. But perhaps we can no longer ignore
its intrinsic shortcomings, including but not limited to the following:

•• It is mostly tuned by trial-and-error, leaving much room for systematic
improvement.

•• It has limited ability to reject disturbances, such as load changes and process
dynamics variations, which is the primary function in any control systems
and this imposes unnecessary constraints on server systems.

•• It regulates the system by reacting to the deviations in the process variables,
such as voltage and temperature, from their desired values, also known as
setpoints, wasting energy in the process, especially during high dynamic
load change in server operations.

It is our belief that to overcome such shortcomings we must make a
fundamental change in how we approach the problem for server subsystem
control: instead of passively reacting to disturbances, we propose an active
disturbance rejection (ADR) paradigm where the disturbance information
is gathered and used preemptively in limiting the disturbance impact on the
system. That is, we propose a method that will help eliminate the deviation
before it appears, therefore saving the energy that would be otherwise needed
in correcting the deviation.

Such a design principle has been discussed in depth before[8][9][10]. The key in
general is to find a way of getting ahead of the curve in mitigating set-point
deviation, as opposed to always playing catch-up like PID does most of time.
The focus of this article is to creatively adapt the ADR principle to server
problems, utilizing all our relevant knowledge of server dynamics. The key to
the solution is how we obtain the disturbance information and fully taking
advantage of it in helping the controller to get ahead in mitigating disturbance
effects.

“Active disturbance rejection (ADR):

the disturbance information is

gathered and used preemptively in

limiting the disturbance impact on the

system.”

“Eliminate the deviation before it

appears.”

Figure 1: Intel server system
(Source: Intel Corporation, 2012)

Intel® Technology Journal | Volume 16, Issue 2, 2012

100 | A Novel Control Design Approach for Server Subsystems: The Concept of Active Disturbance Rejection and a Case Study

This new way of thinking about server control problems is rooted in our
understanding of a control system’s primary task as that of disturbance
rejection, upon which system performance is evaluated. Acting on the source
of the deviation, that is, disturbance, as opposed to deviation itself, gives us
the advantage of getting ahead, of treating the cause, not the symptom. As will
be demonstrated, this has a profound impact on future energy saving in the
server market.

In this article, we use a typical CPU VR control subsystem as an example to
apply the ADR principles. The server in a data center normally runs in a high
dynamic workload environment with the various tasks running above the
operating system making the CPU current changes drastically in real time;
this makes it a tough disturbance to deal with for the VR controller. From the
perspective of efficiency, however, any improvement in the VR controller in
handling each single load change will add up to potentially significant energy
savings in a highly dynamic environment with big swings in load current. It
is in this environment that we’ll design and validate the ADR methodology
to actively reject the disturbance in the CPU VR system and compare the
performance and energy consumption with respect to step load changes, as it
is compared to the standard PI controller currently used; with a given average
dynamic load fluctuation, we derive the energy saving over a period of time.

The article is organized as follows: the following section, “Background:
What Is the Control Anyway?” describes the related work and background
of the control algorithms. The next section, “Active Disturbance Rejection,”
introduces the ADRC algorithm. Next, the section “Active Disturbance
Rejection in a Server VR Subsystem” describes the ADRC control method on
a server VR subsystem. “Comparing ADRC to Existing Solutions” provides an
analysis of the result and makes the comparison between the PID and ADRC
in terms of control performance and power efficiency. This is followed by a
summary of the article.

Background: What Is Control Anyway?
Since not all server design engineers are well versed in the concepts and
terminology of controls, we start with this basic question. Automatic control
is a technology that has played a crucial role in industry ever since the era of
the steam engine and the industrial revolution in the 18th century. Today,
automation has been built into the very fabric of modern society, from
massive production lines of consumer goods to individual homes and personal
electronic devices. From the vantage point of control engineers, everything
is a part of a process, or system, within which all variables are in some way
interdependent to each other. The objective of control system design is to
make such dependency, in a particular case, meet a predetermined goal or set
of criteria. Over a period of two centuries, control technology has emerged as
a crucial centerpiece in all engineered systems, simply because all such systems
have a goal to reach, a need to satisfy, and the resources to reach the goal. To
satisfy the need is what we call the act of control.

“Today, automation has been built

into the very fabric of modern society,

from massive production lines of

consumer goods to individual homes

and personal electronic devices.”

“Over a period of two centuries,

control technology has emerged as a

crucial centerpiece in all engineered

systems, ...”

Intel® Technology Journal | Volume 16, Issue 2, 2012

A Novel Control Design Approach for Server Subsystems: The Concept of Active Disturbance Rejection and a Case Study | 101

The act of control can be divided into two phases: collecting information and
acting on it. Using the CPU VR control as an example, the goal is to provide
a constant voltage supply for CPU to function. The information that can be
collected are values of process variables such as voltage and current at various
points in the circuit. Such information is used by the controller to adjust the
amount of power supplied to the CPU—not too much, not too little, just
right! That is, in a perfect CPU VR system, the power supplied to the CPU is
exactly what it needs, resulting in a voltage supply that is kept at a constant
3.3 volts, despite huge, unpredictable swings in load current.

Perfect control, of course, doesn’t exist in the real world. For instance, when
we turn on a washing machine at night, the light may dim momentarily,
indicating a voltage dip when the load current suddenly increases. The same
thing happens in the VR control system: when the load currently unexpectedly
increases, the voltage dips, the extent of which shows the ability of the
“disturbance rejection” of the controller, a primary criterion and a central task
in control design.

Curiously, little has changed since the beginning of the modern era in how we
perceive and solve the disturbance rejection problem in control: we wait, we
see, and we react to the deviation in the process variable from its desired value,
or setpoint, the deviation caused by disturbances. Much progress has been
made in all aspects of control engineering, techniques, hardware, and software,
and so on, but this reactive paradigm has endured over two hundred years,
crystallized in the dominant industrial control technology known as PID[6], a
technology defined by how it react in three ways to the setpoint deviation, that
is, tracking error, proportional, integral, and derivative, as shown in equation 1.

u K e K edt K ep I D= + + ⋅∫ � (1)

where u is the control signal, e is the error between the process output and
its desired value, and {Kp, KI, KD} are controller gains. Over 95 percent of
industrial controllers are of this type[6], an alternative to which is discussed
below.

Active Disturbance Rejection
Emerging after World War II as a distinct engineering discipline, automatic
control has been synonymous with feedback largely thanks to Norbert Wiener’s
brainchild of Cybernetics[17]. Wiener calls it “control by informative feedback,”
which means that “when we desire a motion to follow a given pattern the
difference between this pattern and the actually performed motion is used as
the new input to cause the part regulated to move in such a way as to bring
its motion closer to that given by the pattern.” In other words, the control
mechanism first sees the deviation and then acts on it in order to reduce it.
Such conception by Wiener influenced generations of control scientists and
engineers and dominated the field ever since the publication of his book in
1948. Many, if not most, control textbooks have the word feedback in the

“Much progress has been made in all

aspects of control engineering, ... but

this reactive paradigm has endured

over two hundred years.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

102 | A Novel Control Design Approach for Server Subsystems: The Concept of Active Disturbance Rejection and a Case Study

title. The renowned historian of control engineering, Otto Mayr, goes as far
as saying that “this field is essentially based upon a single idea, that of the
feedback loop” and there was never a serious debate or reflection on it, or was
there?

The success, as well as the occasional problems of oscillation, of steam engines
some 200 years ago attracted the attention of many scholars, and engineers.
Among them, Jean-Victor Poncelet, a prominent French scholar and engineer,
in the early 1800s conceived of a very different idea of control: measure the
load disturbance to the engine and cancel it out with the adjustment of steam
flow before the engine speed is affected[9]. Some 100 years later, Russian scholars
revived Poncelet’s idea and developed an entirely different theory and practice
of automatic control that is called “combined system” or dual channel, where
disturbances are measured and the information is used to make a much more
effective control system[18][19]. A few scholars and engineers in England and the
United States also discovered the benefits of adding the so called “feed forward”
element to the control system, as shown in nature and manmade systems’
control systems alike[6][20].

The Origin of ADRC
Conceived by Jingqing Han in the mid-1990s, Active Disturbance Rejection
Control (ADRC) is in the same vein of the invariance principle of the Soviet
scholars a few decades earlier, exposed to him when he was a budding graduate
student in Moscow. By late 1980s, Han, well established as one of the top
control theorists in China, openly challenged the modern control paradigm
in the vein of Kalman Filter and mathematical control science, predicated
on accurate model of the reality[21]. Han believed that such conception of
the problem and presumption in its solution could be called a theory of
mathematical models, but not of controls. Han believed that the Soviet scholar
got it right: control systems are about disturbances; in particular, they are about
how one strives to make the controlled variables, or process outputs, invariant
under the assault of disturbances ubiquitously internal and external.

The background of Han’s 1989 paper[21] is that PID had dominated industrial
controls for decades and no serious researchers could ignored the reality any longer
and avoid the question “why?” If there was competition in engineering practice
between PID and its users against the vast edifice of modern control theory and
its creators and builders in academia, PID would have won hands down and
everyone knows that. What is not so clear was the reason behind such a big divide
between how control is practiced and how it is researched and taught. It took a
scholar of the highest caliber to pinpoint the cause: our reliance on mathematical
models and a misconception of what control engineering really is.

What a mathematical model represents is the known dynamics of the process
being controlled; but the real task of control, the reason to have a control system
in the first place, is to deal with the unknowns and unpredictables, also known
as disturbances. Renowned control theorist Roger Brockett once said “If there is
no uncertainty in the system, the control, or the environment, feedback control

“PID had dominated industrial

controls for decades and no serious

researchers could ignored the

reality any longer and avoid the

question“why?” ”

“If there is no uncertainty in

the system, the control, or the

environment, feedback control is

largely unnecessary” – Roger Brockett.

Intel® Technology Journal | Volume 16, Issue 2, 2012

A Novel Control Design Approach for Server Subsystems: The Concept of Active Disturbance Rejection and a Case Study | 103

is largely unnecessary.”[22]. But modern control theory largely proceeded along
the lines of the following: given the mathematical model, design a control law
to achieve some measure of optimality, which is a valid question in itself but
not necessarily the only control problem out there. Hence the theory/practice
dichotomy and the eighty-year dominance of PID. The question was “What can
we do about it?” The answer, according to Han, was ADRC.

From 1989 to the time of his passing in early 2008, Han dedicated the last
two decades of his life to an alternative to PID and he came up with much
more than just a replacement algorithm. ADRC, according to Han, “inherits
from PID the quality that makes it such a success: the error-driven, rather
than model-based, control law; it takes from modern control theory its best
offering: the state observer; it embraces the power of nonlinear feedback and
puts it to full use; it is a useful digital control technology developed out of an
experimental platform rooted in computer simulations.”

In other words, Han concluded that a viable control law cannot be model
driven. The success of PID demonstrates the effectiveness and practicality of
the error-driven control paradigm. At the same, being a theorist he recognized
that the vast research in modern control brought us its crown jewel, the state
observer, which can be creatively used to extract the disturbance information
from the already available input-output data. ADRC “actively” uses this
information to cancel the disturbance out whenever possible, before it does any
damage, in direct contrast to PID, which only passively reacts to the changes
produced by the disturbances after it runs its course through the process.

Another barrier broken through via ADRC is the linear-nonlinear divide in
control theory. Instead of the linearizing the nonlinear dynamics so that they
can fit into the well-developed linear system theory, Han demonstrated in the
ADRC framework that one could purposely add nonlinearity into the PID
structure to make it more effective. This and other discoveries are only made
possible because the computer simulation provided us with a platform where
control research could be done experimentally, like other physical sciences,
instead of as a branch of mathematics. Han emphasized that it is through
experimental research ADRC was discovered, as opposed to derived.

In summary, ADRC can be viewed as a distinctly different conception of what
control is; as a way of conducting an experimental science; and finally as a
new control system platform, absorbing the error-driven mentality of PID but
adding to it a proactive disturbance rejection facility that makes control truly
“active.”

Illustration of Active Disturbance Rejection for a
Second Order Plant
The conception and the methodology of ADRC obviously is quite general
and fundamental, applicable to most control systems across disciplinary
boundaries, so much so that any concrete application of it would come with it
limitations pertaining only to that application, which is sometimes mistaken

“A viable control law cannot be model

driven.”

“ADRC was discovered, as opposed to

derived.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

104 | A Novel Control Design Approach for Server Subsystems: The Concept of Active Disturbance Rejection and a Case Study

for limitations in general. With this in mind, we introduce a second order,
nonlinear, uncertain, and time-varying process and demonstrate how the
problem can be reformulated with the guidance of ADRC principles.

Although the ADRC method is applicable, in general, to nth order, nonlinear,
time-varying, multi-input and multi-output systems (MIMO), for the sake of
simplicity, its basic concept is illustrated here using the second-order motion
control problem in equation 2.

 y p y y w u t= (, , , ,) � (2)

of which

y u= � (3)

is an idealization corresponding to Newton’s law of motion f = ma. Between
the totally unknown system of equation 2 and the idealized motion of
equation 3, the actual motion system can be described as

 y f y y w t bu= +(, , ,) � (4)

That is, p(y, y., w, u, t) can be meaningfully separated as

p y y w u t f y y w t bu(, , , ,) (, , ,) ≈ + � (5)

Adopting a disturbance rejection framework, the motion process in equation 2
can be seen as a nominal, double integral, plant in equation 3 scaled by b and
perturbed by f (y, y., w, t). That is, p(y., y, w, t) is the generalized disturbance
and the focus of the control design.

Contrary to all existing conventions, Han proposed that f (y, y., w, t) as an
analytical expression perhaps is not required or even necessary for the purpose
of control design. Instead, what is needed is its value estimated in real time.
Specifically, let ˆ ˆf y u= − be the estimate of f (y, y., w, t) at time t, then

u f u= − +(ˆ)0 ⁄b� (6)

reduces equation 1 to a simple double-integral plant

y u≈ 0
� (7)

which can be easily controlled.

This demonstrates the central idea of active disturbance rejection: the control
of a complex nonlinear, time-varying, and uncertain process in equation 2 is
reduced to the simple problem in equation 7 by a direct and active estimation
and rejection (cancellation) of the generalized disturbance, f (y, y., w, t). The key
difference between this and all of the previous approaches is that no explicit
analytical expression of f (y, y., w, t) is assumed here. The only thing required, as
stated above, is the knowledge of the order of the system and the approximate
value of b in equation 4. The bu term in equation 4 can even be viewed as a
linear approximation, since the nonlinearity of the actuator can be seen as an
external disturbance included in f.

“The control of a complex nonlinear,

time-varying, and uncertain process

in equation 2 is reduced to the simple

problem in equation 7.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

A Novel Control Design Approach for Server Subsystems: The Concept of Active Disturbance Rejection and a Case Study | 105

Obviously, the success of ADRC is tied closely to the timely and accurate
estimate of the disturbance. A simple estimation such as ˆ ˆf y u= − may very
well be sufficient for all practical purposes, where ̂y denotes an estimation of y .

The Extended State Observer and the Control Law
There are also many observers proposed in the literature, including the unknown
input observer, the disturbance observer, the perturbation observer, and the
extended state observer (ESO). See, for example, a survey in Tian and Gao[9].
Most require a nominal mathematical model. A brief description of the ESO
of equation 1 is described below. The readers are referred to Tian and Gao[14],
Goa[10][11], and Sun and Gao[12] Zheng and Gao[13] for details, particularly for the
digital implementation and generalization of the ESO in Ping and Gao[15].

The ESO was originally proposed by J. Han[23]. It is made practical by the
tuning method proposed by Goa[11], which simplified its implementation
and made the design transparent to engineers. The main idea is to use an
augmented state space model of equation 1 that includes f, short for f (y, y., w, t),
as an additional state. In particular, let

x1 = y, x2 = y., and x3 = f� (8)

The augmented state space form of equation 1 is

x Ax Bu Eh
y Cx

= + +
=

� (9)

with

A B b C E=
















=
















=
0 1 0
0 0 1
0 0 0

0

0
1 0 0, , [], ==

















0
0
1

Note that x3 = f is the augmented state and h = f
.
 is a part of the jerk; that is,

the differentiation of the acceleration, of motion and is physically bounded.
The state observer

z Az Bu L y y
y Cz

= + + −
=

(ˆ)
ˆ

� (10)

with the observer gain L = [l1 l2 l3]
T selected appropriately, provides an estimate

of the state of equation 9, zi  xi, i = 1, 2, 3. Most importantly, the third
state of the observer, z3, approximates f. The ESO in its original form employs
nonlinear observer gains. Here, with the use of linear gains, this observer is
denoted as the linear extended state observer (LESO). Moreover, to simplify
the tuning process, the observer gains are parameterized as

L o o o
T= [, ,]3 3 2 3ω ω ω � (11)

where the observer bandwidth, wo, is the only tuning parameter.

With a well-tuned observer, the observer state z3 will closely track
x3 = f (y, y., w, t). The control law

u = (-z3 + u0) ⁄ b� (12)

“The success of ADRC is tied closely to

the timly and accurate esitmation of

the distrubance.”

“The ESO (extended state oberserver)

is simplified its implementation

and made the design transprent to

engineers.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

106 | A Novel Control Design Approach for Server Subsystems: The Concept of Active Disturbance Rejection and a Case Study

then reduces equation 4 to equation 7, that is,

y f z u u= − + ≈()3 0 0 � (13)

An example of such u0 is the common linear proportional and derivative
control law

u k r z k zp d0 1 2= − −() � (14)

where r is the set point. The controller tuning is further simplified with

k kd c p c= =2 2ω ωand � (15)

where vc is the closed-loop bandwidth[11]. Together, equations 10 through 15
are collectively denoted as the parameterized linear ADRC, or LADRC.

Active Disturbance Rejection in a Server
VR Subsystem
In this section, we apply ADRC to a Romley Server CPU PVTT power
rail voltage regulation subsystem, and compare the simulation result with
traditional PID control in the next section.

Sandy Bridge CPU VTT Voltage Regulator
The Romley PVTT VR is designed to provide power to the VCCPPA,
VCCPCA, VCCPDTTA pins of the Sandy Bridge processor. The VR
switching regulator is a single phase synchronous buck converter as shown
in Figure 2. It consists of two MOSFETs, one inductor, and one capacitor.

“Apply ADRC to a Romley Server

CPU PVTT power rail voltage

regulation subsystem, and compare the

simulation results.”

Figure 2: VTT VR circuit
(Source: Intel Corporation, 2012)

CPU VTT
Load

Fixed
LoadCapacitor

R

L

MOSFET212V

MOSFET1

S

g D +

+

–

–

v

PWML

PWMH

y

r 1.05

Vout

Target VoltageVoltage Controller

Voltage
Sensor

S
g

D

+

–

Intel® Technology Journal | Volume 16, Issue 2, 2012

A Novel Control Design Approach for Server Subsystems: The Concept of Active Disturbance Rejection and a Case Study | 107

It converts the 12 V to 1.05 V Vout or 1.0 V Vout. It is capable of providing
a maximum load of 20 A, the maximum step load size is 14 App, and the
maximum step load slew rate is 20 A/µs. The frequency of the pulse-width
modulation (PWM) is 500 kHz.

The MOSFETs are turned on and off to alternate between connecting the
inductor to source voltage to store energy in the inductor and discharging the
inductor into the load, and the capacitor smooths the ripple of voltage output
from the inductor. The PWM control the MOSFETs open and close the time
ratio to determine the output voltage level.

The control object of the controller is to deal with voltage deviation caused by
the CPU VTT dynamic load changes and maintain the desired voltage level by
adjusting the PWM duty ratio.

MATLAB Modeling of the Voltage Regulator
To be able to test ADRC in simulation, a MATLAB model is built to
describe the CPU PVTT buck converter circuit. Based on the original circuit
implemented in the Romley Rosecity Server Reference board, we created the
model to describe the CPU PVTT VR circuit as shown in Figure 3.

Figure 3: PVTT VR circuit modeling in MATLAB
(Source: Intel Corporation, 2012)

R

D1

L

+

–

++

–

+
+

+

–

–

–

–

v

+

+

–

–

d

s
–

Voltage
Sensor

CPU PVTT
Load

Fixed
Load

Smoothing
Capacitor, C

N-Channel
MOSFET/1

Current
Sensor

12V

Current
Sensor2

N-Channel
MOSFET/2

Solver
Configuration

f(x)=0

+
–

+ – D2

+–

d s

The CPU PVTT load connects to the output of the VR circuit to simulation
CPU PVTT load changes. Current sensors are added to the input and output
of the VR circuit to get the current reading in real time, and a voltage sensor is
applied to the output side; thus the power data can be derived with product of
the voltage and current.

“A MATLAB model is built to

describe the CPU PVTT buck

converter circuit.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

108 | A Novel Control Design Approach for Server Subsystems: The Concept of Active Disturbance Rejection and a Case Study

Active Disturbance Control Design
As described earlier, the ADRC control law is given as follows:

z t Az t Bu t L y t y t
y t Cz t
() () () (() ˆ())

ˆ() ()
= + + −
=

� (16)

where

A B b L=












 =

















=
0 1 0
0 0 1
0 0 0

0

0
0

3

3
0

0, ,

ω

ω 22

0
3

1 0 0
ω



















=  , ,C

Here, v0 is the bandwidth of the observer. The control law is

u
r z z z

b
c c=

− − −ω ω2
1 2 3

0

2() � (17)

where r is the set point and vc is the control bandwidth. ADRC has three
design parameters, b0, v0, and vc, which can be easily tuned [8][9][10][11].

Figure 4: ADRC simulation block diagram in MATLAB
(Source: Cleveland State University, 2003, 2012)

+

–

–

Add

Sum1

f

kp

kd

1/b0

vc
2

2*vc

bu
u

[0.01, 0.95]

Scope

u

u

y

1

+
–

y
223

Ref
1

Scope1

LESO

x' = Ax+Bu
y = Cx+Du

The model of the ADRC is built in MATLAB as shown in Figure 4, and
when connected with the CPU VTT VR model built from last section, we
get a fully controlled CPU VTT voltage regulator simulation model, which
is shown in Figure 5. A cyclic step load resource to simulate the CPU VTT
dynamic load changes is added to the input of the VTT VR model. The
setup point to the controller is set to 1.05 V to the ADRC controller to
regulator the voltage to 1.05 V.

“The model of the ADRC is built in

MATLAB and connected with the

CPU VTT VR model build from last

section.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

A Novel Control Design Approach for Server Subsystems: The Concept of Active Disturbance Rejection and a Case Study | 109

Figure 5: PVTT with ADRC controller modeling in MATLAB
(Source: Intel Corporation, 2012)

R

D1

L

+

–

++

–

+
+

+

–

–

–

–

v

+

+

–
d

s
–

Voltage
Sensor

Output
Voltage

v1_Output

Goto

CPU PVTT
Cyclic
Load

Fixed
Load

Smoothing
Capacitor, C

N-Channel
MOSFET/1

Current
Sensor

12V

Current
Sensor2

N-Channel
MOSFET/2

Solver
Configuration

f(x)=0

+
–

+ – D2

+–

d s

PWML

PWMH

y

r 1.05

Reference
Voltage

ADRC Controller

ADRC Simulation Result
The simulation result of the ADRC is shown in Figure 6. The top chart is the
voltage output, and the lower chart is the simulated CPU VTT cyclic step
load change between 0~3 A in the frequency of 200 Hz (for further testing
it is an idea to use the maximum load step change as 0~15 A or 0~50 A).
The rising curve at the beginning of the output voltage is the control system

“ADRC simulation result is shown

with cyclic step load.”

Figure 6: Simulation result of ADRC control
(Source: Intel Corporation, 2012)

Intel® Technology Journal | Volume 16, Issue 2, 2012

110 | A Novel Control Design Approach for Server Subsystems: The Concept of Active Disturbance Rejection and a Case Study

transient response when the system starts. After the voltage reaches the desired
voltage level at 1.05 V and is in steady state, the cyclic 0~3 A step loads are
applied to the output of the regulator. From the simulation result, we can
see that the ADRC can quickly correct the overshoot and undershoot caused
by the dynamic step load change and quickly recover to the desired voltage
without any oscillation. The control action is effective and efficient, thus
resulting in a power saving by avoiding unnecessary control effort. In the next
section, we compare the ADRC control with tradition PID control and show
how much power it can save by ADRC with the same cyclic load over the
certain period of time.

Comparing ADRC to Existing Solutions
In this section we compare the ADRC and PID to control the same VR circuit
while adding in the same load changes. As the intrinsic characteristic of the
ADRC, it generates more smooth control to the VR circuit and results in
power savings. We will quantify the power savings based on the simulation
comparison result.

Simulation Setup
A Simulink model is set up in MATLAB to compare the ADRC and PID as
shown in Figure 7. Two identical VR circuit models we made in the last section
are put into the comparison model, and the exact same CPU cyclic loads are
applied to each VR circuit. The upper VR circuit model is connected with a
PID controller; the lower VR controller is connected with an ADRC controller.
To make a real-time comparison, the output voltage, output current, and the
control signal from the controller output are fed into the simulation scope so
that we can visualize the difference between these two control methodologies.
Specifically, the VR input voltage and current are multiplied and have the
integration over time to make the energy consumption comparison between
these two control methods for the same VR circuit. In addition, the Integral of
Absolute Errors (IAE) of the VR voltage output is calculated for each control
method for comparison, the purpose of the extraction of IAE data is to make
a common reference parameter to make a fair comparison. We make the above
comparisons under the condition that the FAE with these two control methods
are about the same.

Controller Tuning
In addition to performance, especially disturbance rejection ability, the
comparison between controllers must include the ease of use, which consists
of two aspects: 1) what does the user need to know to perform the controller
design? And more importantly 2) how easy it is to adjust the controller
parameters in order to meet different design specifications?

PID is well known as an empirical design with users assuming little knowledge
of the plant dynamics. On the other hand, most design methods based on
control theory, classical or modern, require detailed and accurate knowledge
of plant dynamics in the form of a mathematical model. In practice, the

“As the intrinsic characteristic of the

ADRC, it generates more smooth

control to the VR circuit and results in

power savings.”

“PID is well known as an empirical

design with users assuming little

knowledge of the plant dynamics. On

the other hand, most design methods

based on control theory, classical or

modern, require detailed and accurate

knowledge of plant dynamics in the

form of a mathematical model.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

A Novel Control Design Approach for Server Subsystems: The Concept of Active Disturbance Rejection and a Case Study | 111

PID controller is mostly tuned based on the user’s experience and model-
based controllers are tuned based on the identification or estimation of the
parameters of the plant model.

ADRC design and tuning require a different mindset: it presumes that the
users are familiar with the physics of the physical process but not necessarily
its detailed dynamic relationship between the input and output. Based on such

Figure 7: MATLAB Modeling to compare ADRC and PID control
(Source: Intel Corporation, 2012)

R

D1

L

+

–

++

–

+
+

+

–

–

–

–

v

+

+

–

–

Voltage
Sensor

Output
Voltage

v1_Output

Goto

CPU VTT
Cyclic
Load

Fixed
Load

Smoothing
Capacitor, C

N-Channel
MOSFET/1

Current
Sensor

12V

Current
Sensor2

N-Channel
MOSFET/2

Solver
Configuration

f(x)=0

+
–

+ – D2

+–

PWML

PWMH

y

r 1.05

0.0005s+1

Transfer Fon1

1

Constant1
ADRC Controller

R1

D3

L1

+

–

++

–

+
+

+

–

–

–

–

v

+

+

–

–

Voltage
Sensor1

Output
Voltage

v2_Output

Goto1

CPU VTT
Cyclic
Load1

Fixed
Load1

Smoothing
Capacitor, C1

N-Channel
MOSFET/3

Current
Sensor1

12V1

Current
Sensor3

N-Channel
MOSFET/4

Solver
Configuration1

f(x)=0

+
–

+ – D4

+–

PWML

PWMH

y

r 1.05

0.0005s+1

Transfer Fon

1

Constant
PID Controller

Intel® Technology Journal | Volume 16, Issue 2, 2012

112 | A Novel Control Design Approach for Server Subsystems: The Concept of Active Disturbance Rejection and a Case Study

knowledge the user chooses the order of the plant, n, to be used in design,
which is not necessarily the actual order of the plant but, instead, is the order
in which the controller will force the plant to behave. Once n is chosen, the
users need to know, or acquire the information of, how the change in input
u, approximately translates to the change in the nth derivative of the output y,
as described in the parameter b in equation 9. Such information can be easily
obtained as the initial rate of temperature change in a step response test for a
thermal system.

Once the order of the plant is selected and the parameter b is obtained, the
tuning of ADRC is quite straightforward. Shown in equations 10 through
15, there are two key parameters in ADRC: the observer bandwidth and the
controller bandwidth. All observer gains are functions of the former and all
controller gains the latter. The observer bandwidth is in general several times
higher than that of the controller, to ensure that the state estimation converges
fast enough for the controller, although there are exceptions. Once the ratio
of the two bandwidths is fixed, the only tuning parameter is the controller
bandwidth, which is the measure of the aggressiveness of the control system.

With such single parameter tuning, practical optimality or tradeoff is easily
obtained. It is obvious to the users that, increasing bandwidth from low to
high, the tracking and disturbance rejection are improved, but at the costs
of increased sensitivity to measurement noises, the larger amount of energy
exerted, and the reduced stability margin. Seeing both sides, it will not be hard
for the user to choose a compromise.

PID Tuning
In PID tuning, we strive for fairness in comparison. Since PID is usually tuned
by experience in practice, in a time-consuming process, duplicating that in our
simulation is challenging. Instead, we take advantage of the MATLAB embedded
PID autotuning tool to get the optimal coefficient value of Kp, Ki, and Kd.
The MATLAB PID autotuner is a tool capable of computing the parameters
of a regulator connected to the VR circuit automatically, without major user
interaction apart from initiating the operation. The autotuner avoids tuning a
PID regulator manually, which is not consistent and may not be optimal. The
basic steps of a tuning process of the autotuner may be summarized as follows:

1.	� Observing the process behavior, eventually stimulating it somehow and
turning this knowledge into a description of the process behavior

2.	� Establishing the desired closed loop behavior on the basis of the obtained
process description

3.	� Computing the PID controller parameters in order to achieve the desired
closed loop behavior.

Comparison Results
The comparison simulation result is shown in Figure 8. The top chart is for
output voltage of the VR circuit, the second chart from top is the cyclic load,
which simulates the CPU load frequent changes applied to the VR. The third

“There are two key parameters in

ADRC: the observer bandwidth and

the controller bandwidth.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

A Novel Control Design Approach for Server Subsystems: The Concept of Active Disturbance Rejection and a Case Study | 113

chart is the control signal output (PWM duty ration) from each controller. The
bottom chart is the output current applied to the CPU. The purple line is PID,
and the yellow line is ADRC.

Based on the comparison, we made the following observations:

1.	� For both ADRC and PID control, the output voltage all reach to the
desired value 1.05 V after start transient and reach to steady state.

2.	� With the load step change, both ADRC and PID can correct the voltage
back to 1.05 V with small overshoot or undershoot.

3.	� The major differences between ADRC and PID are the control signal
output. The ADRC control is smooth and only acts when it is needed. PID
does a busy control and it is very hard to maintain the output voltage at the
same 1.05 V. Theoretically, the more efficient control will result in power
savings, and we will look at how power saving ADRC can be provided
quantitatively in the next step.

Energy Consumption Comparison between ADRC and PID
Figure 9 plots the integration of the input power to the VR circuit with
both ADRC and PID control method; the integration of the power over
time is the energy consumption. The energy consumption (yellow line)

“Compare the Integration of the power

over time between ADRC and PID

control method.”

Figure 8: Comparison simulation result
(Source: Intel Corporation, 2012)

Intel® Technology Journal | Volume 16, Issue 2, 2012

114 | A Novel Control Design Approach for Server Subsystems: The Concept of Active Disturbance Rejection and a Case Study

with ADRC control method (purple line) is obviously less than the energy
consumption with the PID control method. With the time last, the gap of
energy consumption between ADRC and PID is significant. The energy
consumption is calculated between time 0.0025 seconds and 0.012 seconds.
The reason to choose 0.0025 seconds as the start time is because at 0.0025
seconds it has reached steady state after transient for both ADRC and PID to
make a fair comparison.

Table 1 shows the quantitative energy consumption different between the
ADRC and PID while the output voltage IAE between the ADRC and PID are
about the same.

Energy Consumption
(Watt X second)
(input voltage 12 V)

IAE

ADRC 0.0919 3.3927e-04
PID 0.2358 3.3784e-04

Table 1: Energy Consumption Comparison between ADRC and PID
(Source: Intel Corporation, 2012)

Based on the data shown in Table 1, ADRC saves about 68 percent energy
versus the PID control method for this CPU VTT VR circuit.

“ADRC control method save major

power versus PID control method.”

Figure 9: Energy consumption comparison between ADRC and PID
(Source: Intel Corporation, 2012)

Intel® Technology Journal | Volume 16, Issue 2, 2012

A Novel Control Design Approach for Server Subsystems: The Concept of Active Disturbance Rejection and a Case Study | 115

Power Saving Estimation at System Level
The simulation timespan for the above data is 0.0095 second, so assuming
the same cyclic load is applied to the VR, we can derive what the power
consumption is in hours, days, and a year. Table 2 gives a comparison about
the energy consumption for various time spans. In a year, only the ADRC in
the single VTT VR controller will save about 131.4 kWh of energy for the
server. If the same control methodology applied to each VR in the server, and
in a data center, the energy and cost saving would be tremendous.

1 hour 1 day 1 year 1 year energy

saving per VR

ADRC 0.0097 kWh 0.23 kWh 83.95 kWh 131.4 kWh
PID 0.0248 kWh 0.59 kWh 215.35 kWh

Table 2: Energy Saving For Various Timespans
(Source: Intel Corporation, 2012)

Summary
Design principles pertaining to control systems in server subsystems are
examined in this article to distinguish two different paradigms: the reactive
PID and active disturbance rejection. It is shown how the ADRC principle can
be systematically applied to facilitate advanced control development for server
subsystems. One class of such subsystems, the CPU VR control, is used to
illustrate how the concept fits and how the corresponding control algorithm is
developed and validated in simulation, with encouraging results. Much work
is ahead to further test the concept in hardware implementation and in the
expansion of the investigation into other Server subsystems.

Acknowledgments
The authors would like to thank Ms. Qinling Zheng for her assistance in
simulation.

References
[1]	 U.S. EPA, “Report to congress on server and data center energy

efficiency,” Tech. Rep., Aug. 2007.

[2]	 J.G. Koomey, “Estimating Total Power Consumption by Servers in the
U.S. and the World.”

[3]	 P. Bohrer, E. Elnozahy, T. Keller, M. Kistler, C. Lefurgy, and
R. Rajamony, “The case for power management in web servers,” Power
Aware Computing, Jan 2002.

[4]	 Intel, “First the Tick, Now the Tock: Intel Microarchitecture
(Nehalem),” 2009.

[5]	 L. Barroso and U. Hölzle, “The case for energy-proportional
computing,” IEEE Computer, Jan 2007.

“Scale the energy saving to a year.”

“Design principles pertaining to

control systems in server subsystems are

examined in this article to distinguish

two different paradigms: the reactive

PID and active disturbance rejection.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

116 | A Novel Control Design Approach for Server Subsystems: The Concept of Active Disturbance Rejection and a Case Study

[6]	 K. J. Astrom and T. Hagglund, “PID Control,” The Control Handbook,
W.S. Levine, Ed. p. 198, CRC Press 1996.

[7]	 N. Minorsky, “Directional Stability and Automatically Steered Bodies,”
J. Am. Soc. Nav. Eng., vol. 34, 1922, p. 280.

[8]	 Z. Gao “On Disturbance Rejection Paradigm in Control Engineering,”
Proceedings of the 2010 Chinese Control Conference, July 29–31,
2010, Beijing, China.

[9]	 G. Tian, Z. Gao, “From Poncelet’s Invariance Principle to Active
Disturbance Rejection,” Proceedings of the 2009 American Control
Conference, June 10–12, 2009, pp. 2451–2457.

[10]	 Z. Gao, “Active Disturbance Rejection Control: A Paradigm Shift in
Feedback Control System Design,” Proc. of the 2006 American Control
Conference, Minneapolis, June 14–16, 2006, pp. 2399–2405.

[11]	 Z. Gao, “Scaling and Parameterization Based Controller Tuning,” Proc.
of the 2003 American Control Conference, June 2003, pp. 4989–4996.

[12]	 B. Sun and Z. Gao, “A DSP-Based Active Disturbance Rejection
Control Design for a 1 kW H-Bridge DC-DC Power Converter,” IEEE
Transactions on Industrial Electronics. Volume 52, Issue 5, pp.1271–
1277, Oct. 2005.

[13]	 Q. Zheng and Z. Gao, “On Practical Applications of Active
Disturbance Rejection Control,” Proceedings of the 2010 Chinese
Control Conference, July 29–31, 2010 Beijing, China.

[14]	 G. Tian, Z. Gao, “Frequency Response Analysis of Active Disturbance
Rejection Based Control System,” Proceedings of the 2007 IEEE Multi-
conference on Systems and Control, Singapore, October 1–3, 2007.

[15]	 Z. Ping and Z. Gao, “An FPGA-Based Digital Control and
Communication Module for Space Power Management and
Distribution Systems,” Proceedings of the 2005 American Control
Conference, Portland, June 8–10, 2005.

[16]	 Stuart Bennet, “The Past Of PID Controllers,” Annual Reviews in
Control 25 (2001) pp. 43–53

[17]	 Nobert Wiener, Cybernetics, Wiley, New York, 1948.

[18]	 G. Schipanov, “Theory and methods of designing automatic regulators,”
Automatika in Telemekhanika, vol. 4, no. 1, pp. 49–66, 1939.

[19]	 B. N. Petrov, “The invariance principle and the conditions for its
application during calculation of linear and nonlinear systems,” Proc.
Of 1st IFAC Congress, Moscow, USSR, Butterworth. Ltd., London,
England, vol. 1, pp. 117–126; 1961.

Intel® Technology Journal | Volume 16, Issue 2, 2012

A Novel Control Design Approach for Server Subsystems: The Concept of Active Disturbance Rejection and a Case Study | 117

[20]	 William Ross Ashby, An Introduction to Cybernetics, Wiley, New York,
1956.

[21]	 J. Han, “Control theory: Model approach or control approach,” Syst.
Sci. Math., vol. 9, no. 4, pp. 328–335, 1989, (in Chinese).

[22]	 Roger Brockett, “New Issues in the Mathematics of Control,” in
Mathematics Unlimited – 2001 and Beyond, B. Engquist and W. Schmid
Ed., pp. 189–220, Springer, 2001.

[23]	 J. Han, “A class of extended state observers for uncertain systems,”
Control and Decision, vol. 10, no. 1, pp. 85–88, 1995, (in Chinese).

Author Biographies
John Ping is a system architect in the Intel Data Center and Connected
Systems Group. He has a Bachelor of Technology degree in electrical
engineering from East China University of Science and Technology (Shanghai),
and a master of science in electrical engineering and a doctor of engineering
degree from Cleveland State University. His expertise and research interests span
server system architecture, optimization of performance, power and energy in
server nodes, racks and IP data centers. Another expertise and research area is
advanced control algorithms. He can be reached at john.ping@intel.com

Zhiqiang Gao is associate professor of electrical engineering and director of
the Center for Advanced Control Technologies at Cleveland State University.
He received his PhD in electrical engineering from the University of Notre
Dame in 1990. Employing an experimental science philosophy to research and
a humanistic orientation to teaching, Dr. Gao and his team of researchers bring
creative solutions to real world control problems and vitality of thinking to the
young minds. He spent seventeen years developing ADRC from an obscure
concept into a proven industrial control solution.

Rahul Khanna is a platform architect at Intel Corporation involved in
development of energy efficient algorithms. Over the past 17 years he
has worked on server system software technologies including platform
automation, power/thermal optimization techniques, reliability, optimization,
and predictive methodologies. He has authored several technical papers
and book chapters in the areas related to energy optimization, platform
wireless interconnects, sensor networks, interconnect reliability, predictive
modeling, motion estimation, and security and holds 27 patents. He is also
the co-inventor of the Intel IBIST methodology for high-speed interconnect
testing. His research interests include machine learning based power/thermal
optimization algorithms, narrow-channel high-speed wireless interconnects and
information retrieval in dense sensor networks. Rahul is member of IEEE and
the recipient of three Intel Achievement Awards for his contributions in areas
related to advancements of platform technologies. He is the author of book A
Vision for Platform Autonomy: Robust Frameworks for Systems. Rahul Khanna
can be reached at rahul.khanna@intel.com

118 | Asymmetrical and Lower Bounded Support Vector Regression for Power Prediction

Intel® Technology Journal | Volume 16, Issue 2, 2012

Contributors

The successful design and evaluation of autonomous energy optimization
techniques requires the availability of a ubiquitous and accurate set of
measurement techniques that are cheap and easy to implement. We discuss an
approach for mathematically estimating the wall power as well as the power of the
principal functional units (like DRAM) in the server platforms without incurring
the cost of hardware instrumentation. Support Vector Regression (SVR) has
proven to be an effective tool in real value function estimation. In this paper we
modify two loss functions, Vapnik’s e-insensitive loss function and an insensitive
Huber loss function to be asymmetrical in order to limit underestimates. Our
novel approach, asymmetrical support vector regression, provides accurate
prediction while maintaining a low number of out of bounds misestimates. We
test our approach on two different datasets by predicting the power for the next
time interval and achieve accuracy rates of below 6 percent relative percentage
error while keeping the number of boundary misestimates below 4 percent.

Introduction
Accurate power measurement at system and sub-component level allows
a predictive analysis of energy consumption for an optimal efficiency of a
platform. This helps in estimating the peak consumption and helps minimize
system failures by allowing sufficient safety margins. Power metering can
be established using an extensive network of instrumented power sensors
(such as instrumented power supply units). While instrumentation solves the
problem, it can be expensive to build and requires an extensive network of
system interconnects with certain expectation of accuracy, bandwidth, and
response time. High accuracy translates into high linearity of an analog sensor
over a large range that can easily become expensive. Since sensors perform
linearly only within a limited operating range, it makes them inaccurate in
the regions of high or low currents. Further, environmental and electrical
variations (temperature, humidity, environmental impurities, and electro-
migration) and aging can cause inaccuracies over time, which will require a
frequent recalibration of electrical components. At the same time, while meters
can easily be built at a physical component level (CPU, memory, and power
supply); they are rather difficult to build at the virtual level. For example, in a
multi-partition system, instrumentation is rendered useless if all the partitions
are powered by a single power supply unit with a single instance of power
instrumentation. We discuss an approach to power metering by estimation
using a set of observed variables that share linear or nonlinear correlation to the
power consumption. This approach exploits the statistical relationship among
potential variables and power consumption through predictive approximation.

“We discuss an approach to power

metering by estimation using a set of

observed variables that share linear

or nonlinear correlation to the power

consumption.”

Mel Stockman
American University of Beirut

Mariette Awad
American University of Beirut

Rahul Khanna
Intel Corporation

Asymmetrical and Lower Bounded Support Vector
Regression for Power Prediction

Intel® Technology Journal | Volume 16, Issue 2, 2012

Asymmetrical and Lower Bounded Support Vector Regression for Power Prediction | 119

In many instances of approximation there is an uneven consequence of
misprediction based on whether the error is above or below the target value.
For instance, in power prediction, an incorrect low estimate may be of much
more concern than an overestimate. Underpredicting could lead to insufficient
cooling of data centers, inadequate UPS power supply, unavailable processor
resources, needlessly powering down chip components, and so on. In the case
of forest fire behavior prediction, a lower estimate of the threat could lead to
additional property damage as well as loss of life due to a lack of adequate
supply of personnel and equipment in response. In such circumstances,
it is critically necessary to eliminate or strictly limit underestimating a
function. It is preferable to relax accuracy constraints in order to decrease the
likelihood that the estimation falls below certain bounds as necessitated by the
application. In these cases, it is crucial to minimize misestimates on one side of
a boundary even at the risk of reducing the accuracy of the entire estimation.
It is necessary to restrict the loss function so that only a minimal number of
under- or overestimates occur. This leads to an asymmetric loss function for
training whereby a greater penalty is applied when the misestimate on the
wrong side of the boundary.

Unlike other approaches, which predict power for the current time interval, we
predict the power usage for the next time interval. This is preferable in cases
where online configuration may take time.

The remainder of this article is organized as follows: The next section discusses
prior research. This is followed by a brief overview of standard support vector
regression (SVR). Next, we explain our asymmetrical approach (ALB-SVR).
This is followed be an explanation of the six different data sets used. Then we
present our experimental results and compare SVR and ALB-SVR accuracies,
followed by our conclusion.

Prior Research
Although we are not aware of prior work specifically addressing our approach,
we survey in this section some related work available in literature. Seok et al.[2]
used an asymmetric e-insensitive loss function in support vector quantile
regression (SVQR) in an attempt to decrease the number of support vectors
(SV). They altered the insensitivity according to the quantile and achieve a
sparser model. Our work differs from theirs in that their aim was to decrease
the number of SV while maintaining the same accuracy as a regular SVQR,
while our approach specifically seeks to limit underestimates at the possible
cost to accuracy. Asymmetrical loss functions are discussed by Schabe[3],
who studies different loss functions for Bayes parameter estimation. Schabe
compared a two-sided quadratic loss function to a quasi-quadratic s-loss
function and showed that the modified version offers a smaller increase
of loss and can be used in real world situations where overestimation and
underestimation have different importance. Norstrom[4] studied Bayesian
risk analysis and replaced the quadratic loss function with an asymmetric loss
function to derive a general class of functions that approach infinity near the

“It is preferable to relax accuracy

constraints in order to decrease the

likelihood that the estimation falls

below certain bounds as necessitated

by the application.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

120 | Asymmetrical and Lower Bounded Support Vector Regression for Power Prediction

origin to limit underestimates. Saketha Nath and Bhattacharyya[5] presented
a maximum margin classifier that bounds misclassification for each class
differently, thus allowing for different tolerances levels. Lee et al.[6] proposed a
smoothing strategy to modify the typical SVR approach into a non-constrained
problem, thereby only solving a system of linear equations rather than a convex
quadratic program. Jeh-Nan Pan and Jianbiao Pan[7] compared three different
loss functions for economic tolerance design: Taguchi’s quadratic loss function,
Inverted Normal Loss Function and Revised Inverted Normal Loss Function.

Support Vector Regression
SVR as proposed by Vapnik[1] has proven to be an effective tool in real value
function estimation. The usual approach trains using a symmetrical loss
function, which equally penalizes both high and low misestimates. Using
Vapnik’s e-insensitive approach, a flexible tube of minimal radius is formed
symmetrically around the estimated function such that the absolute values of
errors less than a certain threshold e are ignored both above and below the
estimate. In this manner, points outside the tube are penalized but those within
the tube, either above or below the function, receive no penalty.

One of the main advantages of SVR is that its computational complexity
does not depend on the dimensionality of the input space. Additionally it has
excellent generalization capability with high prediction accuracy[6].

d-insensitive Loss Function
In Vapnik’s e-insensitive SVR[6], a real value y is predicted as:

yi = w · xi + b� (1)
{xi, yi}  i = 1 . . . L,   yi  R, x  RD

using a tube bounded by ± e i as shown in Figure 1. The penalty function is
characterized by only assigning a penalty if the predicted value yi is more than
e away from the actual value ti, (i.e. |ti − yi| ≥ e). Those data points that lie
outside the e-tube are given the same penalty whether they lie above (x +) or
below (x −) the tube (x + > 0, x − > 0 i):

ti ≤ yi + e + x +� (2)

ti ≥ yi − e − x −� (3)

The accuracy of the estimation is then measured by the loss function LeSVR(t, y)
as shown in Figure 2:

L t y
if t y

t y otherwiseSVRε

ε

ε
(,) =

− ≤

− −







0
� (4)

The empirical risk is:

R y
L

L t yemp SVR i ii

L
() (,)=

=∑1
1 ε � (5)

“The usual approach trains using

a symmetrical loss function, which

equally penalizes both high and low

misestimates.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

Asymmetrical and Lower Bounded Support Vector Regression for Power Prediction | 121

X

y – e –

y + e +

y

→
→

y

x – > 0

x + > 0

Figure 1: SVR with e-insensitive tube
(Source: American University of Beirut, 2012)

2

0
–10 –8 –6 –4 –2 0 2 4 6 8 10

4

6

8

10

12

14

16

18

Huber Insensitive Epsilon Insensitive

Figure 2: e-insensitive and Insensitive Huber loss functions with
e 5 1 − 5 2
(Source: American University of Beirut, 2012)

Intel® Technology Journal | Volume 16, Issue 2, 2012

122 | Asymmetrical and Lower Bounded Support Vector Regression for Power Prediction

leading to the SVR error function:

C
i

L

i i=
+ −∑ + +

1

1
2

()ξ ξ ||w||2� (6)

which should be minimized subject to the constraints x + ≥ 0, x − ≥ 0 i and
equations 2 and 3. Support vectors (SVs) are those points that lie outside the
e-tube. The computational efficiency of the SVM lies in the fact that only the
linear combination of the SVs is used for the solution so that large feature data
sets do not affect the SVR[12].

Huber Insensitive Loss Function
The Huber insensitive loss function, as proposed by Bo et al.[11] and shown
in Figure 2, is similar to the e-insensitive loss function; however it increases
quadradically for small errors outside the epsilon bound but below a certain
threshold − > e and then linearly beyond −, making it robust with regards to
outliers.

L t y
if t y

t y if t yHuberSVRε

ε
ε ε∂ =

− ≤
− − < − <(,) ()

| |

| | | |

0
2 ∂∂

∂ − − − ∂ − − ≥ ∂








 ()()| | | |ε ε2 t y if t y

�

(7)

Asymmetrical and Lower Bound Support
Vector Regression
Our approach, asymmetrical and lower bound support vector regression
(ALB-SVR), modifies the SVR loss functions and corresponding error
functions such that the epsilon tube is only above the function as shown in
Figure 3 and Figure 4. The penalty parameter C is split into C + and C − so that
different penalties can be applied to the upper and lower mispredictions. We
apply this technique to both the e-insensitive and the Huber insensitive loss
functions.

e-insensitive ALB-SVR
For the e-insensitive loss function equations 3, 4, and 6 are modified as
follows:

ti ≥ yi − x −� (8)

L t y
if t y

t y if t y
y

ALB SVRε

ε
ε ε− − =

≤ − ≤
− − − >

−
(,)

()
() ()

(

0 0

tt otherwise)









�

(9)

C Cii

L

ii

L+ +
=

− −
=∑ ∑+ +ξ ξ

1 1

1
2

||w||2� (10)

Introducing Lagrange multipliers: a+
i  ≥ 0, a−

i  ≥ 0, m+
i  ≥ 0, m−

i  ≥ 0 i

“The computational efficiency of the

SVM lies in the fact that only the

linear combination of the SVs is used

for the solution so that large feature

data sets do not affect the SVR.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

Asymmetrical and Lower Bounded Support Vector Regression for Power Prediction | 123

L C CP i
i

L

i
i

L

i i i i= + + − ++ +

=

− −

=

+ + −∑ ∑ξ ξ µ ξ µ ξ
1 1

21
2
| | (|w | −−

=

+

=

+∑ ∑− + + −) ()
i

L

i
i

L

i i iy t
1 1

α ε ξ

− − +−
=

−∑ α ξii

L

i i iy t
1

()
�

(11)

which leads to:

δ
δ

α α
LP

i i ii

L

w
w= ⇒ = −+ −

=∑0
1
()x � (12)

δ
δ

α αL
b
P

i ii

L
= ⇒ − =+ −

=∑0 0
1
() � (13)

δ
δξ

α µ
L

CP

i
i i+

+ + += ⇒ = −0 � (14)

δ
δξ

α µ
L

CP

i
i i−

− − −= ⇒ = −0 � (15)

Substituting equations 12 and 13 and maximizing LD with respect to a+
i and

a−
i (a

+
i ≥ 0, a−

i ≥ 0 i ) where:

L tD i i i i i i i i i i= − − − − − −+ − + − + − + −() ()()x xα α ε α α α α α α1
2 jji j

i

L

i

L

i

L

,∑∑∑∑
=== 111

� (16)

X

y

y + e +

x – > 0

x + > 0

→

y

Figure 3: ALB-SVR with e-insensitive tube
(Source: American University of Beirut, 2012)

Since m+
i ≥ 0 and m−

i ≥ 0 and equations 14 and 15, therefore a+
i ≤ C + and

a−
i ≤ C −. Thus we need to find

max
()

(
,α α

α α ε α α
+ −

+ − + −
===

− − −

−

∑∑∑ i i i i ii

L

i

L

i

L
t

111

1
2

αα α α αi i i i i ji j
+ − + −− − ⋅

















∑)()x x

,

� (17)

with 0 ≤ a+
i ≤ C +, 0 ≤ a−

i ≤ C − and ()α αi i ii

L + −
=

− = ∀∑ 0
1

.

Intel® Technology Journal | Volume 16, Issue 2, 2012

124 | Asymmetrical and Lower Bounded Support Vector Regression for Power Prediction

Substituting equation 12 into equation 1

y x x bi i i ii

L
' '= − ⋅ ++ −

=∑ ()α α
1

� (18)

Support Vectors xS can be found with the indices where 0 < <+ +α C and
0 < <− −α C and ξ ξi i

+ −= =0 0()or

and b can be derived by:

b t x xS m m
m S

L

m S= − − − ⋅+ −∑ε α α
ε

() ' � (19)

0
–5 0 5 10

5

10

15

20

25

ALB-SVR Huber Insensitive ALB-SVR Epsilon Insensitive

Figure 4: ALB-SVR e-insensitive and ALB-SVR insensitive Huber loss
functions with e  = 1   = 2
(Source: American University of Beirut, 2012)

L t y

if t y

t y if t y
HuberALB SVRε

ε

∂ − =

≥ − ≤

− − <
(,)

()

() ()

0 0

2 00

2

2(()) ()

()(| |) | |

t y if t y

t y if t y

− − < − < ∂

∂ − − −∂ − −

ε ε

ε ε ≥≥ ∂















� (20)

with solution given by:

max
()

,

()
α α

α α εα α
+ −

+ − + −
==

− − −

−

∑∑ i i i i ii

L

i

L
t

C
1
2

1

2 2
11

22
()()x x

,
α α α αi i i i i ji j

+ − + −− − ⋅

















∑

� (21)

Intel® Technology Journal | Volume 16, Issue 2, 2012

Asymmetrical and Lower Bounded Support Vector Regression for Power Prediction | 125

and the resulting optimization problem:

min
()

,

()
α α

α α εα α
+ −

− − + −

+

+ − + −
== ∑∑ i i i i ii

L

i

L
t

C
1
2

2 2
11

11
2

()()x x
,

α α α αi i i i i ji j
+ − + −− − ⋅

















∑

� (22)

− ≤ − ≤ =+ −C C i Li i() ..α α 1 � (23)

()α αi i

L + −− =∑ 0
1

� (24)

Training Data Sets
Two different power data sets were used for our experimentation. These data
sets are used for training function. In our experiments we used CPU power
telemetry data sets and DRAM activity data sets to estimate system power and
DRAM power respectively.

CPU Power Telemetry Data Set
Power telemetry data set is accessed through power telemetry harness (PCI
based Gladiator telemetry Harness (GTH) Card) externally connected to Intel®
Xeon® server class dual-socket platform. The data set consists of 640 samples
of 6 attributes of telemetry data from a distributed set of physical sensors as
shown in Table 1 along with the measured system power (mW). This dataset is
then used to train the model that predicts the system power.

CPU1 Vtt1 Termination, misc. I/O power

CPU1 Vcc1 Core power

CPU1 Vsa System agent, Uncore, I/O power

CPU2 Vtt1 Termination, misc. I/O power

CPU2 Vcc1 Core power

CPU2 Vsa System agent, Uncore, I/O power

Table 1: Gladiator Data Set Attributes
(Source: Intel Corporation, 2012)

DRAM Activity Data Set
The data set taken from David et al.[8] and Stockman et al.[9] consists of
17765 samples of 5 attributes of memory activity counters as described in
Table 2 with the actual corresponding power consumed in watts as measured
directly by a memory power riser. This dataset is then used to train the model
that predicts the DRAM power.

“In our experiments we used CPU

power telemetry data sets and DRAM

activity data sets to estimate system

power and DRAM power respectively.”

Activity Units

Activate(A) nj/Activate

Read (R) nj/Read

Write (W) nj/Write

CKE=High mW

CKE=Low mW

Table 2: Memory Power Model Attributes
(Source: Intel Corporation, 2012)

Intel® Technology Journal | Volume 16, Issue 2, 2012

126 | Asymmetrical and Lower Bounded Support Vector Regression for Power Prediction

c Type C+ C- g d − % error % out of bound

CPU e-insensitive 512 — 16 0.23 1.72 50.33

CPU e-insensitive ALB-SVR 32768 32 1 0.00039 5.72 2.81

CPU Huber Insensitive SVR 10000 — 1 0.00039 0.01 1.45 50.86

CPU Huber Insensitive ALB-SVR 10000 100 1 0.00039 0.01 5.33 3.58

DRAM e-insensitive 512 — 706 0.10 1.82 57.54

DRAM e-insensitive ALB-SVR 1000000 10 706 0.20 5.06 1.74

DRAM Huber Insensitive SVR 512 — 128 0.1 1.0e-06 1.03 67.07

DRAM Huber Insensitive ALB-SVR 10000000 1000 128 0.1 1.0e-06 1.50 0.24

Table 3: Comparative Results of SVR versus ALB-SVR
(Source: Intel Corporation, 2012)

0
0 20 40 60 80 100

Data Points

P
o

w
er

120 140 160 180 200

1000

2000

3000

4000

5000

6000 Predicted Actual

Figure 5: System power estimates using CPU training data (Table 2) with
e-insensitive SVR
(Source: American University of Beirut, 2012)

Experiments and Results
We modified the code in LIBSVM[10] for ALB-SVR. For all experiments,
we normalized the data and took the average of 10 runs of threefold cross-
validation. Using an RBF kernel, we performed a grid search combined with
heuristic experimentation for both SVR and ALB-SVR to find the best meta-
parameters e, g, C + and C −.

Table 3 and Figures 5 through 12 show the results of SVR and ALB-SVR
for both the loss functions. As can be seen, the number of underestimates is

Intel® Technology Journal | Volume 16, Issue 2, 2012

Asymmetrical and Lower Bounded Support Vector Regression for Power Prediction | 127

0
0 20 40 60 80 100

Data Points

P
o

w
er

120 140 160 180 200

1000

2000

3000

4000

5000

6000
Predicted Actual

Figure 6: System power estimates using CPU training data (Table 2) with
e-insensitive ALB-SVR
(Source: Intel Corporation, 2012)

0
0 20 40 60 80 100

Data Points

P
o

w
er

120 140 160

1000

2000

3000

4000

5000

6000 Predicted Actual

Figure 7: System power estimates using CPU training data (Table 2) with
Huber insensitive SVR
(Source: Intel Corporation, 2012)

Intel® Technology Journal | Volume 16, Issue 2, 2012

128 | Asymmetrical and Lower Bounded Support Vector Regression for Power Prediction

0
0 20 40 60 80 100

Data Points

P
o

w
er

120 140 160

1000

2000

3000

4000

5000

6000
Predicted Actual

Figure 8: System power estimates using CPU training data (Table 2) with
Huber insensitive ALB-SVR
(Source: Intel Corporation, 2012)

1
0 1000 2000 3000 4000

Data Points

P
o

w
er

5000 6000

2

3

4

5

6

7

9

10

8

Predicted Actual

Figure 9: DRAM power estimates using DRAM activity data (Table 3) with
e-insensitive SVR
(Source: Intel Corporation, 2012)

Intel® Technology Journal | Volume 16, Issue 2, 2012

Asymmetrical and Lower Bounded Support Vector Regression for Power Prediction | 129

0
0 1000 2000 3000 4000

Data Points

P
o

w
er

5000

1

2

3

4

5

6

8

9

7

Predicted Actual

10

6000

Figure 10: DRAM ower estimates using DRAM activity data (Table 3) with
e-insensitive ALB-SVR
(Source: Intel Corporation, 2012)

0
0 50 100 150 200

Data Points

P
o

w
er

250 300 350 400 450 500

1

2

3

4

5

6

8

7

Predicted Actual

Figure 11: DRAM power estimates using DRAM activity data (Table 3) with
Huber insensitive SVR
(Source: Intel Corporation, 2012)

Intel® Technology Journal | Volume 16, Issue 2, 2012

130 | Asymmetrical and Lower Bounded Support Vector Regression for Power Prediction

around 50 percent for the SVR, which is because SVR centers the epsilon tube
around the data. ALB-SVR positions the half tube under the data so that only
a small number of points fall below the estimate. The accuracy of ALB-SVR is
necessarily less than that of SVR since the estimation is now skewed lower.

Model performance is evaluated by computing percentage relative error as:

E
L

t y
t

i i

i
i

L
=

−
=∑1

100
1

ˆ
� (25)

The relative error for estimating system power using CPU Power data set was
5.72 percent and for estimating DRAM power using DRAM Activity data set
it was 5.06 percent. This is acceptable since we have minimized the number of
underestimates. As also can be seen, the number of support vectors are greater
in ALB-SVR than in SVR.

Comparison of SVR and ALB-SVR
Comparing ALB-SVR to SVR allows us to look at the tradeoffs involved with
using this technique.

“ALB-SVR positions the half tube

under the data so that only a small

number of points fall below the

estimate.”

0
0 50 100 150 200

Data Points

P
o

w
er

250 300 350 400 450 500

1

2

3

4

5

6

8

7

Predicted Actual

Figure 12: DRAM Power estimates using DRAM activity data (Table-3) with
Huber insensitive ALB-SVR
(Source: Intel Corporation, 2012)

Intel® Technology Journal | Volume 16, Issue 2, 2012

Asymmetrical and Lower Bounded Support Vector Regression for Power Prediction | 131

Empirical Risk
By substituting the new loss function, ALB-SVR’s empirical risk becomes:

R y
L

L t yemp ALB SVRi

L

i i() (,)= − −=∑1
1 ε � (26)

The maximum additional empirical risk for ALB-SVR can be computed to be:

()
()()

y t
i y t

L

i y t

L
− +

∈ − >∈ − ≤ ∑∑ ε
εε

� (27)

Number of Support Vectors and Convergence
In SVR, support vectors (SVs) are those points that lie outside the epsilon
tube. The smaller the value of e, the more points that lie outside the tube and
hence the greater number of SVs. In ALB-SVR, we have essentially cut the
epsilon tube in half. We no longer have the lower epsilon bound. Therefore,
for the same g and epsilon parameters, more points lie outside the tube and
there will be a larger number of SVs. This increase in the number of SVs
indicates that using ALB-SVR has some negative effects on the complexity of
the estimating function. However, as seen in Table 3, the CPU data set did not
show a significant increase in SVs. This may be because the data set is relatively
small. As also can be seen in Table 3, the number of iterations was smaller in
ALB-SVR, indicating the algorithm converged faster and hence this may offset
the larger number of SVs using this approach.

For our ALB-SVR model, we used a grid search and heuristics to determine
optimal meta-parameters. We achieved the goal of limiting the underestimates
to 2.71 percent for the CPU data set and 1.74 percent for the DRAM Activity
data set as compared to 50.33 percent and 57.54 percent for SVR.

Conclusion and Future Work
We have shown our novel approach ALB-SVR to be an effective technique to
bound an estimation such that underestimates are greatly limited. This comes
at the expense of accuracy but nevertheless is helpful for applications that are
highly sensitive to such mispredictions such as power estimation. We tested our
approach on two different power data sets and achieved accuracy rates of below
6 percent relative percentage error while keeping the number of underestimates
below 4 percent. Future work will include different data sets and techniques for
more accurately selecting the meta-parameters as well as improving the error
percentage.

Acknowledgements
This work is partly supported by MER, a partnership between Intel
Corporation and King Abdul-Aziz City for Science and Technology (KACST)
to conduct and promote research in the Middle East and the University
Research Board at the American University of Beirut.

“We have shown our novel approach

ALB-SVR to be an effective technique

to bound an estimation such that

underestimates are greatly limited.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

132 | Asymmetrical and Lower Bounded Support Vector Regression for Power Prediction

References
[1]	 V. Vapnik. Statistical Learning Theory, (Wiley, New York, 1998).

[2]	 K Seok, D Cho, C. Hwang, and J. Shim, “Support vector quantile
regression using asymmetric e-insensitive loss function,” Education
Technology and Computer (ICETC), 2010 2nd International Conference
on, vol.1, no., pp.V1-438–V1-439, June 2010.

[3]	 H. Schabe, “Bayes estimates under asymmetric loss,” Reliability, IEEE
Transactions on, vol.40, no.1, pp.63–67, Apr 1991.

[4]	 J.G. Norstrom, “The use of precautionary loss functions in risk
analysis,” Reliability, IEEE Transactions on, vol.45, no.3, pp.400–403,
Sep 1996.

[5]	 J. Saketha Nath and C. Bhattacharyya., “Maximum Margin Classifiers
with Specified False Positive and False Negative Error Rates,” Proceedings
of SDM Conference, Minneapolis, 2007.

[6]	 Yuh-Jye Lee, Wen-Feng Hsieh, and Chien-Ming Huang, “e-SSVR: a
smooth support vector machine for e-insensitive regression,” Knowledge
and Data Engineering, IEEE Transactions on, vol.17, no.5, pp. 678–685,
May 2005.

[7]	 Jeh-Nan Pan, Jianbiao Pan, “A Comparative Study of Various Loss
Functions in the Economic Tolerance Design,” Management of
Innovation and Technology, 2006 IEEE International Conference on, vol.2,
no., pp.783–787, June 2006.

[8]	 H. David, E. Gorbatov, U. Hanebutte, R. Khanna, and C. Le, “RAPL:
Memory Power Estimation and Capping,” International Symposium on
Low Power Electronics and Design (ISLPED), pp. 14–15, August, 2010.

[9]	 M. Stockman, M. Awad, R. Khanna, C. Le, H. David, E. Gorbatov,
and U. Hanebutte, “A Novel Approach to Memory Power Estimation
Using Machine Learning,” International Conference on Energy Aware
Computing (ICEAC), pp. 1–3, December, 2010.

[10]	 C. Chang and C. Lin, LIBSVM: a library for support vector machines,
2001. http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[11]	 L. Bo, L. Wang, and L. Jiao, “Recursive Finite Newton Algorithm for
Support Vector Regression in the Primal,” Neural Computation, v.19
n.4, p.1082–1096, April 2007.

[12]	 S. Kotsiantis, I. Zaharakis, and P. Pintelas, “Machine learning: a review
of classification and combining techniques”, Artif Intell Rev, vol. 26,
pp. 159–190, 2006.

Intel® Technology Journal | Volume 16, Issue 2, 2012

Asymmetrical and Lower Bounded Support Vector Regression for Power Prediction | 133

Author Biographies
Melissa Stockman is a PhD candidate at the American University of Beirut.
Her research areas include computer architecture, machine learning, and
support vector machines. She has a Bachelor of Arts degree in mathematics
from New York University, New York, New York, and a Master of Science in
computer science degree from the George Mason University, Fairfax, Virginia.
She can be contacted at melissa.stockman1@gmail.com.

Dr. Mariette Awad is an assistant professor in the Electrical and Computer
Engineering Department of the American University of Beirut. She received
her PhD in electrical engineering from the University of Vermont in 2007
and she has been a visiting professor at Virginia Commonwealth University,
Intel Mobile Group, and MIT. Prior to her academic position, she was with
IBM System and Technology group in Vermont as a wireless product engineer.
Over the years, her technical leadership and innovative spirit has earned her
management recognition, several business awards, and multiple patents at
IBM. Her current research interests include machine learning, data mining,
data fusion, image recognition and ubiquitous computing. She can be reached
at mariette.awad@aub.edu.lb.

Rahul Khanna is currently a platform architect at Intel Corporation involved
in development of energy efficient algorithms. Over the past 17 years he
has worked on server system software technologies including platform
automation, power/thermal optimization techniques, reliability, optimization,
and predictive methodologies. He has authored several technical papers
and book chapters in the areas related to energy optimization, platform
wireless interconnect, sensor networks, interconnect reliability, predictive
modeling, motion estimation, and security and holds 27 patents. He is also
the co-inventor of the Intel IBIST methodology for high-speed interconnect
testing. His research interests include machine learning based power/thermal
optimization algorithms, narrow-channel high-speed wireless interconnect and
information retrieval in dense sensor networks. Rahul is member of IEEE and
the recipient of three Intel Achievement Awards for his contributions in areas
related to advancements of platform technologies. He is the author of book A
Vision for Platform Autonomy: Robust Frameworks for Systems. Rahul Khanna
can be reached at rahul.khanna@intel.com

134 | Wireless Interconnects for Future Computing Systems

Contributors

Intel® Technology Journal | Volume 16, Issue 2, 2012

Wireless interconnects at low to medium speeds (below 1 Gbps) allow efficient
state exchange (power states, thermal throttling states, performance states,
component profile deviation), system process control (power states, tuning
optimization, emergency triggers for power delivery, and so on), platform
test and debug in an isolated environment, on-board component testing, and
cooperative tuning and control. Conventional metal wiring is becoming an
inevitable difficulty for the future management of the computing platform.
This article presents an ultra-wideband (UWB) wireless interconnect solution.
The channel characteristics within a computer chassis are analyzed, including
the path loss, multipath reflections, and electromagnetic interferences
(EMI). To address the above problems, two prototypes of impulse-radio
ultra-wideband (IR-UWB) transceivers are proposed. The first prototype
has advantage in power consumption and simplicity and is suitable for low
data rate communications; however, it ignores the inevitable frequency
offset between transmitter and receiver baseband clocks. In the second
prototype, pulse injection-locking is employed for receiver clock recovery and
synchronization and an equalizer is introduced in the transmitter to relax the
multipath reflections. The second prototype is more suitable for high data rate
communications.

Introduction
Platform stability and autonomics requires a collective decision process
that optimizes the system states for maximum efficiency in terms of energy
usage, performance/watt, thermal tuning, power budget re-balancing, and
component profiling for failure analysis. Each platform component plays an
optimization game involving multiple components, in which each component
is assumed to know the equilibrium strategies of the other components in
real time, and no component has anything to gain by changing only its own
strategy. An essential ingredient to enable such manageability is an efficient
telemetry for observability and control through the broadcast nature of the
wireless. For example, to achieve high power/performance efficiency in a
multi-socket scenario, a CPU socket cannot change its sleep (or performance)
state if it is unaware of its neighboring sockets states. Furthermore, these
neighboring states need to be sampled and analyzed in real time to be effective.
Although the downscaling of CMOS technologies allows the integration of
heterogeneous chips on a single die, the future computing platform still needs
many specialized chips from different vendors, such as an RF front end, flash
memory card, and LCD driver. In a conventional server blade card, except
for many-core microprocessors, high-bandwidth serial link interconnects

“An essential ingredient to enable such

manageability is an efficient telemetry

for observability and control through

the wireless broadcast.”

Lingli Xia
Postdoctoral candidate at Oregon
State University

Changhui Hu
Marvell Semiconductor

Stephen Redfield
Graduate Student at Oregon State
University

Sirikarn Woracheewan
Graduate Student at Oregon State
University

Rahul Khanna
Intel Corporation

Jay Nejedlo
Intel Corporation

Huaping Liu
Oregon State University

Patrick Chiang
Oregon State University

Wireless Interconnects for Future
Computing Systems

Intel® Technology Journal | Volume 16, Issue 2, 2012

Wireless Interconnects for Future Computing Systems | 135

and parallel data buses between chips, a PCB card also includes many low-
bandwidth, control-based interconnects that are needed for propagating power,
thermal, utilization, reliability, QoS, and performance trends of various system
components (CPU, DIMM, fans, network, I/O hub) in the form of sense data.
These low-speed interfaces include Joint Test Acting Group (JTAG), Peripheral
Equipment Interface (PEI), and Simple Serial Transport (SST) interconnects,
and so on[1]. In the future computing system, more processers are required on
a single board, integrating numerous side-band channels for various control
information. The conventional wired interconnects will not be able to scale to
future systems without degrading the quality of control.

One potential solution is the wireless interconnect system. A wireless, control-
plane communication system has several advantages[1][2] as, (1) wireless
interconnects reduce latency, which is critical in a clock distribution system,
platform’s manageability, and test or debug capabilities; (2) the broadcast
nature of a wireless interconnect can provide link performance characteristics
globally, enabling dynamic rerouting for performance optimization, which
improves the fault tolerance; (3) wireless interconnects have better scalability
and modularity as easily adding or subtracting sideband channels without
affecting the system’s overall performance; (4) wireless interconnects provide
an opportunity to reconfigure particular chips with variable bandwidth on the
basis of usage requirement; (5) global control data can be sent in a broadcast
as opposed to a serial manner; (6) power optimization and cost reduction.
However, advantages of wireless interconnects inside a computing channel
are accompanied by several significant challenges, such as channel attenuation
and multipath interferences. Recently, ultra-wideband (UWB) has become
an attraction for short-range wireless interconnects [3][4] because of its high
bandwidth, low power, and immunity to multipath fading, and so on.

In-Chassis UWB Channel Characteristics
While UWB wireless communication systems are widely used in a variety
of military, commercial, and consumer applications, the channel models for
indoor/outdoor propagations and wireless body area networks have been
thoroughly studied[5][6][7]. However, a full-size desktop chassis typically houses
substantial amounts of metallic objects and is comprised of a highly reflective
metallic case, as shown in Figure 1. The complex environment in a computer
chassis indicates a unique channel model. Signals within the enclosed area will
experience dense multipath channels with the majority of transmissions within
a short distance of less than 20 cm.

The UWB channel measurements were taken within the chassis interior
of a standard desktop workstation with dimensions 45 × 20 × 40 cm3. To
accurately characterize the channel during normal operation, all miscellaneous
components were left inside the computer during data acquisition.
Measurements were taken inside a near-static, electromagnetically-shielded
lab. A vector network analyzer was used to capture 1601 data points between

“One potential solution is the wireless

interconnect system.”

“The complex environment in a

computer chassis indicates a unique

channel model.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

136 | Wireless Interconnects for Future Computing Systems

3 and 6 GHz, providing a frequency-domain resolution of 1.875 MHz. The
EMI measurement was conducted with a spectrum analyzer.

Propagation Path Loss
Because of its large bandwidth, path loss of a UWB signal is a function of both
the distance between the transmitter and receiver (d ), and the transmitted
frequency ( f  )[7].

L(f, d) = L(f) ⋅ L(d)� (1)

Where L f()  f  2k, k is the decay factor. The distance-dependent
component L(d ) is derived from Friis’ equation and is expressed as

L d
L n d d S d d d

L ndB ()
log (/) ,

=
+ + < ≤

+
01 1 10 01 1 01 02

02

10

10 22 10 02 2 02log (/) ,d d S d d+ >






� (2)

where L01 and L02 are the loss at the reference distance d01 and d02, respectively.
When d01 < d ≤ d02, propagation is a near-field scenario; when d > d02,
propagation is far-field. The near-field and far-field path loss exponents are n1
and n2. S1 and S2 are the near-field and far-field shadowing components with
corresponding standard deviations sS1 and sS2. Figure 2(a) shows the channel
path loss in both near-field and far-field propagation[8]. All parameters related
to this model are given in Table 1. For all of these parameters, spatial averaging
was implemented[7] to remove the frequency dependence of the path loss,
except for the determination of k. Averaging was performed by repeating the
path loss experiment for different transmitting antenna positions and averaging
the acquire data at each spatial position.

“Path loss of a UWB signal is a

function of both the distance and the

frequency.”

16
cm

15
cm

(L
O

S
) Multipath

20cm
TX1

RX2 RX1

RX3

TX2

Figure 1: In-chassis communication scenario
(Source: Oregon State University, 2010)

Intel® Technology Journal | Volume 16, Issue 2, 2012

Wireless Interconnects for Future Computing Systems | 137

100 101

d/d01 (logscale)
(a)

Linear Regression Model
Experimental Data

28

30

32

18

20

22

24

26

P
at

h
 L

o
ss

 (d
B

)

16

0.8

1

0.2

0.4

0.6

N
o

rm
al

iz
ed

 A
m

p
lit

u
d

e

0
0 10 20 30 40 50 60

Time Delay t (ns)
(b)

Channel Impulse Response |h(t)|

Modeled Cluster Decay e(-T/Γ)

–50
Frequency Spectrum in the Computer Chassis

–55

–60

–65

–70

–75

–80
1 2 3

Frequency (GHz)

S
ig

n
al

 P
o

w
er

 (
d

B
m

)

4 5 6 7

(c)

1.3 G,
–58.7 dBm

1.9 G,
–59.4 dBm

3 G,
–59.4 dBm

3.7 G,
–59.6 dBm

2.5 G, –52.9 dBm

Computer is off

Computer is on

Figure 2: UWB channel model within a computer chassis
(a) path loss measurement (b) multipath measurement
(c) electromagnetic interferences
(Source: Oregon State University, 2010)

Intel® Technology Journal | Volume 16, Issue 2, 2012

138 | Wireless Interconnects for Future Computing Systems

Parameter Near-field Far-field

Valid Range (cm) 1 to d02 d02 to 40

i (for parameters below) 1 2

d0i (cm) 1 3

G0i 16.78 -25.90

ni 1.99 0.11

sSi 0.94 1.67

κ (independent of i) 1.31 1.47

Table 1: Channel Propagation Path Loss Model Parameters
(Source: Oregon State University, 2010)

Channel Impulse Response
According to the Saleh-Valenzuela model[9] for indoor propagation,
the complex baseband impulse response for a general indoor multipath
propagation can be expressed as

h t e t Tk l
j

k l
l k l

k l() ,
,

,
,= ⋅ ⋅ − −()∑β δ τθ

� (3)

where l is the cluster index, k denotes the k th ray of the l th cluster, bk,l denotes
the path loss of the k th path of the l th cluster, tk,l is the delay of the kth path
of the l th cluster relative to the lth cluster arrival Tl, and uk,l is the component
phase, which is uniformly distributed over [0, 2π]. Through our experimental
measurements, we have found that this expression adequately describes
multipath propagation within this enclosed environment.

In a common indoor channel, the number of clusters L is generally modeled as
a Poisson-distributed random variable with mean L . The probability density
function (pdf) of L is

f l
L e
lL

l L

()
!

= ⋅ −

� (4)

Clusters are typically identified by visual inspection[7] while the mean L is
derived by averaging the observed clusters per impulse response.

Table 2 summarizes the channel impulse response model parameters, which
are derived from best-fit algorithms on the measurement data[7]. The cluster
arrival rate is Λ, Γ is the inter-cluster decay time constant, γ is the intra-cluster
decay time, and scluster is the cluster shadowing standard deviation. Additionally,
we have observed that the distribution of small-scale component weight bk,l

is Nakagami with a log-normally distributed m-factor. The parameter mm
and sm are the mean and derivation of the m-factor, respectively. The RMS
delay spread trms, is used to interpret delay dispersion. Since the maximum
transmission distance for our channel environment is so short, we found that a
mean value E{trms} is sufficient to characterize this factor.

“This expression adequately describes

multipath propagation within this

enclosed environment.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

Wireless Interconnects for Future Computing Systems | 139

The power delay profiles show the received signal power as a function of time
delay, giving an intuitive inspection of the multipath channel.

PDP = 20 log |h(t)| = 20 log ∆ ⋅ ⋅ ∆ ⋅
=

−

∑ f H k f e
j

kn
N

k

N

()
2

0

1 π

� (5)

where h(t) is the UWB channel impulse response (CIR) in the time domain,
and H(f  ) is the measured UWB channel frequency response. Figure 2(b)
illustrates the high density of multipath clusters encountered in this
environment because of the inherent reflectivity of the metallic surrounding[8].

Parameter Near-field Far-field

Valid Range (cm) 1 to d02 d02 to 40
i (for parameters below) 1 2
d0i (cm) 1 3

L 18.27 29.71

Λ (1/ns) 0.377 0.376

Γ (ns) 17.13 23.03

γ (ns) 1.12 1.03

scluster (dB) 5.55 3.87

mm (dB) 1.57 1.76

sm (dB) 1.04 0.99

E{trms} (ns) 25.65 23.62

Table 2: Channel Impulse Response Model Parameters
(Source: Oregon State University, 2010)

Electromagnetic Interferences
Electromagnetic interferences (EMI) from switching noise of the ICs in the
chassis can limit the wireless link budget and therefore the maximum data
rate that can be achieved[1]. For example, the many parallel, single-ended I/Os
necessary for the multiple DIMMs might create significant EMI, making it
difficult to send wireless data reliably. To understand the magnitude of possible
EMI, we designed a custom test suite for the server blade that fully stresses the
I/O interfaces, creating the potential for a significant amount of background
crosstalk.

We applied a spectrum analyzer to measure the EMI from 0.1 to 7 GHz
within this chassis. We found dominant spectral components at 1.3 GHz,
1.9 GHz, 3 GHz, and 3.7 GHz, with the largest signal spur occurring at
2.5 GHz (-53 dBm), as shown in Figure 2(c). Given that the UWB transceiver
will presumably eventually operate within the 3.5–5 GHz band with a peak
operating frequency of around 4 GHz, the EMI had a nominal effect on the
bit error rate (BER).

“The power delay profiles give an

intuitive inspection of the multipath

channel.”

“EMI can limit the wireless link

budget and therefore the maximum

data rate that can be achieved.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

140 | Wireless Interconnects for Future Computing Systems

IR-UWB Transceiver Design
The analysis of the UWB channel in a computer chassis showed that
although the constraints of channel attenuation, multipath inter-symbol
interference, and EMI noise are challenging, they were tolerable and acceptable
concerning the SNR degradation. The next challenge is developing practical
implementations of the wireless transceivers in CMOS technology to enable
high bandwidth, low power consumption, robustness regarding multipath and
EMI, and low cost.

Previous Studies on IR-UWB Transceivers
Within a traditional narrowband RF transmitter, a mixer is employed to
convert the baseband signal to the RF carrier frequency, requiring a PLL
in order to generate the LO carrier. However, in an IR-UWB transmitter,
frequency conversion is usually performed by differentiation of a Gaussian
pulse output, where the higher the differentiation order, the higher the center
frequency. Therefore, an IR-UWB transmitter is greatly simplified when
compared with a conventional radio. Because of the ultra-wideband nature
of IR-UWB and its spectral overlap with other sensitive frequency bands, the
transmitted power spectral density of IR-UWB must be designed not to exceed
-41.25 dBm/MHz. This low transmitted power means that conventional
power-consuming power amplifiers are not a requirement for these UWB
systems, which further improves the power efficiency of IR-UWB systems.

Several types of modulation can be used for pulse-based UWB systems,
including Binary Phase Shift Keying (BPSK), On Off Keying (OOK), and
Pulse Position Modulation (PPM). BPSK modulation generates 180° phase-
shifted pulses while transmitting baseband symbols “1” and “0”. OOK is
performed by generating transmitted pulses only while transmitting “1”
symbols, while PPM is performed by generating pulses at different phase
delays. Therefore, BPSK has an advantage over other modulation types due to
an inherent 3 dB increase in separation between constellation points[10].

The main block in an IR-UWB transmitter–pulse generator (PG) can be
categorized into analog pulse generators and digital pulse generators. An analog
PG[11] employs the square and exponential functions of MOS transistors biased in
saturation and weak inversion, respectively. However, it suffers from low output
amplitude. A digital PG combines the edges of a rectangular signal and its inverted
signal to form a very short duration pulse, and then a differential circuit or a
multiphase combination circuit[12] is employed to up-convert the pulse without
using a local oscillator[10][13]. The main problem with the digital PG is the difficulty
in controlling the exact pulse shape and its spectrum due to PVT variations.

Conventional IR-UWB receivers can be categorized into coherent receivers[11][14],
noncoherent receivers[15][18], and direct down-sampling receivers[19]. The direct
down-sampling receiver is quite straightforward; the received pulse is amplified
and then sampled by a multi-gigahertz sampling rate ADC. Although at first
glance this architecture seems simple, it is seldom used in the 3–10.6 GHz
frequency band for several reasons. First, it is difficult to implement a high gain,

“An IR-UWB transmitter is greatly

simplified when compared with a

conventional radio.”

“Conventional IR-UWB receivers can

be categorized into coherent receivers,

noncoherent receivers and direct

down-sampling receivers.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

Wireless Interconnects for Future Computing Systems | 141

wide-bandwidth RF amplifier (at least 60 dB is required for 10 m transmission
range), as it may easily oscillate and also consumes significant power. Second,
the design of a multi-gigahertz ADC is not trivial. Although 1-bit resolution
may be sufficient[20], this ADC consumes significant power in the clock
distribution of the high data rate communications.

Both coherent and noncoherent receivers correlate the received pulse first, such
that the center frequency is down-converted to baseband. The difference is
that in a coherent receiver, the received pulse correlates with a local template
pulse; in a noncoherent receiver, the received pulse correlates with itself.
Therefore, a noncoherent technique exhibits the disadvantage that the noise,
as well as signal is both amplified at the receiver[16]. Simulation results show
that a noncoherent receiver requires at least 6 dB higher SNR than a coherent
receiver for a fixed BER[21]. However, the advantage of a noncoherent receiver
is that it avoids the generation of a local pulse as well as the synchronization
between the local and received pulses. In a coherent receiver, in order to obtain
large enough down-converted signal for quantization, the local and received
pulses must be synchronized to less than 100 ps[11][22] in 3–5 GHz frequency
band, which would be even tougher in 6–10 GHz frequency band. This precise
timing synchronization can be achieved with a DLL or PLL, which is very
power consuming[11][22]. However, in a noncoherent receiver, only symbol level
synchronization between the baseband clock and received data is needed with a
resolution of nanoseconds.

Two Prototypes of IR-UWB Transceivers
Two IR-UWB transceiver systems will be introduced for different applications.
The proposed noncoherent IR-UWB transceiver is low power and simple and
is suitable for low date rate communications. The proposed injection-locking
IR-UWB transceiver realizes synchronization with injection-locking and is
suitable for high data rate communications.

Proposed Noncoherent IR-UWB Transceiver with Baseband Synchronization
The IR-UWB transmitter is based on a former BPSK-modulated transmitter
implementation[23]. Since a noncoherent receiver detects only the energy of
the received pulses rather than the phase of the pulses, BPSK modulation is
not suitable for the noncoherent receiver. Hence, OOK modulation is chosen
in this system. The transmitter implementation includes mode selection and
power control blocks, in addition to the pulse generator and output buffer,
as shown in Figure 3. The power control block is used to turn off the output
buffer during pulses intervals in order to reduce the power consumption.
When BPSK is selected, the power control block turns the output buffer
on before the rising edge of the clock signal—the FreqCtrl signal is enabled
and lasts for about 2 nanoseconds, regardless of whether BBin is “1” or “0”;
otherwise, when OOK modulation is selected, the output buffer is enabled
only when BBin is “1”. Therefore, the introduction of the power control
block means that the transmitted power consumption is proportional to
the data rate. The output spectrum of IR-UWB transmitter is difficult to
control due to PVT deviations and inaccurate parasitic models for differential

“A noncoherent receiver requires at

least 6 dB higher SNR than a coherent

receiver for a fixed BER.”

“The proposed noncoherent IR-UWB

transceiver is low power and simple

and is suitable for low date rate

communications.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

142 | Wireless Interconnects for Future Computing Systems

Figure 3: Proposed noncoherent IR-UWB transceiver (a) system architecture (b) pulse generator (c) correlator (d) baseband
clock synchronization
(Source: Fudan University, 2010)

Pulse
Generator

LNA

Correlator PGA Comparator

Baseband

RX data

BBin

clkin

Output Buffer

Tx/Rx
Switch

RX

TX

RX clkSync

FreqCtrl

BBin

BBin

Vctrl1

Vctrl1

Vctrl2 Vbias

fctrl1 fctrl2 fctrl3

L 1

C1
C2 C3 C4

M1

M2

M3

M4

Vctrl2

M5

M6

M7

M8

M9

M10
M11 M12 M13

Inv1

Inv2

Vout

BPSK
Modulation

Quasi-Gaussian
Pulse Generator

Gain Control

(b)

(a)

(c)

(d)

Differential Circuit

OOK

BPSK
OOK

Mode
Selection

Vin+

Vin+ Vin+
Vin–

M1 M2

M5

R1 R2Is

C1 C2

M4M3

M6

Is

Vin–
x x

y

y

y

–10m
780m

0

10m

20m

30m

760m

740m

720m

700m
0n 8n 12n4n 14n 20n

In
t_

ou
t (

v)
Vi

n
(v

)

Time (s)

Decision Counter Delay Line

D-FF

CK
D

Q

rst

Comp_out
RX clk

clkin

RX data

dctrl

Before sync

clkin

RX clk

Comp_out

RX data

1

1

0.5

0.5

0

1
0.5

0

1
0.5
0 –0.00118953 V

1.20056 V

0 V

1.2 V
–0.00745447 V

1.32868 V

1.34256 V

–0.0122828 V0

After sync

Power
Control

Intel® Technology Journal | Volume 16, Issue 2, 2012

Wireless Interconnects for Future Computing Systems | 143

circuit. Therefore, this chip implements four-step spectrum control by using
signals fctrl1–3 showing a measured frequency tuning range of 3.2–4.1 GHz.
Furthermore, three-step gain control by signals Vctrl1–2 is implemented to
enable adaptable output power spectral density in order to meet the FCC
spectral mask at a different data rate.

The proposed IR-UWB receiver employs the noncoherent receiver architecture
as shown in Figure 3. After first being amplified by the low noise amplifier
(LNA), the received pulse is then self-correlated by a correlator, amplified by a
programmable gain amplifier (PGA), and then sent to a comparator for digital
quantization. Finally the received data is synchronized with the baseband clock.

A correlator is the critical block in the receiver. A conventional correlator
consists of a multiplier and an integrator. Previous correlators used in both
coherent receivers[11][24] and noncoherent receivers[18] needed to synchronize the
received pulse with local controlling signals first. This synchronization process is
analogous to the RF front-end synchronization in a coherent receiver requiring
a strict timing resolution. In this design, the duty-cycled characteristic of the
IR-UWB system is used to remove the timing synchronization. The upper
left area of Figure 3 presents the proposed multiplier and integrator-merged
correlator. The multiplier employs a Gilbert topology, while the integrator is
realized by capacitors C1 and C2. As shown in this figure, after the pulse is
multiplied with itself, the integrator begins to integrate, and between the pulses
intervals, the integrator starts to discharge and prepare for the next integration.

After the received signal is squared and integrated by the correlator, a comparator
compares it with a reference voltage and performs digital quantization. However
the comparator output is a return-to-zero (RZ) signal, which needs to be
converted to a non-return-to-zero (NRZ) signal that can synchronize with the
baseband clock. In a coherent receiver, a DLL/PLL is usually introduced to
perform synchronization between the received pulse and the local pulse, needing
precision on the order of several tens of picoseconds. However, in a noncoherent
receiver, the RZ signal quantized by the comparator exhibits a duty cycle on the
order of nanoseconds. Therefore, a low jitter DLL/PLL is no longer necessary
and a sliding correlator is employed. The digital synchronization circuit is shown
in the upper right of Figure 3, where clkin, comp_out, RX clk, and RX data are
the baseband clock, the comparator output, the recovered baseband clock, and
the recovered data, respectively. With a reset signal, the delay line control signal
dctrl is set to 0, such that there is no delay between the RX clk and clkin. Then
the Sync block starts operation, and RX clk samples comp_out. If the RX clk is
not synchronized with comp_out, the decision block enables the counter that
increases the value of dctrl—thus elongating the latency of the delay line until
RX clk and comp_out are synchronized.

The proposed IR-UWB noncoherent transceiver is implemented in a 0.13 µm
1P8M CMOS technology. The die area is 2 mm 3 2 mm, as shown in Figure 4(a).
With a supply voltage of 1.2 V, the power consumption of the transmitter is only
1.2 mW and 2.2 mW when transmitting 50 Mb/s and 100 Mb/s baseband signals,
respectively; the power consumption of the receiver is 13.2 mW.

“The duty-cycled characteristic of the

IR-UWB system is used to remove the

timing synchronization.”

“A low jitter DLL/PLL is no longer

necessary and a sliding correlator is

employed.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

144 | Wireless Interconnects for Future Computing Systems

Figure 4: Measurement results of the proposed noncoherent IR-UWB transceiver (a) chip microphotograph
(b) received pulses with transmission distance of 10 cm (c) BER performance of the receiver with transmission
distance of 10 cm
(Source: Fudan University, 2010)

BBin 1

4
Rx

Pulse

(b)

Ch1 5.0 V Ch4 M 10.0 ns
20.0 GS/s

A Ch1 2.1 V

IT 20.0
ps/pt

10.0
mV Ω

6.4 mV

LNA & Balun
P

u
ls

e
G

en
er

at
o

r

Output
Buffer

Correlator

PGA

Comparator

Sync

(a)

BBin

Rx
data

Bit Error

PGA
out

(c)

Ch1 10.0 V Ch2
Ch4

M 40.0 ns 10.0 GS/s
A Ch1 2.0 V

100
ps/pt

10.0 V
100 mV Ω

4

2

1

The amplitude and spectrum tunable transmitter has output pulses with peak-
to-peak voltage of 240 mV, 170 mV, and 115 mV and the frequency center of
the spectrum has a tuning range of 3.2–4.1 GHz.

The receiver provides a total gain ranging 43–70 dB, in which the LNA
exhibits a gain variation of 7.5 dB in high/low gain mode; the PGA
incorporates an 8-step, 3-dB gain control with an RMS error of 0.7 dB. The
receiver shows a minimum noise figure of 8.6/13.3 dB while operating in high/
low gain mode, with a noise figure variation less than 2 dB in the 3–5 GHz
frequency band. The 1-dB compression point of the receiver is -28/-22 dBm
in high/low gain mode.

Intel® Technology Journal | Volume 16, Issue 2, 2012

Wireless Interconnects for Future Computing Systems | 145

BER performance of the receiver is measured by transmitting 50 Mb/s
random data from FPGA. The employed antennas are 3–5 GHz monopole
omnidirectional antennas, manufactured by Fractus. With transmitted
amplitude of 115 mV, the received pulses are attenuated to only 20.4 mV
(-50 dBm) and 6.4 mV (-61 dBm) when the distance between the antennas
is 1 cm and 10 cm, respectively. The receiver achieves a BER of 10-3 when the
distance between the antennas is set to 1 cm (-50 dBm). While the distance
extends to 10 cm (-61 dBm), the BER performance is greatly deteriorated to
over 10-2. As shown in Figure 4(c), the TX pulse is OOK modulated, every
pulse represents bit 1 at baseband. The received pulses are correlated and then
amplified by the PGA, where PGA out is the buffered output of the PGA.
A bit error occurred in the synchronized RX data as the received pulses are
distorted by the antennas and the transmission channel.

Table 3 lists the performance summary of the proposed noncoherent IR-UWB
transceiver.

Parameter Measurement Results

Technology 0.13mm CMOS
Die Size 2 mm 3 2 mm
Modulation OOK
Data Rate 50–100 Mbps
VCO Frequency Range 3–5 GHz
Transmitted Pulse Width 1ns
Rx NF 8.6 dB
Rx Gain 70 dB
Rx IP1dB -28 dBm
Rx Sensitivity -50 dBm at 50Mbps, BER < 10-3

-61 dBm at 50 Mbps, BER > 10-2

Energy Efficiency Tx: 22 pJ/b;
Rx: 0.13 nJ/b at 100 Mbps

Table 3: Performance Summary of the Proposed Noncoherent IR-UWB
Transceiver
(Source: Fudan University, 2010)

Proposed IR-UWB Transceiver with Injection-Locking Synchronization
The proposed noncoherent receiver above greatly relaxed the difficulty
in synchronization; however, the inevitable frequency offset between the
baseband clocks of the transmitter and receiver still exists, which needs to
be compensated in the digital baseband circuit. In the proposed receiver in
Figure 5, the receiver clock is extracted from the received impulses using
pulse injection-locking. The injection-locking-VCO (ILVCO) employs 4-bit
capacitance bank to tune the VCO free-running frequency. The closer the
ILVCO free-running frequency is to the input pulse frequency, the smaller the
jitter of the recovered clock. Hence, the receiver clock is automatically phase
aligned with the received pulse, exhibiting neither clock offset nor phase drift.

“A bit error occurred as the received

pulses are distorted by the antennas

and the transmission channel.”

“The receiver clock is extracted from

the received impulses using pulse

injection-locking.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

146 | Wireless Interconnects for Future Computing Systems

Additionally, the initial phase difference between the received impulse and the
receiver clock can be statically adjusted at startup by using a programmable
phase shifter in the receiver clocking path, aligning the receiver sampling point
with the optimal SNR position of the incoming impulses. The sampling clock
of the 5-level flash ADC is generated by dividing the VCO output, which is
the same as the impulse data rate. In the transmitter, a 3–5 GHz LC-VCO
output is clock-gated by a baseband pulse that generates the transmitted pulses.
The baseband, pulse-shaping control block (“pulse window”) enables tunable
pulse widths between 0.4–10 ns.

This proposed receiver clock recovery uses pulse injection-locking from the
transmitted pulses, similar to subharmonic injection-locking in Lee et al.[25][26]
As shown in the lower left of Figure 5, Region I denotes the region where
the offset frequency is smaller than the locking range of the injection locked
VCO, where the VCO noise is suppressed by the injected signal. Region II
is the competition region, where the VCO phase noise is the result of the
competition between the injected signal and the VCO free-running signal.
In Region III, beyond the injected signal frequency, the VCO phase noise is
dominated by the VCO free-running phase noise. Similar to a subharmonic
injection-locked PLL[26], for this pulse injection-locked VCO, the effective
division ratio N can be expressed as:

N
f
DR n

f
DR W T

out

inj

out

inj pulse out

=
⋅ ⋅ ⋅

=
⋅ ⋅ ⋅α β α β ())

=
⋅ ⋅ ⋅

1
α β DR Winj pulse

� (6)

where a is the probability that data is “1”, b is the roll-off coefficient due to
pulse-shaping at the transmitter output compared with an uniformly-gated,
sine-wave pulse; DRinj is the data rate; fout and Tout are the ILVCO output signal
frequency and period; and Wpulse is the pulse width. Similar to Lee et al.[25], the
phase noise degrades as 20 log N dB, compared with the injected signal. From
Equation 6, we can see that an increase in the injection pulse rate or pulse
width reduces the phase noise of ILVCO output, because more external clean
energy is injected into the noisy oscillator.

An injection-locked VCO suppresses the noise within the locking range,
similar to a first-order PLL, where the bandwidth wBW is equal to the locking
range wL. Similar to the subharmonic injection-locked PLL, the locking range
wL degrades as N increases. The locking range of a sine wave injected VCO is
described in Razavi[27] and Adler[28]:

ω ω
L

out inj

osc inj

osc

Q
I
I I

I

= ⋅ ⋅

−
2

1

1
2

2

� (7)

where Q represents the quality factor of the tank, and Iinj and Iosc represent the
injected and oscillation currents of the LC-tank VCO. With pulse injection-
locked VCOs, the effective injection current is Iinj,eff = Iinj /N, because less

“This proposed receiver clock recovery

uses pulse injection-locking from

the transmitted pulses, similar to

subharmonic injection-locking.”

“An increase in the injection pulse rate

or pulse width reduces the phase noise

of ILVCO output.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

Wireless Interconnects for Future Computing Systems | 147

current is injected when compared with full sine-wave injection. Consequently,
the locking range of a pulse injection locked VCO is modified as:

ω ω ω
L

out inj

osc inj

osc

out

Q
I
I N I

I N

= ⋅ ⋅ ⋅

−
⋅

≈
2

1 1

1
2

2 2

22
1

Q
I
I N
inj

osc

⋅ ⋅ � (8)

Channel multipath is a major constraint in a computer chassis due to short
distances and the metallic case. Fortunately, in a chassis, the wireless transceiver
locations are stationary, so that the exact distances and time delay of the
multipath is a priori predictable and time invariant. A multiple transmitter
equalizer is designed that can reduce the two most severe multipath reflections.
As shown in Figure 5, Tap1 and Tap2 are sign- and coefficient-programmable
delayed versions of the main signal, with delay time of τ1 and τ2, respectively.

“Channel multipath is a major

constraint in a computer chassis due to

short distances and the metallic case.”

Figure 5: Proposed IR-UWB transceiver with injection-locking synchronization
(Source: Oregon State University, 2010)

0 2 4 6 8 10 12 14
–40

–20

0

20

40

60

Time (ns)

A
m

p
lit

u
d

e
(m

V
)

Wpulse Wpulse

1/DRinj

Vinj

�
�L �inj

PRBS
Ext

Data
NRZãRZ

CK
CK

Tx

/N

Transmitter

Receiver

ILVCO
4GHz

Ref

Multi-path
Equalization

s1

s2

Pulse
Window

Pulse
Window

Pulse
Window

CK

5-level

Rx

ILVCO

LNA
Phase
Shifter /N

Receiver Pulse
Injection Locking

ADC

5

Scan Chain
(234 bits)

A
B

P
h

as
e

N
o

is
e

(L
o

g
 S

ca
le

)

(Log Scale)

Region I Region II Region III

Lvco(�)
Linj(�)+20log10N

Competition
between A and B

Cap Bank

Vout– Vout+

ILVCO

.10
160

.10
160

.10
60

.10
60

.10
60

.10
60

1pF

.10
300

.10
300

0.7nH

Intel® Technology Journal | Volume 16, Issue 2, 2012

148 | Wireless Interconnects for Future Computing Systems

The 2 mm2 IR-UWB transceiver[29] is built in a 90 nm CMOS 1.2 V mixed-
signal technology, as shown in Figure 6(a). The on-chip scan-chain is controlled
by a computer via a Ni-DAQ interface. Indoor free space measurements are
performed with transmission distance of 10–20 cm.

The measured amplitude of the pulse is 160 mVpp, with a nominal pulse
width of 1 ns and data rate of 62.5 Mbps. The frequency spectrum fulfills the
FCC UWB spectral mask except for the GPS band, which can be improved
by incorporating more design attention to spectral shaping in the transmitter
output. The maximum transmission data rate is 500 Mbps.

The measured S11 is below -10dB in 3–5 GHz frequency band. After the
recovered IL-VCO clock locked to the LNA output, with a 1-ns pulse width
and a data rate of 250 Mb/s, the recovered clock jitter is 7.6 ps-RMS. For the
same pulse width, the data rate of 125 Mbps and 500 Mbps are also measured,
with RMS jitter of 8.0 ps and 23 ps. Due to limited bandwidth of LNA, the
inter-symbol interference (ISI) seems worse at the high data rate of 500 Mbps,
increasing the clock jitter.

Figure 6(b) shows the measured injection-locking range versus pulse width
and pulse repetition rate. As can be seen, a wider pulse width and higher data
rate improve the locking range, as more transmitted pulse energy synchronizes
the receiver IL-VCO. Figure 6(b) also shows the measured close-in phase
noise, from free-running without injection, to pulse injection rates (DRinj) of
125 Mbps, 500 Mbps and sine-wave injection. Lower phase noise is exhibited
at higher injection rates, as the phase updates occur at a higher frequency,
similar to the dynamics in a first-order PLL. The result also verifies Equation 6,
showing an approximately 12-dB phase noise difference between 125 Mbps
and 500 Mbps pulse injection rates. Without pulse injection, the free-running
VCO shows very large phase noise at a low frequency offset.

While a long string of empty data transitions would result in loss of phase
synchronization, conventional DC-balanced codes such as 8b/10b can
limit the maximum run length. Transmission using the on-chip PRBS-15
modulator, exhibiting a maximum string length of 14 zeros, showed no loss in
receiver phase synchronization.

The indoor free-space measurement setup uses two UWB antennas that are
placed 10 cm apart. Figure 6(c) show the transmitted digital data, received
pulses after LNA gain, the recovered Rx clock, and finally the received
demodulated data at 500 Mbps.

Because this receiver is injection locked, interferers will increase the recovered
clock jitter and increase the BER, so it is important to measure interference
performance. By putting a single tone interferer through a UWB antenna
close to the receiver antenna, characterizing the received interference power
at receiver input, and increasing the interfere power till the BER reaches 10-3,

“The maximum transmission data rate

is 500 Mbps.”

“Interferers will increase the recovered

clock jitter and increase the BER.”

Wireless Interconnects for Future Computing Systems | 149

2 mm

(a)

1
m

m

Tx Data

Rx Pulse (LNA Out)

Rx Clock

Rx Data

Bit Error Bit Error

Tx T Data

Rx Pulse (LNA Out)

Rx Clock

Rx Data

Bit Error Bit Error

P

B

a

L

r

t

D

r

R DataD

(b) 500 Mbps

(c)

1

2

3

4

1.0 V Ω
100 mV Ω
500 mV Ω
500 mV Ω

C1
C2
C3
C4

5.0 ns/div
20.0 GS/s IT 10.0 ps/pt

C3 œ –10.0 mv

0
2 4 6 8

4

3

2

1

Without EQ

Time (ns)

|A
m

p
li

tu
d

e|
2

(m
v2)

|A
m

p
li

tu
d

e|
2

(m
v2)

Time (ns)

With EQ

(e)

0
2 4 6 8

4

3

2

1

2 ns
Pulse Width

1.5 ns
Rx = 1 ns

500 Mbps
125 Mbps
No-injection

sine

80

70

60

50

40

30

20

10

–50

–60

–70

–80

–90

–100

–110

–120

–130

–140

7.8125 15.625 31.25

Injection Pulse Rate f (Mbps)

In
je

ct
io

n
 L

o
ck

in
g

 R
an

g
e

(M
H

z)
P

h
as

e
N

o
is

e
(d

B
c)

62.5 125 250 500

104 105 106 107 108 109

Frequency Offset (Hz)(b)

ωL1

ωL2
ωL3

–20

–25

–30

–35

–40

–45

–50
2 2.5 3 3.5

Frequency (GHz)

In
te

rf
er

en
ce

 (
d

B
m

)

4

(d)

Figure 6: Measurement results of the proposed IR-UWB transceiver with injection-locking synchronization (a) chip microphotograph
(b) pulse injection lock range and pulse injection locked VCO phase noise (c) data transmission and receive (d) measured maximum
tolerable interference power (e) measured received signal with and without multipath equalization inside computer chassis
(Source: Oregon State University, 2010)

Intel® Technology Journal | Volume 16, Issue 2, 2012

150 | Wireless Interconnects for Future Computing Systems

then we get the maximum tolerable power at receiver input. With a
communication distance of 14 cm, 125 Mpbs 110 mVpp 1-ns wide pulses
are transmitted for interferer test. The measured interference performance
is shown in Figure 6(d) for both in band and out of band. The maximum
tolerable interferer power is -50 dBm at 4 GHz, and -25 dBm at 2.4 GHz.
And considering the EMI in Figure 2(c), this receiver can work robustly in a
computer chassis.

The computer chassis channel exhibits intensive multipath reflections.
Multipath reflections affect the signal differently in short-distance channels
and long-distance channels (relative to the data rate): 1) for short channels,
multipath reflections are close to the main signal (direct path), causing
intra-symbol interference (while OOK modulation is somewhat enhanced
by this additive energy from multipath reflections, BPSK modulation would
be severely limited due the sign change inversion); 2) For long channels,
multipath reflections show longer delay from the main signal, and may fall in
the next symbol. Both intraference and interference can degrade the BER.

The multipath equalizer can cancel multipath reflections in both short-distance
and long distance channels for this OOK IR-UWB transceiver. In a computer
chassis, all antennas are stationary, resulting in a fixed amplitude and time
delay for the multipath signal that arrive at each receiver. Hence, the two-tap
coefficient delay, amplitude, and sign of the equalizer were calibrated at reset
time, and adjusted differently for each of the multipath propagations.

For simplicity, the received pulses and recovered clock are captured by a high
sampling rate oscilloscope, and then the data are processed in MATLAB. In
this case, the quantization noise of the flash ADC in the receiver is eliminated.
Figure 6(e) shows the pulse response (after squaring and low-pass filtering)
before and after equalization is applied, for one of the receivers on the
motherboard. On the left, a single pulse response is observed with several
multipath pulse interferers causing a long pulse tail. On the right, a single pulse
is observed where the first tap equalization is activated, significantly reducing
the multipath reflections. At a data rate of 250 Mbps, the recovered ADC
clock jitter was improved significantly after applying the equalizer, reducing
RMS clock jitter by 27.4 percent at RX1 in Figure 1, while the motherboard
was operational. Within an enclosed chassis that exhibits significant multipath
interference, at 250 Mbps BER is improved from 0.0158 to 0.0067
without/with first-tap equalization enabled respectively. While the proposed
equalization can help cancel the multipath reflections, it is difficult in practice
to eliminate them entirely.

Table 4 lists the performance summary of the proposed injection-locking
IR-UWB transceiver.

“Multipath reflections affect the signal

differently in short-distance channels

and long-distance channels.”

“The multipath equalizer can cancel

multipath reflections in both short-

distance and long-distance channels.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

Wireless Interconnects for Future Computing Systems | 151

Parameter Measurement Results

Technology 90 nm CMOS
Die Size 1 mm 3 2 mm
Modulation OOK
Data Rate 7.8125–500 Mbps
VCO Frequency Range 3.7–4.5 GHz
Transmitted Pulse Width 0.5–10 ns
Rx Sensitivity(free space) -64 dBm at 125 Mbps, BER < 10-3
Rx Sensitivity(free space) -60 dBm at 500 Mbps, BER < 10-1
Energy Efficiency (with ADC) Tx: 90 pJ/b;

Rx: 90 pJ/b at 500 Mbps
In-chassis
BER
(TX1–RX1)
at 125 Mbps

w/oEMI
w/oEQ 1.7 3 10-3
wEQ 3.3 3 10-4

wEMI
w/oEQ 2 3 10-3
wEQ 3.3 3 10-4

Table 4: Performance Summary of the Proposed Injection-Locking IR-UWB
Transceiver
(Source: Oregon State University, 2010)

Summary
Use of low power wireless interconnects provides bidirectional telemetry
and eases the manageability by reducing the routing complexities relating
to numerous component interconnects and replacing them with a single
transceiver per component. The broadcast nature of wireless makes available
the equilibrium strategy to all other components in real-time without adding
any routing complexity so that they can optimize themselves based on the
collective strategy. Wireless chip-to-chip interconnects can provide benefits
that are unattainable by other interconnect technologies and therefore should
be considered for next-generation, many-socket computing platforms. In this
article, the UWB channel model within a computer chassis is analyzed. The two
proposed IR-UWB transceivers are both applicable. The noncoherent IR-UWB
transceiver with baseband synchronization is low power and low complexity in
the RF front end, but needs further frequency offset compensation in digital
signal processing. The injection-locking IR-UWB receiver realizes both phase
and frequency synchronization in the RF front end and a two-tap equalizer is
employed in the transmitter to cancel the multipath signals.

References
[1]	 P. Y. Chiang et al., “Short-range, wireless interconnect within a

computing chassis: design challenges,” IEEE Design & Test of Computers,
vol. 27, no. 4, pp. 32–43, July/Aug. 2010.

[2]	 B. A. Floyd, C. Hung, K. K. O, “Intra-chip wireless interconnect for
clock distribution implemented with integrated antennas, receivers and

Intel® Technology Journal | Volume 16, Issue 2, 2012

152 | Wireless Interconnects for Future Computing Systems

transmitters,” IEEE J. Solid-State Circuits, vol. 37, no. 5, pp. 543–552,
May 2002.

[3]	 Y. Zheng, Y. Zhang, Y. Tong, “A novel wireless interconnect technology
using impulse radio for interchip communications,” IEEE Transactions
on Microwave Theory and Techniques, Vol. 54, No. 4, pp. 1912–1920,
Apr. 2006.

[4]	 J. Gelabert, D. Edwards, C. J. Stevens, “UWB wireless interconnect
scheme for communication devices within small conducting enclosure,”
Proceeding of the 5th European Conference on Antennas and Propagation,
pp. 1743–1747, Apr. 2011.

[5]	 Z. Irahhauten, H. Nikookar, G. J. M. Janssen, “An overview of
ultra wide band indoor channel measurements and modeling,”
IEEE Microwave and Wireless Components Letters, Vol. 14, No. 8,
pp. 386–388, Aug. 2004.

[6]	 L. Xia, S. Redfield, P. Chiang, “Experimental characterization of a
UWB channel for body area networks,” EURASIP Journal on Wireless
Communications and Networking, Article ID: 703239, 2011.

[7]	 A. F. Molisch et al., “IEEE 802.15.4a channel model-final report,” Tech.
Rep. Doc. IEEE 802.15-04-0662-02-004a, 2005.

[8]	 S. Redfield et al., “Understanding the ultrawideband channel
characteristics within a computer chassis,” IEEE Antennas and Wireless
Propaga. Lett., vol. 10, pp. 191–194, 2011.

[9]	 A. Saleh and R.A. Valenzuela, “A statistical model for indoor
multipath propagation,” IEEE J. Select. Areas Commun., Vol. 5, no. 2,
pp. 128–137, Feb. 1987.

[10]	 D. D. Wentzloff, A. P. Chandrakasan, “Gaussian pulse generators for
subbanded ultra-wideband transmitters,” IEEE Trans. Microw. Theory
Tech., Vol. 54, No. 4, Apr. 2006. pp. 1647–1655.

[11]	 Y. Zheng, et al., “A CMOS carrier-less UWB transceiver for WPAN,” in
IEEE ISSCC Dig. Tech. Papers, pp. 116–117, 2006.

[12]	 H. Kim, Y. Joo, “Fifth-derivative Gaussian pulse generator for UWB
system,” in IEEE RF IC Symp., pp. 671–674, 2005.

[13]	 T. Phan, V. Krizhanovskii, S. G. Lee, “Low-power CMOS energy
detection transceiver for UWB impulse radio system,” in IEEE Proc.
CICC., pp. 675–678, 2007.

[14]	 J. Hu, et al., “A 0.17-nJ/Pulse IR-UWB receiver based on distributed
pulse correlator in 0.18-mm Digital CMOS,” in IEEE RFIC Symp.,
pp. 543–546, 2009.

Intel® Technology Journal | Volume 16, Issue 2, 2012

Wireless Interconnects for Future Computing Systems | 153

[15]	 T. Phan, V. Krizhanovskii, S. G. Lee, “Low-power CMOS energy
detection transceiver for UWB impulse radio system,” in IEEE Proc.
CICC., pp. 675–678, 2007.

[16]	 L. Stoica, et al., “An ultrawideband system architecture for tag based
wireless sensor networks”, IEEE Trans. Veh. Technol., Vol. 54, No. 5,
pp. 1632–1645, Sep. 2005.

[17]	 P. Mercier, et al., “Ultra-low-power UWB for sensor network
applications,” in IEEE Proc. ISCAS, pp. 2562–2565, 2008.

[18]	 F. S. Lee, A. P. Chandrakasan., “A 2.5 nJ/b 0.65V 3-to-5GHz
subbanded UWB receiver in 90nm CMOS,” IEEE J. Solid-State
Circuits, pp. 116–117, 2007.

[19]	 H. Lee, et al., “A 15mW 69dB 2Gsample/s CMOS analog front-end
for low-band UWB applications,” in IEEE Proc. ISCAS, pp. 368–371,
2005.

[20]	 C. Yang, K. Chen, T. Chiueh, “A 1.2V 6.7mW impulse-radio UWB
baseband transceiver,” in IEEE ISSCC Dig. Tech. Papers, pp. 442–443,
2005.

[21]	 L. Xia et al., “0.15-nJ/b 3-5-GHz IR-UWB system with spectrum
tunable transmitter and merged-correlator noncoherent receiver,”
IEEE Trans. Microwave Theory & Tech., vol. 59, no. 4, pp. 1147–1156,
Apr. 2011.

[22]	 N. Sasaki, K. Kimoto, W. Moriyama, T. Kikkawa, “A single-chip
ultra-wideband receiver with silicon integrated antennas for inter-chip
wireless interconnection,” IEEE J. Solid-State Circuits, Vol. 44, No. 2,
pp. 382–392, Feb. 2009.

[23]	 L. Xia, Y. Huang, Z.Hong, “Low power amplitude and spectrum
tunable IR-UWB transmitter,” Electron. Lett., Vol. 44, No. 20,
pp. 1200–1201, Sep. 2008.

[24]	 L. Liu, T. Sakurai, M. Takamiya, “A 1.28mW 100Mb/s impulse
UWB receiver with charge-domain correlator and embedded sliding
scheme for data synchronization,” in IEEE Symp. on VLSI Circuits,
pp. 146–147, 2009.

[25]	 J. Lee, H. Wang, W. Chen, Y. Lee, “Subharmonically Injection-Locked
PLLs for Ultra-Low-Noise Clock Generation,” ISSCC Dig. Tech. Papers,
pp. 92–93, Feb. 2009.

[26]	 J. Lee, H. Wang, “Study of subharmonically Injection-Locked PLLs,”
IEEE J. Solid-State Circuits, vol. 44, no. 5, pp. 1539–1553, May. 2009.

[27]	 B. Razavi, “A study of injection locking and pulling in oscillators,” IEEE
J. Solid-State Circuits, vol. 39, no. 9, pp. 1415–1424, Sep. 2004.

Intel® Technology Journal | Volume 16, Issue 2, 2012

154 | Wireless Interconnects for Future Computing Systems

[28]	 R. Adler, “A study of locking phenomena in oscillators,” Proc. IEEE,
vol. 61, pp. 1380–1385, Oct. 1973.

[29]	 C. Hu et al., “A 90 nm-CMOS, 500 Mbps, 3-5 GHz Fully-Integrated
IR-UWB Transceiver With multipath Equalization Using Pulse
Injection-Locking for Receiver Phase Synchronization,” IEEE J. Solid-
State Circuits, vol. 46, no. 5, pp. 1076–1088, May 2011.

Author Biographies
Lingli Xia received a PhD in microelectronics and solid state electronics in
2010 from Fudan University, Shanghai, China. She is currently a postdoctoral
candidate in electrical engineering at Oregon State University. Her research
interests include RF front-end circuits and digital baseband circuits for wireless
communication systems. She can be contacted at xia@eecs.oregonstate.edu.

Changhui Hu is an RFIC designer at Marvell Semiconductor. He received a
PhD in 2011 in electrical engineering from Oregon State University. Previously
he has been a research assistant in the Centre for Wireless Communications
(now Institute for Infocomm Research, ASTAR) in Singapore, an RF/Analog
IC designer with the startup company Advanced RFIC Singapore, and with
OKI Techno Center Singapore (now known as Wipro Techno Center), where
he worked on WLAN and UWB projects. Most recently he worked as a
corporate application engineer at Mentor Graphics Asia, supporting Calibre
products. He can be contacted at changhuihu@gmail.com.

Stephen Redfield received his master’s degree in electrical engineering
from Oregon State University with a focus on channel measurement and
modeling. He is currently pursuing a PhD in the Department of Electrical
and Computer Engineering. His research interests include UWB imaging
techniques for through-wall and medical applications. He can be contacted at
redfiels@engr.orst.edu.

Sirikarn Woracheewan is currently a preamp validation engineer in the
Storage Peripheral Division at LSI Corporation. Her background is in
analog/mixed-signal circuits and UWB wireless. She received a B.E. degree
in electronics engineering from King Mongkut’s Institute of Technology
Ladkrabang, Bangkok, Thailand, and an master’s degree in electrical
engineering at Oregon State University. She can be contacted at
woraches@onid.orst.edu.

Rahul Khanna is a platform architect at Intel Corporation involved in
development of energy efficient algorithms. Over the past 17 years he
has worked on server system software technologies including platform
automation, power/thermal optimization techniques, reliability, optimization,
and predictive methodologies. He has authored several technical papers
and book chapters in the areas related to energy optimization, platform
wireless interconnects, sensor networks, interconnect reliability, predictive
modeling, motion estimation, and security, and holds 27 patents. He is also

Intel® Technology Journal | Volume 16, Issue 2, 2012

Wireless Interconnects for Future Computing Systems | 155

the co-inventor of the Intel IBIST methodology for high-speed interconnect
testing. His research interests include machine learning based power/thermal
optimization algorithms, narrow-channel high-speed wireless interconnects,
and information retrieval in dense sensor networks. Rahul is member of IEEE
and the recipient of three Intel Achievement Awards for his contributions in
areas related to advancements of platform technologies. He is the author of
the book A Vision for Platform Autonomy: Robust Frameworks for Systems. Rahul
Khanna can be reached at rahul.khanna@intel.com

Jay Nejedlo is a Senior Staff Architect and Technical Lead for Intel’s Platform
Validation Architecture group and has 28 years experience in silicon and
platform architecture, validation, and test. He is the creator of the Intel’s IBIST
validation methodology as well as their system level memory sub-system BIST
methodology. He architected and implemented Intel’s first platform HVM
OS-less functional test methodology and also founded their HALT/HASS
Reliability Test Methodology. He has filed more than 20 patents over the past
decade. He can be contacted with jay.nejedlo@intel.com.

Huaping Liu is currently a Professor of Electrical Engineering and Computer
Science, Oregon State University, Corvallis, OR. He received the B.S.
and M.S. degrees in electrical engineering from Nanjing University of Posts
and Telecommunications, Nanjing, China, in 1987 and 1990, respectively,
and the Ph.D. degree in electrical engineering from New Jersey Institute of
Technology, Newark, in 1997. From July 1997 to July 2001, he was
with Lucent Technologies, Whippany, NJ. Dr. Liu served as an Associate
Editor for the IEEE Transactions on Vehicular Technology and IEEE
Communications Letters from 2009 to 2011. He is currently an Editor for
the Journal of Communications and Networks. He can be contacted with
hliu@eecs.oregonstate.edu.

Patrick Chiang is currently an Assistant Professor of Electrical Engineering
and Computer Science at Oregon State University, Corvallis, OR and a visiting
professor at Fudan University, Shanghai, China. He received the B.S. degree in
electrical engineering and computer sciences from the University of California,
Berkeley, in 1998, and the M.S. and Ph.D. degrees in electrical engineering
from Stanford University, Stanford, CA, in 2001 and 2007. In 1998, he was
a design engineer at Datapath Systems (now LSI Logic). In 2002, he was a
research intern at Velio Communications (now Rambus). In 2004, he was a
consultant at Telegent Systems. He is the recipient of a 2010 Department of
Energy Early CAREER award, and a 2012 NSF-CAREER award. He is an
associate editor of IEEE Transactions on Biomedical Circuits and Systems, and
on the technical program committee for the IEEE Custom Integrated Circuits
Conference. He can be contacted with pchiang@eecs.oregonstate.edu.

156 | Nested QoS: Adaptive Burst Decomposition for SLO Guarantees in Virtualized Servers

Contributors

Intel® Technology Journal | Volume 16, Issue 2, 2012

Server consolidation in virtualized data centers introduces new challenges for
resource management, capacity provisioning, and guaranteeing application
quality of service (QoS). The bursty nature of typical server workloads makes it
difficult to provide response time guarantees without significant overprovisioning,
resulting in low utilization and higher infrastructure and energy costs. In this
article we present Nested QoS, a formal model that specifies application QoS by a
response time distribution based on the burstiness of the workload. The workload
is adaptively decomposed into classes with different response time guarantees and
scheduled using an Earliest Deadline First policy. A procedure for determining the
decomposition parameters is developed, and empirical results showing the benefits
of decomposition and adaptive parameter setting are presented.

Introduction
Large virtualized data centers that multiplex shared resources among hundreds of
clients form the backbone of the growing cloud IT infrastructure. The increased
use of VM-based server consolidation in such data centers introduces new
challenges for resource management, capacity provisioning, and guaranteeing
application performance. Service level objectives (SLOs) are employed to
assure client applications a specified performance quality of service (QoS), like
minimum throughput or maximum response time. The service provider should
allocate sufficient resources to meet the stipulated QoS goals, while avoiding
overprovisioning that leads to increased infrastructure and operational costs.
Accurate capacity estimation of even a single application in isolation is difficult
due to the bursty nature of server workloads[9][16][20]; dynamic sharing by multiple
clients further complicates the problem. Performance SLOs range from simply
providing a specified floor on average throughput (for example, I/Os per second
or IOPS) to providing guarantees on the response times of individual requests.
Throughput guarantees can often be enforced using scheduling techniques based
on fair queuing (FQ)[3][6][7][8][11]. However, guaranteeing response times[5][10][18]
requires that the input workload be suitably constrained.

In this article we propose a service model called Nested QoS that enables clients
to flexibly specify their performance requirements in terms of a distribution
of response times, based on workload characteristics and pricing structure.
The model formalizes the observation that workload burstiness results in a
disproportionate fraction of server capacity being used simply to handle the
small tail of highly bursty requests. In the Nested QoS model, a workload
is dynamically decomposed into multiple QoS classes, each with a different
response time guarantee. Bursts of different intensities are identified and their
requests assigned to different classes, which are isolated from each other so

“VM-based server consolidation in

data centers introduces new challenges

for resource management, capacity

provisioning, and guaranteeing

application performance.”

“The Nested QoS service model

enables clients to specify a response

time distribution based on workload

characteristics and pricing structure.”

Hui Wang
Rice University

Kshitij Doshi
Software and Services Group, Intel
Corporation

Peter Varman
Rice University

Nested QoS: Adaptive Burst Decomposition for SLO
Guarantees in Virtualized Servers

Intel® Technology Journal | Volume 16, Issue 2, 2012

Nested QoS: Adaptive Burst Decomposition for SLO Guarantees in Virtualized Servers | 157

that their performance can be guaranteed. In this way, requests arriving during
a highly bursty period are prevented from delaying subsequent well-behaved
requests. In the absence of such enforced isolation, the response times of both the
bursty requests as well as the following well-behaved requests will be significantly
degraded over the durations that it takes for the request backlogs to dissipate.

In earlier works[13][14][15] we described a workload decomposition scheme to identify
bursts and schedule requests to reduce capacity. However, this framework is not
backed up by an underlying SLO model. There are several difficulties in specifying
desired performance formally with an intuitive but enforceable SLO contract.
For instance, client requirements are often informally expressed by statements like
“95 percent of requests must have a response time of less than 50 ms.” However,
such a requirement can only be met (even theoretically) if there are well-defined
restrictions on the workload; otherwise, an adversarial client can arbitrarily increase
the workload beyond the available capacity. Additionally, there is ambiguity over
the time granularities over which such guarantees must hold, which can feed back
to even more awkward and hard-to-measure restrictions on the input workload.

Performance SLO models should be intuitive, easy to monitor, and mutually
verifiable in case of dispute. The Nested QoS model provides such a formal but
intuitive, flexible, and enforceable way to specify the notion of graduated QoS,
where a single client’s SLO is specified in the form of a spectrum of response times
rather than a single worst-case guarantee. The model properly generalizes SLOs
based on a single response time (for example, see Cruz[5], Gulati et al.[10], and
Sariowan[18]), thereby providing the opportunity for trading significant reductions
in capacity requirements of the server for small changes in performance.

Our work is related to the ideas of differentiated service classes in computer
networks[4][12][17]. However, we believe our model and analysis are substantially
different from these works. Network QoS is largely concerned with providing
throughput guarantees and reducing network congestion by anticipatory
packet dropping. In contrast our focus is on providing response time
guarantees by adaptive parameter estimation and capacity provisioning.
Furthermore, we believe there is inherent merit in understanding how these
techniques can be applied to the server environment.

In the next section, “Nested QoS Model,” we describe the Nested QoS model
and its implementation. Analysis of the server capacity based on the model
parameters is presented in the section “Capacity Analysis of Nested QoS.” In
“Parameter Estimation” we describe how model parameters can be estimated
based on a fast iterative simulation of a trace sample drawn from the workload.
“Evaluation of Nested QoS” presents empirical results to demonstrate the
benefits of Nested QoS using several block-level storage server traces. The
article concludes with a summary of our findings.

Nested QoS Model
The workload W of a client consists of a sequence of requests that are sent to the
server at arbitrary times. For specificity, we consider a block-level I/O workload,
whose accesses have been broken into requests for fixed-size disk blocks after

“Performance SLO models should

be intuitive, easy to monitor, and

mutually verifiable in case of dispute.”

“The Nested QoS model trades

significant reduction in capacity

requirements for small changes in

performance.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

158 | Nested QoS: Adaptive Burst Decomposition for SLO Guarantees in Virtualized Servers

filtering by the buffer cache. An arriving request is classified into one of several
service classes based on the current state of the system. The service class to which
the request is assigned determines its maximum response time. Classification is
done based on the SLO agreement; the classifier will place a request into a class
with a lower response time in preference to one with a higher one, unless doing
so would violate the arrival rate specification of the SLO.

In the Nested QoS model, the performance SLO is determined by multiple
nested classes C1, C2, . . . , Cn. Figure 1 is a conceptual depiction of the model
for the case of three classes. A class Ci is specified by three parameters:
(si, ri, di ), where (si, ri) are token bucket[17][19] parameters, and di is the
response time guarantee. A token bucket regulates the traffic admitted to a class
based on its two parameters: the burst parameter s and the long-term arrival
rate r. Traffic that is compliant with a (s, r) token bucket has the following
property: the number of requests admitted in any interval of length t is upper
bounded by s  + r  ×  t. A token bucket is used to provide an upper limit on
the traffic admitted to each class in the Nested QoS model.

The requests in class Ci consist of a maximal-sized subsequence of W that
is compliant with a (si , ri) token bucket: that is, in any interval of length t
the number of requests in class Ci is upper bounded by si + ri × t, and no
additional request of W can be added to the sequence without violating the
constraint. The token bucket provides an envelope on the traffic admitted to
each class by limiting its maximum instantaneous burst size (si ) and arrival
rate ( ri ). All requests in Ci will be guaranteed a maximum response time of di.

“The performance SLO is determined

by multiple nested service classes with

different response time guarantees.”

“A token bucket regulates traffic

admitted to a class based on burst and

average arrival rate parameters.”

Figure 1: Nested QoS model
(Source: Rice University, 2012)

(r1, q1)

(r2, q2)

(r3, q3)

Intel® Technology Journal | Volume 16, Issue 2, 2012

Nested QoS: Adaptive Burst Decomposition for SLO Guarantees in Virtualized Servers | 159

The nested nature of the classes Ci implies that all requests in Ci also belong to Cj
for all j > i. Hence, for instance in Figure 1, all requests that are admitted to C1 are
also members of C2 and C3. All the requests in C3 are guaranteed a response time d3.
Of these requests, those that are also in C2 are guaranteed a smaller response
time d2, while those who make it to C1 are guaranteed the smallest response time d1.
Nesting of the classes requires that si ≤ si +1, ri ≤ ri +1 and di ≤ di +1.

As an example, consider a Nested QoS model with three classes. Suppose that
the parameters of C3, C2 and C1 are (30, 120 IOPS, 500 ms), (20, 110 IOPS,
50 ms), and (10, 100 IOPS, 5 ms) respectively. The parameters of C1 specify that
all the requests in the workload that lie within the (10, 100 IOPS) envelope will
have a response time guarantee of 5 ms; the requests within the less restrictive
(20, 110 IOPS) arrival constraint have a latency bound of 50 ms, while those
conforming to the (30, 120 IOPS) arrival bound have a latency limit of 500 ms.

Implementation of Nested QoS Model
Figure 2 shows a possible implementation of the Nested QoS model. It consists
of two components: request classification and request scheduling (not shown

“The nested nature implies that all

requests in Ci also belong to Cj  for all

j . i.”

Figure 2: Cascaded token-bucket implementation
(Source: Rice University, 2012)

New Request

No

Overflow

Q3

Q2

Q1

No

No

TB3

TB2

TB1

Yes

Yes

Yes

ê1?

ê1?

ê1?

Intel® Technology Journal | Volume 16, Issue 2, 2012

160 | Nested QoS: Adaptive Burst Decomposition for SLO Guarantees in Virtualized Servers

in the figure). The classification module assigns each incoming request to the
appropriate class. The scheduling module chooses the request with the earliest
deadline from one of the classes to dispatch to the server when it is free.

Request Classifier
The request classifier is implemented using a cascade of token buckets, B1,
B2, . . . , Bn (innermost is B1) attached to FCFS queues Q1, Q2, . . ., Qn. The buckets
filter the arriving workload so that queue Q1 receives all the requests of class C1,
Q2 receives requests of C2 − C1, and Q3 receives requests of C3 − C2. By ensuring
that requests in queue Q i meet a response time of di , the SLO of the Nested QoS
model can be met. Any requests that do not meet the arrival constraint of the
outermost class are simply dropped or served on a best-effort basis. For notational
simplicity, we assume a hypothetical queue Qn+1 that handles the overflow requests.

Note that the token bucket specification is an intrinsic property of the
workload based on its burst and rate characteristics, and is independent of any
implementation of the Nested QoS model. In case of dispute, the workload
can be profiled to find the percentage of requests that satisfied each token
bucket SLO specification, and compared with the percentage of requests that
actually met the response time guarantee for that class. If a client sends more
requests than allowed by the SLO, the extra requests will be automatically
assigned to a class with a higher response time. However, all requests within the
traffic envelope of a specified class will meet their stipulated deadlines.

The token bucket parameters regulate the number of requests that pass through
it in any interval. Initially bucket Bi is filled with si tokens. An arriving request
removes a token from the bucket (if there is one) and passes through to Bi−1
(or Q1 if i is 1); if there is less than one token in Bi at that time, the request goes
into the queue Q i +1 instead. Bi is continuously filled with tokens at a constant
rate ri, but the maximum number of tokens in the bucket is capped at si.

The algorithm for request classification is shown in Figure 3. The implementation
of token bucket Bi uses four variables Sigma[i ], Rho[i ], NumTokens[i ] and
LastUpdateTime[i ]. The first two are the token bucket parameters as described
above. NumTokens[i ] tracks the number of tokens in the bucket at any time. It
is initialized to Sigma[i ]; an arriving request will decrement it by 1 provided that
would not make its value negative. The variable LastUpdateTime[i ] tracks the time
at which that bucket was last replenished with tokens. This is needed since the
refilling of the token buckets will be done only at discrete times.

Procedure RequestArrival indicates the steps taken by the classifier when a new
request arrives at time t. The classes are searched one-by-one in order, starting
from the outermost class Cn, to see if the request can be admitted into that
class. The request is placed in the lowest-level class that succeeds. If none of
the classes can admit the request, it is simply dropped. The procedure first

“The request classifier is implemented

using a cascade of token buckets

attached to FCFS queues.”

“In case of dispute, the SLO

specification can be checked against

the percentage of requests meeting

different response time guarantees. ”

Intel® Technology Journal | Volume 16, Issue 2, 2012

Nested QoS: Adaptive Burst Decomposition for SLO Guarantees in Virtualized Servers | 161

RequestArrival(Request r, Time t)

Begin

for (i = n; i > 0; i--) {

   UpdateBucket(i, t);

   if (NumTokens[i] ≥ 1)

NumTokens[i] = NumTokens[i] - 1;

   else

 break;

 }

 Insert r into queue Qi+1 with deadline t + d i+1;

End

UpdateBucket(int BucketId, Time t)

Begin

ElapsedTime = t - LastUpdateTime[BucketId];

LastUpdateTime[BucketId] = t;

NumTokens[BucketId] += ElapsedTime * Rho[BucketId];

If (NumTokens[BucketId] > Sigma[BucketId])

   NumTokens[BucketId] = Sigma[BucketId];

End

Figure 3: Classification algorithm
(Source: Rice University, 2012)

makes a call to UpdateBucket to replenish the bucket with tokens that have
been generated since its last update. If the number of tokens in the bucket Bi
is less than one, the request is not admitted into class Ci and placed in queue
Q i +1. The request is tagged with the deadline by which it should complete
service; this is the arrival time t plus the response time guarantee for that class.
Note that NumTokens accumulate continuously as real-valued quantities, even
though they deplete as integers; and that, similarly, Sigma and Rho are, in
general, real-valued quantities.

Figure 4 shows the result of classification of a segment of the Exchange
workload[2] as it goes through the token bucket network. Figure 4(a) shows the
arrival pattern during the first 200 seconds of the original workload, aggregated
in one-second intervals. The workload is passed through three cascaded token
buckets B1, B2, B3 with parameters (36, 6000), (72, 6600), and (144, 7200),
respectively. The parameters are chosen so that 90 percent of the workload
requests are placed in class C1, 95 percent of the workload is classified as C2,
and 100 percent of the workload is in class C3. Figures 4(b), 4(c), and 4(d)
show the decomposed workload in classes C1, C2-C1 and C3-C2 respectively.
These portions of the workload in queues Q1, Q2, and Q3 respectively will be
assigned different response times, and as shown later in the section “Evaluation
of Nested QoS,” results in significant reduction in capacity requirements.

“A request is tagged with the deadline

by which it should complete service. ”

Intel® Technology Journal | Volume 16, Issue 2, 2012

162 | Nested QoS: Adaptive Burst Decomposition for SLO Guarantees in Virtualized Servers

Figure 4 (a)-(b) Decomposition of workload trace into classes
(Source: Usenix 3rd Workshop on I/O Virtualization, 2011)

Time (s)

(a) Original Exchange Workload Trace

Original Trace

R
eq

u
es

ts
 R

at
e

(I
O

P
S

)

2500

2000

1500

1000

500

200 40 60 80 100 120 140 160 180 200
0

Time (s)

(b) Workload in Q1 (Class C1)

Class 1 Trace

R
eq

u
es

ts
 R

at
e

(I
O

P
S

)

2500

2000

1500

1000

500

200 40 60 80 100 120 140 160 180 200
0

Intel® Technology Journal | Volume 16, Issue 2, 2012

Nested QoS: Adaptive Burst Decomposition for SLO Guarantees in Virtualized Servers | 163

Request Scheduler
The scheduler services requests in the queues Q1, Q2, . . . , Qn based on their
deadlines using an earliest, deadline first (EDF) policy. Each request is tagged
with a deadline when it is inserted into one of the queues. Whenever the
server becomes idle, the scheduler checks the request at the head of each these
queues. It dequeues the request with the smallest deadline and dispatches it to
the server. Using EDF scheduling results in the smallest capacity necessary to

“EDF scheduling results in the

minimum server capacity necessary to

meet all deadlines.”

Time (s)

(c) Workload in Q2 (Class C2 – C1)

Class 2 – Class 1 Trace
R

eq
u

es
ts

 R
at

e
(I

O
P

S
)

2500

2000

1500

1000

500

200 40 60 80 100 120 140 160 180 200
0

Time (s)

(d) Workload in Q3 (Class C3 – C2)

Class 3 – Class 2 Trace

R
eq

u
es

ts
 R

at
e

(I
O

P
S

)

2500

2000

1500

1000

500

200 40 60 80 100 120 140 160 180 200
0

Figure 4 (c)-(d) Decomposition of workload trace into classes
(Source: Usenix 3rd Workshop on I/O Virtualization, 2011)

Intel® Technology Journal | Volume 16, Issue 2, 2012

164 | Nested QoS: Adaptive Burst Decomposition for SLO Guarantees in Virtualized Servers

schedule all the requests by their deadline. In the section “Capacity Analysis of
Nested QoS” we will compute the capacity required to ensure that all requests
admitted under the Nested QoS policy meet their response time requirements
when using an EDF scheduler.

Capacity Analysis of Nested QoS
In this section we derive an analytical formula for the capacity required to
meet the response time guarantees in the Nested QoS model. The main result
is stated in the Capacity Theorem that provides a tight upper bound on the
capacity required to meet the specified deadlines in terms of the token bucket
parameters.

Capacity Estimation
Definition 1: Define hi(t) to be the number of tokens in bucket Bi at time t. By
definition, hi(0) = si for all i = 1, . . . , n.

Definition 2: Define Nt(a, b) to be the maximum number of requests with
deadline less than t, which enter any of the queues Q1, Q2, . . . , Qn in the
interval [a, b).

Lemma 1 below states that bucket Bi has at most 1 token more than the
number of tokens in Bi +1 at any time. The lemma can be proved by induction
over the arrival instants of requests. For the base case, the Lemma holds since
si ≤ si +1, for all i = 1, . . . , n - 1. The details of the proof are omitted.

Lemma 1: hi(t) ≤ hi +1(t) + 1, for all i = 1, . . . , n - 1.

The Capacity Theorem upper bounds the capacity required for servicing all
requests admitted into the queues Q i of the Nested QoS model by the cascaded
token buckets. The proof proceeds by upper bounding the number of requests
entering the system whose deadlines are less than or equal to an arbitrary but
fixed time t. These requests are partitioned into disjoint sets based on the time
interval in which they arrive, and each set is associated with the set of requests
admitted by a specific token bucket. By adding together the upper bounds on the
number of requests admitted by each such token bucket the result will follow.

Capacity Theorem: The capacity C required scheduling all requests in the
Nested QoS model satisfies:

C ≤ maxj=1,..,n{sj /dj + ∑1≤ k < j (1 + rk(dk+1 - dk))/dj , rj }

Proof: We bound the maximum number of requests that need to finish by time
t, where t = 0 is the start of a system busy period. Let m, 1 ≤ m ≤ n, be the
largest index for which t ≥ dm. Define ti = t - di, 1 ≤ i ≤ m, and for notational
convenience let tm+1 = 0. Then Nt(0, t) = ∑1≤ i ≤m Nt(ti +1,ti). Now Nt(ti +1,ti)
consists exactly of the requests that have been admitted by bucket Bi in [ti +1,ti).
Hence,

Nt(ti +1,ti) ≤ hi(ti +1) + ri × (ti - ti +1) - hi(ti)

“The Capacity Theorem provides a

tight upper bound on the capacity in

terms of token bucket parameters.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

Nested QoS: Adaptive Burst Decomposition for SLO Guarantees in Virtualized Servers | 165

Summing both sides for all i = 1, . . . , m

∑1≤ i ≤ m Nt(ti +1,ti) ≤ ∑1≤ i ≤ m ri × (ti - ti +1) + ∑1≤ i ≤ m (hi(ti +1) - hi(ti))

Rewriting the last summation of the right hand side of the equation:

∑1≤ i ≤ m(hi(ti +1) -hi(ti)) = ∑1≤ i ≤ m(hi(ti +1) - hi +1(ti +1)) + hm(tm+1) - h1(t1)

Now, from Lemma 1, hi(ti +1) ≤ hi +1(ti +1) + 1 so by substituting and dropping
all negative terms:

∑1≤ i ≤ m Nt(ti +1,ti) ≤ ∑1≤ i ≤ m (1 + ri × (ti - ti +1)) + hm(tm +1)

Now,

hm(tm+1) = hm(0) = sm

ti - ti +1 = di +1 – di , i = 1, . . , m – 1

tm – tm+1 = t – dm

Hence,

∑1≤ i ≤ m Nt(ti +1,ti) ≤ sm + ∑1≤ i ≤ m  -1 (1 + ri × (di +1 – di )) + rm × (t - dm)

The capacity (C ) required to finish these Nt(0, t) requests by time t is upper
bounded by Nt(0, t)/t. Hence:

C ≤ sm/t + ∑1≤ i < m (1 + ri × (di +1 – di ))/t – rm × dm /t + rm

Now, if (sm + ∑1≤ i < m (1 + ri × (di +1 – di ))) < (rm × dm) the inequality reduces to:
C ≤ rm. Otherwise, the RHS is maximized when t takes on its smallest value,
which is dm. In this case, the inequality reduces to:

C ≤ sm /dm + ∑1≤ i < m (1 + ri × (di +1 – di ))/dm

The above two inequalities must hold for all values of t, and hence for all
possible values of m, 1 ≤ m ≤ n.

Putting it all altogether we get:

C ≤ maxm=1,..,n{sm/dm + ∑1≤ i < m (1 + ri(di +1 – di ))/dm, rm}

In an ideal situation, if the tokens are updated only in integer units, Lemma 1
will be simplified to hi(t ) # hi11(t ) for all i 5 1, . . . , n 2 1; and the Capacity
Theorem will be simplified to C # maxj51,..,n{j /dj 1 ∑1# k , j k(dk11 2 dk)/dj, j}.
We will use this ideal case in the rest of the article. The following corollaries
consider special cases of the above Theorem that provide for simplified capacity
equations[21]. The first result considers the case when all the token buckets
have the same rate r, and the second considers an interesting case when the
parameters of the token buckets are multiples of a base value.

Corollary 1.1: The capacity required for all requests to meet their deadlines
in the Nested QoS model, when all ri are equal to r, is given by:
max1≤  j ≤ n{sj/dj + r × (1 − d1/dj ), r }.

Corollary 1.2: Let all ri be equal to r, and a  = di +1/di, b = si +1/si and
l = b /a  be constants. The server capacity required to meet SLOs is no more

Intel® Technology Journal | Volume 16, Issue 2, 2012

166 | Nested QoS: Adaptive Burst Decomposition for SLO Guarantees in Virtualized Servers

than: max1≤  j ≤ n{r, l j × (s1 /d1) + r × (1 − 1/l j)}. For l < 1, the server capacity
is bounded by s1/d1 + r, which is less than twice the capacity required for
servicing the innermost class C1.

The final corollary asserts that using an EDF scheduler, the capacity defined in
the Capacity Theorem is sufficient to meet all deadlines. We omit the details of
a simple proof by contradiction.

Corollary 2: If the server has capacity at least that derived in the Capacity
Theorem, and requests are scheduled using an EDF policy, then all requests
will meet their deadlines.

We finally show that the Capacity Theorem provides a tight upper bound by
demonstrating a workload that requires the derived capacity in order to meet
the stipulated deadlines. The adversarial workload consists of a burst of size sn
at time t = 0, followed by a continuous request stream arriving at the uniform
rate rn. Clearly, the capacity should be at least rn, since otherwise one more of
the queues Q i, i = 1, . . ., n, will grow without bound.

The total number of requests that arrive in the interval [0, t] is (sn + t × rn).

All these requests will be admitted by the outermost token bucket, and will be
distributed among the queues as follows: Q i, i = 1, . . . , n, will receive
(si - si-1) + t × (ri - ri-1) requests, where s0 and r0 are defined to be 0.
Consider the number of these requests that have a deadline dm, for arbitrary
but fixed m, 1 ≤ m ≤ n. These will be the requests in queues Qj, 1 ≤ j ≤ m, that
arrived during the interval [0, dm – dj]. The number of such requests in Qj is
(sj – sj-1) + (dm – dj  ) × (rj – rj -1). Summing over all the queues Q1 to Qm, the
total number of requests with deadline dm is:

∑1≤ j ≤ m (sj – sj-1) + (dm – dj  ) × (rj – rj-1) = sm + ∑1≤ j ≤ m rj × (dj+1 – dj  )

The minimum capacity required to finish these requests by dm is sm/dm +
∑1≤j<m rj × (dj+1 – dj  )/dm. This is within a small additive term of the capacity
bound, showing that the capacity required to service this workload matches the
Capacity Theorem.

Parameter Estimation
We now describe how the Nested QoS parameters of a workload will typically
be determined. The client decides the number of classes, the fraction of the
workload in each class, and the response time requirement for the class. By
profiling the workload the provider translates these requirements to token
bucket parameters and capacity estimates for the workload.

We consider in detail the case of two guaranteed classes C1 and C2, satisfying
fractions f1 and f2 of the workload and having response time guarantees d1
and d2. First we estimate the capacity Ci required for fraction fi of the workload
to meet deadline di, for i = 1 and i = 2 independently. This can be found
by simulating the arrivals to a fixed-length queue (of size Ci × di ) and using

“By profiling, workload requirements

are translated to token bucket

parameters and capacity estimates.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

Nested QoS: Adaptive Burst Decomposition for SLO Guarantees in Virtualized Servers | 167

a greedy drop algorithm to handle queue overflow (see [14]). The capacity
is varied (using a binary-search like method) till the fraction of requests
overflowing the queue falls just below 1 - fi . The maximum of C1 and C2 is a
lower bound on the capacity required by Nested QoS.

The token bucket parameters are chosen to minimize the capacity required by
the Capacity Theorem. Figure 5 describes the iterative procedure for a two-
class Token Bucket system. The capacity in this case is given by the maximum
of: {s1/d1, s2/d2 + r1(1 - d1/d2), r1, r2}. To simplify this estimation, at each
candidate capacity point, we let s1 and r2 assume the largest values compatible
with the chosen capacity, and search for s2 and r1 that satisfy the {d i, fi  }
objectives. This search is carried out by iterative trace simulation.

We begin with a capacity estimate C starting with the lower bound described
above. We select the largest possible s1 that with capacity C can meet a

“The token bucket parameters are

chosen to minimize the capacity

bound in the Capacity Theorem.”

Min. Capacity Estimation class N = 1, 2

BEGIN

Simulate FIFO Greedy Drop

Find Min capacities C1 and C2

Simulate 2 class nested
QoS, reducing r*2 until

fraction f1 + f2 is selected in
class C2.

Set C = C*, r1 = C.c1, q1 = q*1,

q2 = C, r*2 = C.c2

C*MIN = r*2/c2 +
q*1 (1 – c1/c2)

Pick a capacity CN

Adjust CN
(binary search)

Fraction fN?

Set qN = CN, rN = CN.cN

Estimation of r*2

Yes

Yes

Done

DONE

Simulate 1-class QoS (drop
requests failing c1) reducing
r *1, until just fraction f1 is

selected in class C1.

Set C1 = C*, r1 = C1.c1, q*1 = C1

No

Let C* = Max (C1, C2)

Adjust C* higher

Estimation of q*1

C* >

C*MIN?

No

Figure 5: Iterative Calculation of Token Bucket Parameters and Capacity
(Source: Rice University, 2012)

Intel® Technology Journal | Volume 16, Issue 2, 2012

168 | Nested QoS: Adaptive Burst Decomposition for SLO Guarantees in Virtualized Servers

deadline d1, that is, s1 = C × d1. Next, we find the smallest value of r1 that
along with the chosen value of s1 allows a fraction f1 of the workload to pass
bucket B1. We choose r2 equal to C and then find the smallest s2 that along
with the chosen value of r2 allows a fraction f2 of the workload to pass bucket
B2. We compute the capacity C´ required by the Capacity Theorem using these
parameters. If C´ > C, we increase C and repeat the procedure; else the required
capacity is C and the token bucket parameters are as determined.

The capacity and token bucket parameters for a workload can be determined
by off-line profiling of workload traces. These settings are then used during
actual runtime operation. Such an approach is suitable for workloads that are
relatively stable and whose overall statistical profile does not vary substantially
from run to run. On the other hand, in situations where there may be periodic
or unexpected changes in the workload during operation, it may be preferable
to change the parameters adaptively to react to significant changes in workload
behavior. In this environment, a monitoring agent triggers an alarm when
the performance changes significantly; it may be sufficient to use a coarse
measure like smoothed average latency rather than the exact SLO specifications
to check for such situations. A runtime profiler is invoked to determine
the new parameters necessary to meet SLO specifications with the changed
workload characteristics, and additional capacity is requested for the workload
if necessary. If the capacity request is granted, the token bucket parameters
are changed based on the newly profiled values. In the section “Evaluation
of Adaptive Parameter Setting” we evaluate the impact of adaptively setting
parameters based on profiling a sample prefix of a workload.

Evaluation of Nested QoS
We implemented the Nested QoS model in a process-driven system
simulator and evaluated the performance separately with five block-level
storage workload I/O traces from the UMass Storage Repository[1] and SNIA
IOTTA Repository[2]: WebSearch1(W1), WebSearch2(W2), FinTrans(W3),
OLTP(W4), and Exchange(W5). W1 and W2 are traces from a web search
engine and consist of user web search requests. W3 and W4 are traces
generated by financial transactions running at large financial institutions. W5
trace is from a Microsoft Exchange* Server. The parameters for each workload
are shown in Table 1 below. The values were found by profiling the workloads
to guarantee at least 90 percent requests in class C1.

“It may be preferable to change

the parameters adaptively to react

to significant changes in workload

behavior.”

W1 W2 W3 W4 W5

s1 4.0 4.0 3.0 2.0 36.0

r1 (IOPS) 450 430 300 250 3600

d1 (ms) 10.0 10.0 10.0 10.0 10.0

For all workloads: ri +1 = ri, si +1 = 2si, di +1 = 10di .

Table 1: QoS Parameters for Simulated Workloads
(Source: Rice University, 2012)

Intel® Technology Journal | Volume 16, Issue 2, 2012

Nested QoS: Adaptive Burst Decomposition for SLO Guarantees in Virtualized Servers | 169

Capacity and Performance Tradeoffs
Figure 6 compares the capacity required by the workloads for the Nested and
Single-Level QoS models. The latter requires all requests to meet the d1 response
time. The capacity is significantly reduced by spreading the requests over multiple
classes. Figure 7 shows the distribution of response times. In each case a large
percentage (90–92 percent) of the workload meets the 10-ms response time bound,
and (except for FT workload) only a small 0.5 percent (or less) requires more than

“The capacity is significantly reduced

by spreading the requests over multiple

classes. ”

Workloads

6000

2000

3000

4000

5000

C
ap

ac
it

y
R

eq
u

ir
em

en
t

(I
O

P
S

)

1000

0
0 W1 W3 W4 W5W2

Nested QoS Single-Level QoS

Figure 6: Capacity requirement for Nested QoS and Single level QoS
(Source: Rice University, 2012)

Workloads

105

95

90

85

80

75

70

65

60

55

50

100

O
ve

ra
ll

P
er

ce
n

ta
g

e
G

u
ar

an
te

ed
 (

%
)

W1 W3 W4 W5W2

≤ δ1 ≤ δ2 ≤ δ3

Figure 7: Performance for Nested QoS
(Source: Rice University, 2012)

Intel® Technology Journal | Volume 16, Issue 2, 2012

170 | Nested QoS: Adaptive Burst Decomposition for SLO Guarantees in Virtualized Servers

100 ms. The capacity required for Nested QoS is several times smaller than that for
Single-Level QoS, while the service seen by the clients is only minimally degraded.

Multiplexing Multiple Workloads
In a shared environment, each workload is independently decomposed into classes
based on its Nested QoS parameters. The server provides capacity Φj for workload j
based on its capacity estimate using the formula in the section “Capacity Analysis
of Nested QoS,” and provisions a total capacity of ∑ jΦ j. A standard proportional
scheduler [3, 7] allocates the capacity to each workload in proportion to its Φj .
When workload j is scheduled, it chooses the request from its class queues with the
smallest deadline. Figure 8 shows the organization for serving multiple clients.

“In a shared environment, each

workload is independently decomposed

into classes based on its Nested QoS

parameters.”

Figure 8: Nested QoS model for multiple workloads
(Source: Rice University, 2012)

Client
1

Server

Client
n

Classifier
Q1

Q2

Q1

Q2

Scheduler

Classifier

An alternative to using a proportional scheduler is to use EDF scheduling globally
across the queues of all the clients. The advantage of using global EDF scheduling
is its ability to exploit the heterogeneity of the workloads to reduce the overall
capacity requirements[5][10]. On the other hand, scheduling the queues globally using
EDF makes it difficult to direct capacity changes to specific workloads[22]. A drop
or increase in system capacity could be allocated unfairly to the workloads based
on internal timing dynamics of the scheduler. In contrast, a proportional scheduler
always allocates capacity based on the individual Φj settings of the workload.

In the following two sections we illustrate two basic properties of the Nested
QoS framework: intra-client robustness to workload variation and inter-client
isolation. We compare Nested QoS to two other well-known scheduling
approaches: pClock[10] that uses EDF to guarantee response times of requests,
and WF2Q[3] that is used for proportional share scheduling.

Robustness to Workload Violation
In the experiment, we use the two block-level workloads: W1 and W2. W1 is a
financial transaction workload with a long-term average arrival rate of about 115
IOPS; W2 is a proxy workload with a long-term average arrival rate of around
21 IOPS.

“Scheduling the queues globally

using EDF makes it difficult to

direct capacity changes to specific

workloads.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

Nested QoS: Adaptive Burst Decomposition for SLO Guarantees in Virtualized Servers | 171

The arrival patterns of the two workloads are shown in Figure 9(a). By
profiling the workloads, the token bucket parameters for the three classes of
W1 are set to (7, 130 IOPS), (14, 143 IOPS) and (50, 158 IOPS), while the
parameters for the token buckets of W2 are set to (6, 120 IOPS),

Time (s)

R
es

p
o

n
se

 T
im

e
(m

s)

400

350

150

200

250

300

50

100

200 400 600 800 10000
0

W1 (Without Violation) W2

(a)

Figure 9: Arrival pattern for (a) Both W1 and W2 are well behaved.
(b) W1 violates SLAs and sends more requests during time
150–250 s
(Source: Rice University, 2012)

Time (s)

R
es

p
o

n
se

 T
im

e
(m

s)

400

350

150

200

250

300

50

100

200 400 600 800 10000
0

W1 (With Violation) W2

(b)

Intel® Technology Journal | Volume 16, Issue 2, 2012

172 | Nested QoS: Adaptive Burst Decomposition for SLO Guarantees in Virtualized Servers

(15, 125 IOPS), and (50, 130 IOPS). A system capacity of 276 IOPS is
provisioned for the two workloads. With this capacity, all three methods
(Nested QoS, pClock, and WF2Q) can guarantee that at least 90 percent of
the requests finish within a 50 ms deadline, and 95 percent of the requests
finish within a deadline of 500 ms.

In a second experiment shown in Figure 9(b), W1 is perturbed by artificially
injecting additional traffic. Specifically, the instantaneous arrival rate of W1
is increased to around 260 IOPS between times 150–250 seconds. During
this period its arrival rate exceeds its long-term average, and violates the
stipulated SLO based on the original W1 workload. The violation is relatively
small and corresponds to less than about 10 percent of the entire trace.

First we will explore how Nested QoS isolates the bad regions of a workload
where the instantaneous traffic rate exceeds stipulated SLO-based arrival rates.
This isolation protects the good regions of the workload from the delay caused
by the burst and maximizes the number of requests that meet their deadlines.
A sever capacity of 276 IOPS is provided for all the three scheduling methods
being evaluated.

Figure 10(a) shows the performance of the unmodified workload W1 using
the three scheduling algorithms. As can be seen, with any of the schedulers
more than 90 percent of the requests finish within the stipulated 50 ms
response time bound. However, the picture changes significantly when a
portion of the workload behaves badly. Figure 10(b) shows the response time
distribution for the modified W1, which sends extra requests during the
150–250-second interval. All methods show a degradation in performance in
this situation, but the degradation is different in the three cases. Nested QoS
still allows 90 percent of the requests to meet their 50 ms deadline; however
pClock and WF2Q are noticeably degraded, and only about 76 percent of
their requests meet the 50 ms deadline. The majority of requests that miss
the deadline in the latter two schemes are delayed significantly, with response
times exceeding 1 second. On the other hand, the roughly 10 percent of
requests missing their deadline in Nested QoS still receive reasonable service
and have response times roughly uniformly distributed between 50 ms and
1 s, since they will be assigned to classes C2 and C3 before being relegated to
best effort service.

The measured response times during and after the badly-behaved region are
shown in Figures 11(a) and (b) for the Nested QoS and pClock schedulers
respectively. As can be seen, with Nested QoS most of the requests during
this interval still meet their deadline, and only a few of them have longer
response time. The well-behaved requests both before and after t = 150 s are
not affected by the extra requests. In contrast, pClock delays all the requests of
W1 not only during the interval (150–250)s, but all the way after the burst to
about 270 s. This is because when the violation happens, Nested QoS diverts
the extra requests to the higher level classes C2 and C3, isolating them from the
well-behaved requests, allowing them to meet their guaranteed deadlines.

“With Nested QoS most of the requests

during this interval still meet their

deadline.”

“Nested QoS diverts extra requests

to higher-level classes, isolating them

from the well-behaved requests.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

Nested QoS: Adaptive Burst Decomposition for SLO Guarantees in Virtualized Servers | 173

100

90

80

70

60

50

F
ra

ct
io

n
 (

%
)

40

30

20

10

0
<50 50~100 100~200

Response Time (ms)

(a) Response Time of W1

200~500 500–1000 >1000

Nested QoS pClock WF2Q

100

90

80

70

60

50

F
ra

ct
io

n
 (

%
)

40

30

20

10

<50 50~100 100~200

Response Time (ms)

(b) Response Time of W1 (Violation)

200~500 500–1000 >1000
0

Nested QoS pClock WF2Q

Figure 10: Response time distribution for W1 (well-behaved)
and W1 (with violation) with three scheduling methods:
Nested QoS, pClock, WF2Q.
(Source: Rice University, 2012)

The performance of W2 is the same for both the original and the modified W1
workload. We do not show the performance of W2 here because it is isolated
from W1 as discussed in the next section.

Intel® Technology Journal | Volume 16, Issue 2, 2012

174 | Nested QoS: Adaptive Burst Decomposition for SLO Guarantees in Virtualized Servers

R
es

p
o

n
se

 T
im

e
(i

n
 m

s)

Time (ms)

105

104

103

102

101

x 105
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Nested Qos

(a) Response Time of W1 (Violation) with Nested QoS

R
es

p
o

n
se

 T
im

e
(i

n
 m

s)

Time (ms)

105

104

103

102

101

100

x 105
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

pClock

(b) Response Time of W1 (Violation) with pClock

Figure 11: W1 violates its SLA and sends more requests from
150 s to 250 s. Nested QoS isolates the bad region and still
guarantees the well-behaved part. However pClock delays all of
W1’s requests from 150 s all the way up to 270 s.
(Source: Rice University, 2012)

In general, Nested QoS outperforms the other two methods because of its
ability to isolate the bad regions of a workload and protect subsequent well-
behaved portions from their effects. In contrast, traditional fair schedulers
isolate workloads from each other but cannot protect a workload from its own
bad behavior. Hence, a local violation in a small area of the workload can result
in performance degradation over a sizable extended portion of the workload.

“Nested QoS has the ability to isolate

the bad regions of a workload and

protect subsequent well-behaved

portions.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

Nested QoS: Adaptive Burst Decomposition for SLO Guarantees in Virtualized Servers | 175

Workload Isolation
Workload isolation is a basic requirement in shared server systems. In this
experiment, we verify that Nested QoS can isolate well-behaved workloads from
badly behaved ones. We look at the performance of the well-behaved workload
W2 when W1 violates arrival requirements. A good method should insulate W2
from the bad behavior of W1 and guarantee its performance. Figures 12(a) and
(b) show the response time histogram of the badly behaved W1 and W2 with
the three scheduling methods: Nested QoS, pClock, and WF2Q. Figures 12(c)
and (d) show the response time cumulative distributions. We can see that

“Workload Isolation is a basic

requirement in shared server systems.”

100

90

80

70

60

50

F
ra

ct
io

n
 (

%
)

40

30

20

10

<50 50~100 100~200

Response Time (ms)

200~500 500–1000 >1000
0

Nested QoS pClock WF2Q

(a) Response Time Distribution of W1

100

90

80

70

60

50

F
ra

ct
io

n
 (

%
)

40

30

20

10

<50 50~100 100~200

Response Time (ms)

200~500 500–1000 >1000
0

Nested QoS pClock WF2Q

(b) Response Time Distribution of W2

100

90

80

70

60

50

C
D

F
 (

%
)

40

30

20

10

≤5 5–10 10–20 20–50 50~100 100
~200

200
~500

500
–1000

Response Time (ms)

0

Nested QoS pClock WF2Q

(c) Response Time CDF of W1

100

90

80

70

60

50

C
D

F
 (

%
)

40

30

20

10

≤5 5–10 10–20 20–50 50~100 100
~200

200
~500

500
–1000

Response Time (ms)

0

Nested QoS pClock WF2Q

(d) Response Time CDF of W2

Figure 12: Response time distribution and CDF of W1, W2 with three scheduling methods: Nested QoS, pClock, and WF2Q
(Source: Rice University, 2012)

Intel® Technology Journal | Volume 16, Issue 2, 2012

176 | Nested QoS: Adaptive Burst Decomposition for SLO Guarantees in Virtualized Servers

the well-behaved workload W2 is isolated from the bad behavior of W1. The
performance of W2 does not change when W1 sends more requests.

Evaluation of Adaptive Parameter Setting
In the section “Parameter Estimation,” we described an iterative procedure for
selecting the token bucket parameters and estimating minimum capacities.
Because of its fast convergence in determining the Nested QoS parameters,
the method of parameter estimation described earlier can be used to adapt
the capacity distribution from an elastic server, in response to changes in
request arrival patterns. In this section we describe the results of dynamically
setting Nested QoS token bucket parameters by profiling a short segment of
a workload. For the experiment we used the first Financial Trace (FT) as the
baseline. In order to emulate dynamic changes to the workload, the trace was
speeded up twofold and threefold to obtain the modified traces FT2 and FT3
respectively.

Each workload consisted of first 100,000 requests from the original FT
trace. This 100,000 request portion was split up into 10 segments of 10,000
requests each. The first segment (“base FT trace”) was used a training
segment for the remaining nine segments; the token bucket parameters
were estimated by profiling this segment using the procedure described in
“Parameter Estimation.” The entire trace was then simulated with these
parameters, and the percentage of requests meeting their SLO-stipulated
deadlines was measured. The results were then compared with the situation
when the training was done statically based on the original, non-speeded-up
baseline FT trace. For the experiment, the SLO required 90 percent of the
requests workload to meet a 20 ms deadline and 95 percent to meet a 40 ms
deadline.

Figures 13 and 14 show the performance of FT2 and FT3 workloads in
the two situations. In Figure 13(a) the percentage of requests meeting the
20 ms deadline is shown for FT2 in two cases: (1) when the parameter
estimation is done statically (static trained) and (2) when the training is
dynamic based on the first segment of FT2 (dynamically retrained). With
the static training the percentage of the workload complying with the
SLO is between 70 percent and 85 percent compared to 90 percent in the
adaptive case. Note that the SLO was set to achieve 90 percent in Class 1,
so the adaptive training based on the first segment does a good job in this
case. Figure 14(a) shows a similar comparison for FT3. In this case, the
difference between the static and adaptive cases is more pronounced, with
only between 50 percent and 70 percent of the requests meeting the SLO
deadline for the static case versus the expected 90 percent in the adaptive
case.

“The parameter estimation method

can be used to adapt the capacity

distribution in response to changes in

request arrival patterns.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

Nested QoS: Adaptive Burst Decomposition for SLO Guarantees in Virtualized Servers | 177

90

95

100
FT2 Fraction in Class 1 (Target = 90%)

75

80

85

P
er

ce
n

t

60

65

70

Segment

1 2 3 4 5 6 7 8 9 10

Static Trained (FT) Dynamically Retrained (FT2)

(a)

FT2 Fraction in Class 2 (Target = 95%)
100

80

90

P
er

ce
n

t

60

70

Segment

1 2 3 4 5 6 7 8 9 10

65

75

85

95

Static Trained (FT) Dynamically Retrained (FT2)

(b)

Figure 13: Workload FT2. Percentage of requests meeting (a) Class
1 response time limit of 20 ms and (b) Class 2 response time limit of
40 ms. SLO objectives are 90% for Class 1 and 95% for Class 2.
(Source: Rice University, 2012)

Figures 13(b) and 14(b) show the results for Class 2, where a similar
behavior between static and adaptive parameter settings can be observed.
We also conducted experiments with different response times, 10 ms
and 20 ms for classes 1 and 2 respectively, which are not reported. The
trends in that case were similar though the differences were smaller. The
smaller differences are understandable: the stricter response times of this
experiment translated to having a larger baseline capacity (in order to
meet the more stringent deadlines). The larger baseline capacity provided
greater slack for the statically trained parameter set, and therefore produced
smaller differences than the experiment reported in Figures 13 and 14.

Intel® Technology Journal | Volume 16, Issue 2, 2012

178 | Nested QoS: Adaptive Burst Decomposition for SLO Guarantees in Virtualized Servers

90

100

60

70

80

P
er

ce
n

t

40

50

Segment

1 2 3 4 5 6 7 8 9 10

FT3 Fraction in Class 1 (Target = 90%)

Static Trained (FT) Dynamically Retrained (FT3)

(a)

90

100

60

70

80

P
er

ce
n

t

40

50

Segment

1 2 3 4 5 6 7 8 9 10

FT3 Fraction in Class 2 (Target = 95%)

Static Trained (FT) Dynamically Retrained (FT3)

(b)

Figure 14: Figure 14: Workload FT3. Percentage of requests meeting
(a) Class 1 response time limit of 20 ms and (b) Class 2 response time
limit of 40 ms. SLO objectives are 90% for Class 1 and 95% for Class 2
(Source: Rice University, 2012)

Summary
The Nested QoS model provides several advantages over usual SLO
specifications: (1) large reduction in server capacity without significant
performance loss (2) accurate analytical estimation of the server capacity
(3) providing flexible SLOs to clients with different performance/cost
tradeoffs, and (4) providing a clean conceptual structure of SLOs using
workload decomposition. Our work continues to explore relating workload
characteristics with the nested model parameters, generalized parameter
estimation and optimization within the framework of adaptive control theory,
alternative scheduling strategies for multiple decomposed workloads to exploit
statistical multiplexing, and Linux block-level implementation.

Intel® Technology Journal | Volume 16, Issue 2, 2012

Nested QoS: Adaptive Burst Decomposition for SLO Guarantees in Virtualized Servers | 179

Acknowledgements
The research of H. Wang and P. Varman was partially supported by NSF
Grants CNS 0917157 and CCF 0541369.

References
[1]	 Storage Performance Council (UMass Trace Repository), 2007.

http://traces.cs.umass.edu/index.php/Storage.

[2]	 SNIA: IOTTA Repository, 2009. http://iotta.snia.org.

[3]	 J. C. R. Bennett and H. Zhang. WF2Q: Worst-case fair weighted fair
queuing. In INFOCOM 1996, pages 120–128, March, 1996.

[4]	 C.-S. Chang. Performance guarantees in communication networks.
Springer-Verlag, London, UK, 2000.

[5]	 R. L. Cruz. Quality of service guarantees in virtual circuit switched
networks. IEEE Journal on Selected Areas in Communications,
13(6):1048–1056, 1995.

[6]	 S. Golestani. A self-clocked fair queuing scheme for broadband
applications. In INFOCOMM 1994, pages 636–646, April 1994.

[7]	 P. Goyal, H. M. Vin, and H. Cheng. Start-time fair queuing: a
scheduling algorithm for integrated services packet switching networks.
IEEE/ACM Transactions on Networking, 5(5):690–704, 1997.

[8]	 A. G. Greenberg and N. Madras. How fair is fair queuing. Journal
ACM, 39(3):568–598, 1992.

[9]	 A. Gulati, C. Kumar, and I. Ahmad. Storage workload characterization
and consolidation in virtualized environments. In Workshop on
Virtualization Performance: Analysis, Characterization, and Tools
(VPACT ’09), 2009.

[10]	 A. Gulati, A. Merchant, and P. Varman. pClock: An arrival curve based
approach for QoS in shared storage systems. In ACM International
Conference on Measurement and Modeling of Computer Systems
(SIGMETRICS), June 2007.

[11]	 A. Gulati, A. Merchant, and P. Varman. mClock: Handling throughput
variability for Hypervisor IO scheduling . In 9th USENIX Symposium
on Operating Systems Design and Implementation (OSDI), Oct. 2010.

[12]	 J.-Y. Le Boudec and P. Thiran. Network Calculus: a theory of deterministic
queuing systems for the Internet. Springer- Verlag, Berlin, Heidelberg, 2001.

[13]	 L. Lu, K. Doshi, and P. Varman. Workload decomposition for QoS in
hosted storage services. In 3rd Workshop on Middleware for Service
Oriented Computing (MW4SoC), 2008.

Intel® Technology Journal | Volume 16, Issue 2, 2012

180 | Nested QoS: Adaptive Burst Decomposition for SLO Guarantees in Virtualized Servers

[14]	 L. Lu, K. Doshi, and P. Varman. Graduated QoS by decomposing
bursts: Don’t let the tail wag your server. In 29th IEEE International
Conference on Distributed Computing Systems, (ICDCS), June 2009.

[15]	 L. Lu, K. Doshi, and P. Varman. Decomposing workload bursts for
efficient storage resource management. IEEE Transactions on Parallel
and Distributed Systems, 22(5), 2011, pp. 860–873.

[16]	 D. Narayanan, A. Donnelly, E. Thereska, S. Elnikety, and
A. Rowstron. Everest: Scaling down peak loads through i/o off-loading.
In 8th USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2008.

[17]	 K. I. Park. QoS in packet networks. Springer, USA, 2005.

[18]	 H. Sariowan, R. L. Cruz, and G. C. Polyzos. Scheduling for quality of
service guarantees via service curves. In Proceedings of the International
Conference on Computer Communications and Networks,
pages 512–520, 1995.

[19]	 J. Turner. New directions in communications (or which way to the
information age?). Communications Magazine, IEEE 24 (10), pp. 8–15.

[20]	 B. Urgaonkar, P. Shenoy, and T. Roscoe. Resource overbooking and
application profiling in shared hosting platforms. In 5th USENIX
Symposium on Operating Systems Design and Implementation
(OSDI), 2002.

[21]	 H. Wang, and P. Varman, Nested QoS: Providing flexible QoS in
shared IO environments, Usenix 3rd Workshop on I/O Virtualization,
(WIOV’11), June, 2011.

[22]	 H. Wang and P. Varman, Flexible resource sharing in virtualized
environments, ACM International Conference on Computing
Frontiers, (CF’11), May, 2011.

Author Biographies
Hui Wang is a graduate student at Rice University. Her research interests
are in QoS scheduling, storage, and distributed and operating systems. She
received her bachelor’s degree from Shandong University and master’s degree in
computer science from Rice University.

Kshitij Doshi is a principal engineer in the Software and Services Group
at Intel Corporation. He has a Bachelor of Technology degree in electrical
engineering from Indian Institute of Technology (Mumbai), and a master’s
degree and PhD in computer engineering from Rice University. His research
interests span operating systems, optimization of performance, power, and
energy in enterprise solutions, database architectures, and virtual machines. He
can be contacted at kshitij.a.doshi@intel.com

Intel® Technology Journal | Volume 16, Issue 2, 2012

Nested QoS: Adaptive Burst Decomposition for SLO Guarantees in Virtualized Servers | 181

Peter Varman is a professor in the Departments of Electrical and Computer
Engineering and Computer Science at Rice University. From 2002 through
2005 he was Program Director for computer systems architecture at the
National Science Foundation in Washington DC. During 2011-2012 he was
a scholar in residence at VMware in Palo Alto, where he worked on issues
relating to resource management for virtualization and cloud computing.
He has also held short-term visiting positions at IBM T.J. Watson and IBM
Almaden Research Labs, Duke University, and NTU, Singapore. His research
interests span the areas of virtualization and res ource management, cloud
computing, computer architecture, storage systems, and applied algorithms.
He earned a Bachelor’s of Technology degree in electrical engineering from IIT,
Kanpur and a PhD from the University of Texas at Austin.

182 | Self-Organizing System-on-Chip Design

Contributors

Intel® Technology Journal | Volume 16, Issue 2, 2012

Self-organization in the context of computing systems refers to a technological
approach to deal with the increasing complexity associated with the deployment,
maintenance, and evolution of such systems. The terms self-organizing and
autonomous are often used interchangeably in relation to systems that use
organic principles (self-configuration, self-healing, and so on) in their design and
operation. In the specific case of system on chip (SoC) design, organic principles
are clearly in the solution path for some of the most important challenges in areas
like logic organization, data movement, circuits, and software[47]. In this article,
we start by providing a definition of the concept of self-organization as it applies
to SoCs, explaining what it means and how it may be applied. We then provide a
survey of the various recent papers, journal articles, and books on the subject and
close by pointing out possible future directions, challenges and opportunities for
self-organizing SoCs.

Introduction
Autonomic computing has been a popular research topic, especially since
the publication of the influential paper by Kephart and Chess[19] outlining
IBM’s vision on how to deal with the increasing complexity associated with
the deployment, maintenance, and evolution of enterprise systems. In a
broader context, autonomic computing describes the application of advanced
technology to the management of advanced technology[10]. Dobson et al.[10]
include organic computing, bio-inspired computing, self-organizing systems,
ultra-stable computing, autonomous and adaptive systems, to name a few,
under the term autonomic.

In the specific case of SoC, organic principles (self-configuration, self-healing,
and so on) have been proposed by various authors to deal with the enormous
challenges of designing and actually delivering reliable, high performance and
ultra low power systems as process variations, transient faults (soft errors),
thermal effects, and aging become harder to manage with advanced process
technology. Sander et al.[35] point to a recent shift in manufacturing technology
from zero defects to a design for yield approach, accepting functional
imperfection will happen. Variations in SoC occur at various temporal and
spatial scales. Bull, et al.[3] classify various types of variations ranging from static,
local inter-die process variations to fast, dynamic variations that develop in a few
cycles or less, such as PLL jitter and capacitive coupling effects. Fault-tolerant
circuits, buses, and caches are used to cope with these variations. Terms like
resiliency, redundancy, adaptivity, approximate arithmetic, error detection,
and error correction appear often in connection with these techniques.
Constantinescu, et al.[6] warn about new error sources related to the increased

“Organic principles are in the solution

path for important challenges in logic

organization, data movement, circuits,

and software.”

Rafael de la Guardia
Intel Labs Guadalajara

Carlos Gershenson
Universidad Nacional Autónoma
de México

Self-Organizing System-on-Chip Design

Intel® Technology Journal | Volume 16, Issue 2, 2012

Self-Organizing System-on-Chip Design | 183

complexity of the fault-tolerance mechanisms themselves, which manifest in
particular when circuits operate in “corner cases,” which are difficult to validate.

In the next section, the concept of self-organization is introduced, noting
when it is useful for designing systems. The section “Proposals” presents a
review of the literature, divided into four subsections, dealing with reliability,
survivability, power/performance optimization, and temperature control.
Future directions and open challenges are outlined in the section “Future
Directions.” This is followed by a section where we draw some conclusions.
Table 1 shows a glossary of terms used throughout the paper.

Acronym Description

TDDB Time-dependent dielectric breakdown
NBTI Negative bias temperature instability
HCI Hot carrier injection
RAMP An architecture-level model to track microprocessor lifetime

reliability
Vdd, Vth and
Fmax

Supply voltage, threshold voltage and frequency of an
electronic component, respectively

IPC Instructions per cycle
EDP Energy-delay product
MTTF Mean time to failure
DTM Dynamic thermal management
DVFS Dynamic voltage and frequency scaling
BIST Built-in self test
CMP Chip multiprocessor
FPGA Field-programmable gate array

Table 1: Glossary
(Source: Intel Corporation, 2011)

Self-Organization
Self-organization is a property evident in several biological systems, such as
insect colonies, flocks of birds, and schools of fish. It can be characterized as a
global pattern (organization) emerging from local interactions (self).

For engineering purposes, self-organization can be used as a guiding principle
to design and control systems[13]. Components are designed in such a way
that they will find solutions to problems as they interact. This is useful for
“non-stationary” problems, where the requirements are dynamic and thus the
predictability is limited. As elements interact, they self-organize adaptively to
novel circumstances, ideally matching the scale(s) at which problems change.

Adaptation can be seen as a useful change in a system as a response to
perturbations. Living systems are constantly adapting to changes in their
environment, so they have been a source of inspiration for engineering adaptive
systems. Self-organization is one method that can be used to build adaptive
systems.

“Self-organization is a property

evident in several biological systems,

such as insect colonies, flocks of birds,

and schools of fish.”

“For engineering purposes,

self-organization can be used as a

guiding principle to design and

control systems.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

184 | Self-Organizing System-on-Chip Design

Proposals
Figure 1 shows a hierarchical organization of the survey. The four sections on
reliability, resiliency, power/performance optimization and temperature control
correspond to the main objectives of most of the self-organizing proposals
found in the literature. Some of the specific techniques, like task scheduling
or voltage/frequency scaling, were used to achieve more than one of the above
mentioned objectives.

Reliability

Survivability Task scheduling

Supervised self-organization

Aging compensation Adaptive body bias

Voltage, frequency scaling

Trust management
Holistic monitoring

SMART architecture

Resiliency

Degeneracy Isolation, deactivation &

re-routing

Early life failure

detection

CASP

Error detection
Canary flip flops

Shadow registers

Power/performance

optimization

Adaptive body bias

Voltage, frequency scaling

Workload classification

Microarchitecture

reconfiguration

Scheduling

Temperature

control

Voltage, frequency scaling

Scheduling

Instruction level parallelism

Figure 1: A hierarchical organization of the survey
(Source: Intel Corporation, 2011)

Reliability
Srinivasan, et al.[39] proposed lifetime reliability awareness at the
microarchitectural level to qualify processors instead of the traditional approach
that uses a worst-case scenario. Reliability targets are satisfied by adapting
dynamically to usage. They contributed an architectural level model (RAMP)
that tracks reliability and a dynamic management technique that works in
parallel with DTM. RAMP includes models of all the critical failure mechanisms
(electromigration, stress migration, TDDB, and thermal cycling) to compute a
processor’s MTTF as a function of temperature and utilization. They divided the
processor in various structures and applied RAMP to each (floating-point unit,
register files, branch predictor, caches, load-store queue, and so on). A complete

“Reliability targets are satisfied by

adapting dynamically to usage.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

Self-Organizing System-on-Chip Design | 185

simulation tool would use the RAMP models plus a timing simulator (workload
behavior) and power/thermal simulators (power/thermal profiles).

Survivability
Feng, et al.[12] proposed a reliability-centric scheduling system called Maestro,
which assigns threads to cores in a CMP system based on estimated damage
extent within the cores and thermal footprints of the running applications,
shown in Figure 2. They reported significant peak temperature variations
(10 percent to 40 percent) between processors and large variations (10 percent
to 20 percent peak deltas) across modules inside the processors when running
various fixed point and floating point SPEC2000 workloads (http://www.spec.
org). These variations are expected to have a drastic impact on mean time to
failure. The scheduler requires circuit level sensors for health monitoring that
explicitly exploit statistically measurable degradation in timing paths at the
microarchitectural level. The authors focused on two failure mechanisms, namely,
NBTI and TDDB. They examined three scheduling policies: 1) a greedy policy
that preserves even the weakest core; 2) an adaptive policy that promotes survival
of the fittest by maximizing lifetime reliability of the CMP; and 3) a naïve round-
robin policy as baseline. A 38 percent improvement in CMP lifetime and up to
180 percent improvement in lifetime throughput was observed in Monte Carlo
simulations of a 16-core CMP using either the adaptive or greedy policies.

Figure 2: Block diagram of the Maestro introspective reliability management system
(Source: HiPEAC 2010[48])

OS

Scheduled Jobs

V
ir

tu
al

iz
at

io
n

 L
ay

er

Reliability Target

Wearout-Centric Job Schedule

R
aw

 S
en

so
r

D
at

a

P
ro

ce
ss

ed
 D

at
a

Health Monitoring

n Live Cores

FIFO Queue

n
 A

ct
iv

e
Jo

b
s

Damage Profile

•
•
•

•
•
•

•
•
•

•
•
•

•••

Module %
m0(ALU) 86
m1(FPU) 96

Stress Profile

Module T(°C)
m0(ALU) 85
m1(FPU) 96

Profiling

Scheduling Policy

OS

F
ilt

er
in

g
 a

n
d

 A
n

al
ys

is

A
g

g
re

g
at

e
A

n
al

ys
is

Reliability Assessment

“Circuit level sensors for health

monitoring explicitly exploit

statistically measurable degradation

in timing paths at the

microarchitectural level.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

186 | Self-Organizing System-on-Chip Design

Aging Compensation
Sander, Bernauer, and Rosentiel[35] described a framework for self-adaptation
in SoC towards electronic system level reliability. They considered the effect on
reliability due to the characteristics of real applications, the environment and
user behavior, on one hand, and the correct modeling of physical effects, on
the other.

Kumar, et al.[23] used adaptive body bias (BB) to compensate the effect that
bias temperature instability has on circuit performance over its lifetime.
Previously ABB had only been used for leakage/performance tradeoffs. Their
adaptive technique was based on a lookup table to map Vdd and BB values to
the cumulative time of NBTI stress (aging) on the circuit. BB can be used to
speed up a circuit as it ages by decreasing its Vth and thereby using the available
leakage slack, at a cost of a substantial power overhead, particularly towards the
end of life of the device when higher BB values are needed (to recover speed).
Hence adaptive BB is used in combination with adaptive supply voltage to
minimize the total power overhead (active power plus leakage) such that the
delay at any time is less than or equal to a delay specification for the device.

Khan and Kundu[21] proposed a framework to manage transistor aging, where
the chip not only tests itself but also adapts to the changing conditions,
providing higher performance for all applications during the initial years
and graceful performance degradation as the device ages. The system level
architecture is based on virtualization of a system reliability manager that
senses the impact of power delivery, temperature, and the workload on the
hardware platform, and subsequently responds by adapting the supply voltage
and/or operating frequency, as shown in Figure 3. Accurate estimates of

“Adaptive body bias (BB) compensates

the effect that bias temperature

instability has on circuit performance

over its lifetime.”

“A system reliability manager

senses the impact of power delivery,

temperature, and the workload on the

hardware platform.”

Voltage
Regulator

Module

System
CLK

PLL Control

REFCLK

Supply Voltage

VID Command

PLL

System Reliability Manager

SRM
Controller

Divider
Control

Frequency
Control
Register

Voltage
Control
Register

DIV Inc/Dec

DIV

Figure 3: System reliability manager architecture
(Source: DATE09[49])

Intel® Technology Journal | Volume 16, Issue 2, 2012

Self-Organizing System-on-Chip Design | 187

Fmax and Vth are essential, hence the software periodically runs system BIST and
stress tests to update these values as the device ages. Simulations performed
by the authors showed that worst-case MTTF rate of change is related to the
workloads’ thermal and performance behavior. They proposed using workload
information to determine when the reliability manager should be invoked to
reconfigure the system.

Li, et al.[24] described a framework for diagnostics called CASP (concurrent
autonomous chip diagnostics using stored test patterns). Among the key
features of CASP claimed by the authors are that it’s designed for minimal
performance and power impact so it can provide high test coverage with
zero downtime (it can diagnose one or more cores as the others continue to
operate). CASP was designed to take advantage of existing design-for-test
functionality and for minimal design flow impact (on-line test controller,
small off-chip buffer, architecture supplement to isolate core under test).
The authors proposed using CASP to implement self-healing transistor
aging, using common tune parameters (supply voltage and clock frequency)
to compensate for aging and prevent delay- and fault-induced errors due
to aging, maximize computational power efficiency (total number of clock
cycles over lifetime divided by energy) and/or maximize system lifetime. For
example, increasing supply voltage results in decreasing delay, increasing
leakage current, and increasing aging. On the other hand, decreasing
frequency results in decreasing bit error rate, decreasing power, and decreasing
performance.

Yi, et al.[43] proposed an aging test strategy including delay measurement and
adaptive test scheduler. They considered path delay increase as a function of
time caused by NBTI, HCI, TDDB, electro- and stress-migration, and delay
measurements as a function of voltage and temperature.

Trust Management
Pionteck and Brockmann[30] presented a methodological framework for trust
management, consisting of architecture and specific methods. According to
the authors, uncertainty (untrustworthiness) affecting SoC dynamic thermal
and reliability management is caused by: 1) unpredictability of workloads,
for example due to load changes and local loops for error compensation,
2) sensors, 3) actors, 4) thermal dissipation, 5) the environment,
6) physical models used for tuning thermal management systems, and
7) by changes in chip properties (aging). Their proposed SMART architecture
complements the traditional functional units with so called robustness
units (RUs), which can be local, regional, or global, interconnected through
a robustness network, as shown in Figure 4. Readings from sensors in an
RU come supplemented with a trust level that varies between zero and
one, representing the reliability of the sensors. Similarly, their proposed
framework attaches to each actuator in an RU a trust level that is applied
when predicting its influence on the hardware. Global RUs address global
goals, like survivability and triggering actions to fulfill outer power and
performance goals. The authors proposed fuzzy control techniques for trust
level processing and robust learning classifier systems extended with the
integration of dynamically changing trust levels.

“Increasing supply voltage results in

decreasing delay, increasing leakage

current, and increasing aging.”

“Decreasing frequency results in

decreasing bit error rate, decreasing

power, and decreasing performance.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

188 | Self-Organizing System-on-Chip Design

Legend:
Functional Unit

Local Robustness Unit

Regional Robustness Unit

Global Robustness Unit

Robustness Network

Figure 4: Schematic chip structure
(Source: DSN-W 2010[50])

Kramer, et al.[22] proposed a cooperative, coordinated, system-wide monitoring
infrastructure for self-organizing, massively parallel and heterogeneous systems,
shown in Figure 5. Their proposed infrastructure is divided into low level
monitoring (LLM) using associative counter arrays (ACA) to track any number
of concurrent events, and high level monitoring (HLM) for data analysis based
on an adaptive, rule-based approach. ACA provide cache-inspired uniform
event coding to characterize the state of the system or application behavior.
Their proposed organic processing cells include one LLM instance directly
interfaced with an ACA in each component (such as CPU, cache, and so on).
At a higher level, an HLM network consumes data from various LLM sources,
using event lists for state evaluation and classification. Evaluation rules for state
classification in the HLM nodes are derived at runtime and can be updated or
new rules added at any time.

Gherman, et al.[14] devised delay control structures and architectural support
for concurrent self-test of in-order pipelines based on the opportunistic
re-execution of operations during naturally occurring stall cycles.

Resiliency
Resiliency can be understood as the ability of systems of withstanding
perturbations. In other words, a resilient system will continue to function in
spite of changes to the system.

“Resiliency can be understood as the

ability of systems of withstanding

perturbations.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

Self-Organizing System-on-Chip Design | 189

Degeneracy
Degeneracy is the ability of performing the same function by different
components of a system.

Polack[31] proposed adopting self-organizing techniques that previously had
been successfully used in robot swarm organisms to achieve survivability in
computer architectures. Survivability means that the system continues to
provide some functionality in the presence of faults. This is possible because
at least some of the robots (or the elements of the system) that are structurally
different are able to perform the same function via degeneracy. Hence,
critical elements adopt a survival mode under certain conditions. The system
determines what functions can continue based on known relationships between
health and tasks. Furthermore, immune-inspired fault tolerance systems in
robotic swarm organisms are lightweight, making them attractive for use in
self-organizing computer architectures.

Collet, et al.[5] described a self-organization approach for multicore chips
in massively defective technologies designed to detect and tolerate both
permanent faults (which escaped self-diagnosis) and transient faults on line.
They assumed a system with possibly hundreds of uniform cores, caches,
and routers where not only permanent defects but latent defects (time-
dependent device degradation and material wear out; system failure at any
time in the field) are significant. Self-organization makes sense in this case

“Degeneracy is the ability of

performing the same function by

different components of a system.”

General
Purpose

Processor

Dynamic

Organic Processing Cell

Static

ACA

L1-Data
Cache

ACA

artNoC-
Router

ACA
Unified L2-Cache

ACA

L1-Instruction
Cache

ACA

Low-Level
Monitoring

Figure 5: Hierarchical monitoring
(Source: Organic Computing—A Paradigm Shift for Complex Systems, 2011[51])

Intel® Technology Journal | Volume 16, Issue 2, 2012

190 | Self-Organizing System-on-Chip Design

because increased complexity results in reduced (external) controllability
and observability. They considered a 2D array topology (symmetrical) with
cores, routers, and caches, focused on architectural fault-tolerance, given
the fault-tolerance hierarchy of circuits, architecture, scheduling, allocation,
and execution. The self-organizing approach included self-test, autonomous
isolation, auto-discovery of valid routes, and deactivation of defective modules.
The self-diagnosis sequence goes from interconnects to routers to cores. Their
main contribution was that they separated the self-testing of interconnects and
routers from the software-based self-test of cores. They used diagnosis based on
BIST using a test data generator, test error detector, and a maximal aggressor
fault model to detect crosstalk defects.

Gupta, et al.[15] created StageNet, which is a reconfigurable and adaptable
substrate that replaces direct connections at pipeline stage boundary by
crossbars, thereby enabling creation of logical cores (called StageNetSlices) by
grouping pipelines in different ways. The proposed infrastructure can be used,
for example, to isolate failures by routing around defects.

Early Life Failure Detection
Li, et al.[25] proposed concurrent autonomous chip self-test using stored test
patterns as an efficient on-line self-test strategy for uncore (logic blocks including
cache, DRAM and I/O controllers) that can be used both for aging and early life
failure detection (see also the earlier section “Aging Compensation”). According
to the authors, their method exhibits a high test coverage (with extensive patterns
in off-chip nonvolatile storage), minimal system level impact (<1 percent area
and power, <3 percent performance) with a frequent self-test (1 second every
10 second). As opposed to a self-test targeting aging where self-test can be
invoked every day, targeting early life failures (infant mortality) requires much
more frequent testing, which poses a performance impact challenge.

Error Detection
Hashimoto[16] constructed an adaptive speed control with timing error
prediction using canary flip flops (FFs), shown in Figure 6. When timing
margin decreases, timing errors occur in canary FFs before the main FFs capture
a wrong value, thanks to a buffer delay. A warning signal is then generated
that speeds up the affected circuit; conversely the circuit is slowed down if no
warnings occur. There is a tradeoff between the optimum number of canary
FFs and area overhead. The author used a Markov chain model, taking into
account the probability of path activation to determine timer error rate and
power dissipation. The concept was tested in a silicon prototype where a timing
warning signal was connected to a speed control unit which selected the body
bias voltage applied to a Kogger-Stone adder circuit. Insertion location and time
delay of a canary FF was configurable as it was determined that the critical path
is not always the best location for optimum tradeoff between power and area. A
46 percent power savings using adaptive speed control was observed compared
to traditional guard-banded design for worst case.

Zeppenfeld, et al.[45] proposed an autonomic SoC architecture using a fault-
tolerant CPU data path, a learning classifier table (see also the section “Power

“The self-organizing approach

included self-test, autonomous

isolation, auto-discovery of valid

routes, and deactivation of defective

modules.”

“Targeting early life failures (infant

mortality) requires much more

frequent testing, which poses a

performance impact challenge.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

Self-Organizing System-on-Chip Design | 191

and Performance Optimization”), and an autonomic element interconnect
structure, shown in Figure 7. The authors analyzed many types of error
detection (based on hardware redundancy, self-checking arithmetic circuits and
time redundancy) in terms of footprint, timing, and transient error detection
capabilities and the possibility of intellectual property reuse. They selected a
shadow register technique with error correction that doesn’t require a complete
pipeline flush but involves a constant pipeline stall penalty of two cycles.

“A shadow register technique with

error correction that doesn’t require a

complete pipeline flush but involves a

constant pipeline stall.”

Speed Control Unit

Body-Bias Voltage
16 Warning

Error

KSA
(S=X+Y)

FF

FF

X

Y

Always Correct
Adder

FF

X

Y

LFSR

High VDD
Domain

Low VDD
Domain

X

Y

S

FF

S
C

o
n

fi
g

u
ra

b
le

C
an

ar
y

F
F

C
o

m
p

ar
at

o
r

Timer

32

33

32

33

Figure 6: 32-bit Kogge-Stone adder controlled adaptively with configurable canary FF
(Source: ASP-DAC 2011[52])

IF

0
1

Retry

Error Rate

Thresholds

Retry Retry Retry

Monitor

Evaluator

Actuator

Retry Hold

Error Rate

Thresholds

Error Rate

Thresholds

Error Rate

Thresholds

ID

Pipeline Control

0
1

ECCECC

EX

0
1

ECC

ME

0
1

ECC

WB

Figure 7: CPU data path with shadow registers for error detection and correction
(Source: ISORCW 2010[53])

Intel® Technology Journal | Volume 16, Issue 2, 2012

192 | Self-Organizing System-on-Chip Design

Minimum cycle overhead was considered critical to prevent the spreading of
effects of an errant operation to other parts of the autonomic SoC.

Power and Performance Optimization
Puschini, et al.[32] considered the following global multiple objective
optimization problem: manage the power and temperature for hot spot
reduction and performance control through task synchronization for a given
application with functional dependencies in an MP-SoC with multiple
processing elements, each of which includes processor, memory, and peripherals.
Their proposed solution is to use DVFS for each tile computed at system
level using game theory. Their design used processing elements connected via
asynchronous network-on-chip with the required bandwidth and latency. They
found that functional dependencies between tasks at the application level lead
to processing element frequency adjustment to guarantee task synchronization.
Hence, the tradeoff between temperature and task synchronization had to be
considered when mapping applications to the MP-SoC.

Zeppenfeld, et al.[45] proposed a simplified form of learning classifier system
with a dynamically changing reward prediction, called a learning classifier
table (LCT), which features a fast rollback actuation path from monitors to
actuators. An aggregator on top of an autonomic element monitor generates a
condensed monitor signal (necessary to cope with the rate of data capture) that
is passed on to the learning classifier, which then generates the output that is
fed to the actuator back in the functional element. The LCT consists of a list
of condition, action fitness values corresponding to the rules of the learning
system. The rule to apply is determined by weighted roulette wheel selection
without explicit match set creation using a reservoir sorting algorithm. The
goal of the methodology was to provide a balance between exploitation of
learning and exploration. Hence, rule weighting in their proposed scheme
is based solely on the predicted reward, which corresponds to the fitness of
each rule. The use of genetic operators to modify the rules (as used in full-
fledged extended classifier systems) was proposed for a future investigation.
Synthesis of the LCT in a Xilinx Virtex-II Pro FPGA revealed less than
5 percent overhead compared to the standard Leon 3 processor core. To test
the LCT they implemented a simulation in software (not in the FPGA) of
a networking application that transferred packets from main memory to
Ethernet MAC for transmission. Initially, all tasks were scheduled in one core
(of the Leon 3 cores). The objective function to be minimized using the LCT
consisted of a weighted sum of deltas in frequency, utilization, and workload
for all the cores. They used a token ring structure to furnish the autonomic
system’s interconnect needs. Sharing global data between autonomic elements
was shown to be advantageous in their simulations. Going forward, the
authors identified challenges in scalability, reliability, and LCT timing. For
example, actuator actions take time to percolate through the system at various
rates. So, when many autonomic elements are simultaneously generating
actions, hierarchical interconnect structures simplify the learning process at
the cost of possibly converging to local minima. This suggested a hierarchical

“Functional dependencies between

tasks at the application level lead

to processing element frequency

adjustment to guarantee task

synchronization.”

“Proposed a simplified form of

learning classifier system with a

dynamically changing reward

prediction, called a learning classifier

table (LCT).”

Intel® Technology Journal | Volume 16, Issue 2, 2012

Self-Organizing System-on-Chip Design | 193

topology with islands of autonomic elements using local token ring structures
connected to form archipelagos and so on. The authors noted that constraints
are necessary to ensure system reliability and fault tolerance. These constraints
include guards on directly adjustable parameters (such as voltage and
frequency) and hard and soft constraints on indirectly adjustable parameters
(such as utilization and temperature). The authors also distinguished between
application-aware constraints (such as packet forwarding rate and video
frame processing rate) and application-independent constraints. To cope
with constraints, LCT proposes relative actions, preventing large jumps in
parameters. Margins are still necessary between soft and hard constraints.
Finally, the authors noted that the application of overlapping rules helps to
reduce lookup latency, but its effect on learning behavior and system stability
needs to be further studied.

Yoon, et al.[44] described an adaptive granularity memory system targeting
improvements in throughput and power efficiency. The proposed system
combines compiler, OS, cache hierarchy, and memory controller (for example,
sub-ranking) tools to optimize the channel according to the granularity
(locality) of the data. The authors reported gains in throughput and power
efficiency of 44 percent and 46 percent, respectively, with respect to standard
double data rate memory systems optimized for coarse grained access.

Yao, et al.[42] described an adaptive depth pipeline technique called pipeline
stage unification (PSU) that according to the authors, provides lower power
under light loads, is fast switching (order of nanoseconds) and uses a low
cost method to categorize program behavior at high granularity. Based on
processor IPC to categorize loads, the method achieved 13.5 percent EDP
reduction compared to the same processor without PSU. For comparison, the
authors noted that voltage changes in DVFS incur execution delays of tens of
microseconds. PSU bypasses inactive parts of pipeline registers and use shallow
pipelines under light loads (up to 5 times shallower compared to baseline
with 20 stages). PSU latency can be broken down into a pipeline flush and a
frequency scaling, which together translate into tens of cycles. It was observed
that optimal depth (in terms of energy and performance) varies per application;
hence, PSU uses an adaptive depth with three stage unification degrees. Based
on the analyses presented by the authors, CPI (inverse of IPC) is a linear
function of pipeline stages (CPI 5 CPI0 1 beta 3 n), with beta dependent
on the application. In a similar way, power consumption can also be expressed
as a function of pipeline stages. The analysis conducted by the authors showed
that for large beta, shallower pipelines lead to improved EDP. Since CPI0 in
their formulation is approximately constant across applications, relative beta
for an application can be approximated as CPI/n, or (1/IPC)/n, which was the
method used in their PSU implementation to categorize applications.

Ma, Wang, and Wang[26] proposed including L2 cache in partitioning a CMP
chip level power budget based on workload characteristics, using a power
capping algorithm. In their proposed scheme, performance contributed by
each heterogeneous component needs to be measured dynamically, so that

“PSU bypasses inactive parts of

pipeline registers and use shallow

pipelines under light loads.”

“Optimal depth (in terms of

energy and performance) varies per

application; hence, PSU uses an

adaptive depth.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

194 | Self-Organizing System-on-Chip Design

DVFS (per core) or cache resizing (which changes the number of active cache
ways/lines/blocks) can be applied to enforce per component budget. According
to the authors, CMP performance improves as function of power budget
increase, for either core or cache, approximately as a linear or piecewise linear
function. Hence, CMP performance in the short term can be approximated
as the sum of the performance contributions from each component. They
proposed using a recursive least squares estimator to calculate a performance
contribution parameter vector for all the components. The resulting linear
programming optimization problem to be solved was to maximize the sum of
the performance contributions subject to the power budget of the whole chip.
Power consumption could then be controlled using a proportional-integral-
derivative controller.

Temperature Control
Huang, et al.[17] argued in favor of considering temperature aware architectures
all the way from the early design stages to end of life of the devices. They
pointed out that, compared to power aware architectures, temperature depends
on power density, is a nonlinear function of time (versus instantaneous), is
most important when utilization is high, affects reliability (power swings
due to power management), and generates hot spots. Temperature models
are needed to account for effects such as leakage, thermal dissipation, and
microarchitecture versus transistor level impact. Therefore, the choice of
cooling solution affects the optimum processor architecture. The authors noted
some of the challenges ahead. In particular, with respect to DTM, DVFS, and
(core) hopping, there are well-established techniques. However, variability and
accuracy of measurements are key issues that may negate the benefit of these
techniques. The sizing of guard bands is another key issue, as it must account
for many different failure mechanisms, such as timing errors, soft errors
(thermal noise), excessive leakage, aging, and so on. Better modeling across
multiple spatial and temporal scales is essential, according to the authors.

Coskun, et al.[7] investigated thermally-aware scheduling in MP-SoC. They
proposed an OS-level solution that includes temperature measurements to
decrease hot spots and temperature variations at reduced performance cost.
The authors found that spatial temperature variations across the chip result in
performance mismatches that lead to performance or logic failures. Timing
failures result, for example, from NBTI and HCI. Circuit delays and voltage
drop result from increasing circuit resistance associated with increasing
temperature. The authors reported that raising temperature by 20°C resulted
in a 5–6 percent increase in Elmore delay in interconnects, causing clock skew
problems.

Mesa-Martinez, et al.[28] characterized various SPEC200x (http://www.spec.
org) applications based on several thermal metrics: 1) timing (maximum
temperature and thermal gradient may cause throttling and skew/timing
violations, respectively), 2) reliability (using RAMP to compute MTTF and
average failures in time per block (architectural unit) weighted by area and
added over all units), 3) energy (leakage based on the BSIM3 model described

“Temperature depends on power

density, is a nonlinear function of

time (versus instantaneous), is most

important when utilization is high.”

“Spatial temperature variations

across the chip result in performance

mismatches that lead to performance

or logic failures.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

Self-Organizing System-on-Chip Design | 195

in the 1998 M98/51 technical report that can be found in http://www.eecs.
berkeley.edu/Pubs/TechRpts), 4) thermal time constant and 5) instructions per
cycle (average and maximum).

Coskun, et al.[8] proposed a simulation framework that captures architectural
level effects over tens of seconds or longer while also capturing thermal
interactions among cores from scheduling policies. They found that different
DTM techniques that provide nearly identical performance, power and peak
temperature can differ by 2X in expected lifetime. Their model includes
electromigration, TDDB, and thermal cycling. Lifetime based on this
model was affected mostly by accounting (or not) for asymmetric thermal
characteristics of cores (such as core location) and frequency of migration.

Reda, Cochran, and Nowroz[34] proposed a hard sensor allocation algorithm to
determine the sensor locations where hot spots can be tracked accurately given
a budget number of sensors. They further proposed a soft sensing technique
that combined measurements from hard sensors in an optimal way to estimate
temperature at any desired location.

Future Directions
Some general trends may be extracted from the various proposals reviewed
in the previous section. Reliability and resiliency fall clearly in the domain of
self-organizing systems. Self-test and self-healing are often cited as underlying
control mechanisms. Survivability in the presence of variability, aging, and
perturbations while maximizing lifetime throughput may be considered a main
objective. Circuits and microarchitectural elements play a key role. Challenges
have been identified in integrating circuit level and microarchitectural solutions
for error detection and correction, fault isolation, and task scheduling under
severe area, power, and performance constraints. Evolving models for aging and
trust are critical to many of the proposed solutions.

Adaptive techniques are more commonly used for power, performance, and
temperature control. However, the methods used are often the same ones
(for example, DVFS, task scheduling) that are used for managing reliability
and resiliency. In general, there is no silver bullet and tradeoffs must be made
between reliability, power, performance, and temperature. The fact that there
is not a single, static definition of performance complicates matters further.
At a system level, we find increasingly heterogeneous solutions and strong
interactions between the hardware, the operating system, and the running
applications. Indeed, SoCs may be considered vertical systems. Constraints
are necessary as the response times associated with typical control mechanisms
(such as DVFS) are relatively slow, on the order of tens of microseconds.
Scalability, reliability, and learning present important challenges.

With respect to temperature control, the choice of cooling solution has a
large impact on power (for example, leakage), performance, reliability, and
ergonomics. Maximum temperature (hot spot) and temperature gradients are

“Survivability in the presence of

variability, aging, and perturbations

while maximizing lifetime throughput

may be considered a main objective.”

“There is no silver bullet and tradeoffs

must be made between reliability,

power, performance, and temperature.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

196 | Self-Organizing System-on-Chip Design

both important and difficult to measure in systems. Temperature sensors are
generally not coincident with hot spot locations. Thermal models are therefore
needed but time-dependent component variability and sensor/actuator
accuracy must be accounted for. Guard bands are required to compensate for
uncertainty in measurements and controls.

There are several open challenges in the use of self-organization to cope with
the increasing complexity of SoC. Current approaches aim at increasing the
adaptability, robustness, and survivability of systems. However, this comes at a
certain cost, in the sense that additional components are required to deploy a
self-organizing SoC.

For example, a naive attempt to increase robustness is with redundancy of
components. Thus, if one component fails, duplicate copies can maintain the
functionality. However, multiplication of entire circuits or chips also multiplies
their cost, instead of exploiting multiple resources in parallel. More economical
measures to increase robustness are being developed.

Many approaches are inspired in living systems, since these exhibit the desired
properties of engineered systems[40].

A list of some of the open challenges follows:

1.	 A formalization of the effect of different approaches in desired properties of
adaptive and self-organizing SoC.

2.	 Standardized performance measures for comparing different proposals.

3.	 Minimization of additional modules while increasing robustness.

4.	 Adaptation to different and changing physical properties of SoC from
fabrication differences, from changes in temperature, and from aging.

5.	 General methodologies for designing self-organizing SoC, to be compared
using 2.

Not only challenges can be envisaged, but also several opportunities. Self-
organizing SoC can contribute to the increase of reliability, performance,
survivability, and robustness, while offering a reduction of power consumption,
errors, and design time.

Conclusions
This article presented an overview of the literature related to self-organizing
SoC. This literature was categorized in terms of reliability, resilience, power/
performance optimization, and temperature control. Each of these areas is
relevant for producing self-organizing SoC, and should be considered in
parallel.

Building on the state of the art, a list of open challenges and several
opportunities were mentioned. Future research is self-organizing SoC is
promising to develop hardware of increased capacities.

“There are several open challenges in the

use of self-organization to cope with

the increasing complexity of SoC.”

“Self organizing SoC can contribute to

the increase of reliability, performance,

survivability, and robustness,

while offering a reduction of power

consumption.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

Self-Organizing System-on-Chip Design | 197

References
[1]	 Barbagallo, D., Di Nitto, E., Dubois, D.J., and Mirandola, R. (2010).

A Bio-inspired Algorithm for Energy Optimization in a Self-organizing
Data Center, D. Weyns et al. (Eds.): SOAR 2009, LNCS 6090,
pp. 127–151, 2010.

[2]	 Borkar, S. and Chien, A.A. (2011). The Future of Microprocessors,
Communications of the ACM, May 2011, vol. 54, no. 5, pp. 67–77.

[3]	 Bull, D., Das, S.,Shivashankar, K., Dasika, G.S., Flautner, K., and
Blaauw, D. (2011). A Power-Efficient 32 bit ARM Processor Using
Timing-Error Detection and Correction for Transient-Error Tolerance
and Adaptation to PVT Variation, IEEE Journal of Solid-State Circuits,
Vol. 46, No. 1, January 2011, pp. 18–31.

[4]	 Chen, M., Wang, X., and Li, X. (2011). Coordinating Processor and
Main Memory for Efficient Server Power Control, ICS’11, May 31-June
4, 2011, Tuscon, Arizona, USA.

[5]	 Collet, J. H., Zajac, P., Psarakis, M., and Gizopoulos, D. (2011). Chip
Self-Organization and Fault Tolerance in Massively Defective Multicore
Arrays, IEEE Transactions On Dependable and Secure Computing,
Vol. 8, NO. 2, March–April 2011.

[6]	 Constantinescu, C., Parulkar, I., Harper, R., and Michalak, S. (2008).
Silent Data Corruption—Myth or Reality? International Conference
on Dependable Systems & Networks: Anchorage, Alaska, June 24–27
2008, pp. 108–109.

[7]	 Coskun, A.K., Rosing, T.S., and Whisnant, K. (2007). Temperature
Aware Task Scheduling in MPSoCs, 2007.

[8]	 Coskun, A.K., Strong, R., Tullsen, D.M., and Simunic Rosing, T.
(2009). Evaluating the Impact of Job Scheduling and Power
Management on Processor Lifetime for Chip Multiprocessors,
Sigmetrics/Performance ’09, June 15–19, 2009, Seattle, WA, USA.

[9]	 de Kruijf, M., Nomura, S., and Sankaralingam, K. (2010). Relax: An
Architectural Framework for Software Recovery of Hardware Faults,
37th International Symposium on Computer Architecture (ISCA ’10).

[10]	 Dobson, S., Sterritt, R., Nixon, P., and Hinchey, M. (2010). Fueling the
vision of autonomic computing, Computer, Jan. 2010, pp. 35–41.

[11]	 Dong, X. and Xie, Y. (2011). AdaMS: Adaptive MLC/SLC Phase-
Change Memory Design for File Storage, IEEE, pp. 31–36.

[12]	 Feng, S., Gupta, S., Ansari, A., and Mahlke, S. (2010). Maestro:
Orchestrating Lifetime Reliability in Chip Multiprocessors, Y.N. Patt
et al. (Eds.): HiPEAC 2010, LNCS 5952, pp. 186–200.

Intel® Technology Journal | Volume 16, Issue 2, 2012

198 | Self-Organizing System-on-Chip Design

[13]	 Gershenson, C. (2007). Design and Control of Self-organizing Systems.
CopIt Arxives, Mexico. ISBN 978-0-9831172-3-0 http://tinyurl.com/
DCSOS2007.

[14]	 Gherman, V., Massas, J., Evain, S., Chevobbe, S., and Bonhomme, Y.
(2011). Error Prediction based on Concurrent Self-test and Reduced
Slack Time, DATE11, 2011.

[15]	 Gupta, S., Feng, S., Ansari, A. and Mahlke, S. (2011). StageNet: A
Reconfigurable Fabric for Constructing Dependable CMPs, IEEE
Transactions on Computers, Vol. 60, No. 1, January 2011, pp. 5–19.

[16]	 Hashimoto, M. (2011). Run-Time Adaptive Performance
Compensation using On-chip Sensors, 3C-3, pp. 285–290.

[17]	 Huang, W., Stany, M.R., Allen-Ware, M., Carter, J.B., Chengx, E.,
and Skadron, K. (2011). Temperature-Aware Architecture: Lessons and
Opportunities, preprint.

[18]	 Hudec, J. (2011). An Efficient Technique for Processor Automatic
Functional Test Generation based on Evolutionary Strategies, Proceedings
of the ITI 2011 33rd Int. Conf. on Information Technology Interfaces,
June 27–30, 2011, Cavtat, Croatia.

[19]	 Kephart, J.O. and Chess, D.M. (2003). The Vision of Autonomic
Computing, Computer, Jan. 2003, pp. 41–50.

[20]	 Khalid, A., Abdul Haye M., Jahan Khan, M., and Shamail, S. (2009).
Survey of Frameworks, Architectures and Techniques in Autonomic
Computing, 2009 Fifth International Conference on Autonomic and
Autonomous Systems, pp. 220–225.

[21]	 Khan, O. and Kundu, S. (2009). A Self-Adaptive System Architecture
to Address Transistor Aging, DATE09, 2009.

[22]	 Kramer, D., Buchty, R., and Karl, W. (2011). Monitoring and Self-
awareness for Heterogeneous, Adaptive Computing Systems. C,
Müller-Schloer et al. (eds.), Organic Computing—A Paradigm Shift for
Complex Systems, pp. 163-177.

[23]	 Kumar, S. V., Kim, C. H., and Sapatnekar, S. S. (2011). Adaptive
Techniques for Overcoming Performance Degradation Due to Aging
in CMOS Circuits, IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, Vol. 19, No. 4, April 2011, pp. 603–614.

[24]	 Li, Y., Kim, Y.M., Mintarno, E., Gardner, D., and Mitra, S. (2009).
Overcoming early-life failure and aging challenges for robust system
design. Accepted for publication in IEEE Design and Test of Computers.

[25]	 Li, Y., Mutlu, O., Gardner, D. S., and Mitra, S. (2010). Concurrent
Autonomous Self-Test for Uncore Components in System-on-Chips,
2010 28th IEEE VLSI Test Symposium, pp. 232–237.

Intel® Technology Journal | Volume 16, Issue 2, 2012

Self-Organizing System-on-Chip Design | 199

[26]	 Ma, K., Wang, X., and Wang, Y. (2011). DPPC: Dynamic Power
Partitioning and Capping in Chip Multiprocessors, 2011.

[27]	 Ma, K., Li, X., Chen, M., and Wang, X. (2011). Scalable Power Control
for Many-Core Architectures Running Multi-threaded Applications,
ISCA’11, June 4–8, 2011, San Jose, California, USA.

[28]	 Mesa-Martínez, F.J., Ardestani, E.K., and Renau, J. (2010).
Characterizing Processor Thermal Behavior, ASPLOS’10, March 13–17,
2010, Pittsburgh, Pennsylvania, USA.

[29]	 Peters, S.J., Norman, A., Shykind, D., and White, M.T. (2005). A
methodology to determine how much electrical margin is enough to
ship a product, DTTC 2005.

[30]	 Pionteck, T. and Brockmann, W. (2010). A Concept of a Trust
Management Architecture to Increase the Robustness of Nano Age
Devices, 2010 International Conference on Dependable Systems and
Networks Workshops (DSN-W), pp. 142–147.

[31]	 Polack, F.A.C. (2010). Self-organisation for Survival in Complex
Computer Architectures, D. Weyns et al. (Eds.): SOAR 2009,
LNCS 6090, pp. 66–83, 2010.

[32]	 Puschini, D., Clermidy, F., Benoit, P., Sassatelli, G., and Torres, L.
(2008). Temperature-Aware Distributed Run-Time Optimization
on MP-SoC using Game Theory, IEEE Computer Society Annual
Symposium on VLSI, pp. 375–380.

[33]	 Ravotto, D., Sánchez, E., and Sonza Reorda, M. (2010). A Hardware
Accelerated Framework for the Generation of Design Validation
Programs for SMT Processors, 2010 IEEE.

[34]	 Reda, S., Cochran, R.J. and Nowroz, A.N. (2011). Improved Thermal
Tracking for Processors Using Hard and Soft Sensor Allocation
Techniques, IEEE Transactions on Computers, Vol. 60, No. 6,
June 2011.

[35]	 Sander, B., Bernauer, A., and Rosenstiel, W. (2010). Design and Run-
time Reliability at the Electronic System Level, IPSJ Transactions on
System LSI Design Methodology Vol. 3 1–21 (Aug. 2010), pp. 1–21.

[36]	 Schmeck, H., Müller-Schloer, C. Çakar, E., Mnif, M., and Richter, U.
(2010). Adaptivity and selforganization in organic computing systems.
ACM Trans. Autonom. Adapt. Syst. 5, 3, Article 10 (September 2010),
32 pages.

[37]	 Schmeck, H., Müller-Schloer, C., Çakar, E., Mnif, M. and Richter,
U. (2011). Adaptivity and Self-organisation in Organic Computing
Systems, C. Müller-Schloer et al. (eds.), Organic Computing—A
Paradigm Shift for Complex Systems, 5–37.

Intel® Technology Journal | Volume 16, Issue 2, 2012

200 | Self-Organizing System-on-Chip Design

[38]	 Soto, J., Moreno, J. M., and Cabestany, J. (2011). Description of a
Fault Tolerance System Implemented in a Hardware Architecture with
Self-adaptive Capabilities, J. Cabestany, I. Rojas, and G. Joya (Eds.):
IWANN 2011, Part II, LNCS 6692, pp. 557–564, 2011.

[39]	 Srinivasan, J. Adve, S.V., Bose, P. and Rivers, J.A. (2004). The Case
for Lifetime Reliability-Aware Microprocessors, 31st International
Symposium on Computer Architecture (ISCA-04), June 2004.

[40]	 Steuer R, Waldherr S, Sourjik V, Kollmann M (2011) Robust Signal
Processing in Living Cells. PLoS Comput Biol 7(11): e1002218.
doi:10.1371/journal.pcbi.1002218

[41]	 Wang, J. and Calhoun, B.H. (2007). Canary Replica Feedback for
Near-DRV Standby VDD Scaling in a 90nm SRAM, IEEE 2007
Custom Intergrated Circuits Conference (CICC), pp. 29–32.

[42]	 Yao J., Miwa S., Shimada H., and Tomita, S. (2011). A fine-grained
runtime power/performance optimization method for processors with
adaptive pipeline depth, Journal of Computer Science and Technology
26(2): pp. 292–301. Mar. 2011.

[43]	 Yi, H., Yoneda, T., Inoue, M., Fujiwara, H., Sato, Y., and Kajihara, S.
(2010). Aging Test Strategy and Adaptive Test Scheduling for SoC
Failure Prediction.

[44]	 Yoon, D.H., Jeong, M.K. and Erez, M. (2011). Adaptive Granularity
Memory Systems: A Tradeoff between Storage Efficiency and
Throughput, Proceedings of ISCA’11 June 4–8, San Jose, CA, USA.

[45]	 Zeppenfeld, J., Bouajila, A., Herkersdorf, A., and Stechele, W. (2010).
Towards Scalability and Reliability of Autonomic Systems on Chip,
2010 13th IEEE International Symposium on Object/Component/
Service-Oriented Real-Time Distributed Computing Workshops,
pp. 73–80.

[46]	 Zhang, Y., Li, H., and Li, X. (2010). Software-Based Self-Testing
of Processors Using Expanded Instructions, 19th IEEE Asian Test
Symposium, 2010.

[47]	 Shekhar Borkar and Andrew A. Chien, The Future of Microprocessors,
Communications of the ACM, May 2011, vol. 54, no. 5, pp. 67–77.

[48]	 Feng, S., Gupta, S., Ansari, A. and Mahlke, S. (2010). Maestro:
Orchestrating Lifetime Reliability in Chip Multiprocessors, Y.N. Patt
et al. (Eds.): HiPEAC 2010, LNCS 5952, pp. 186–200.

[49]	 Khan, O. and Kundu, S. (2009). A Self-Adaptive System Architecture
to Address Transistor Aging, DATE09, 2009.

Intel® Technology Journal | Volume 16, Issue 2, 2012

Self-Organizing System-on-Chip Design | 201

[50]	 Pionteck, T. and Brockmann, W. (2010). A Concept of a Trust
Management Architecture to Increase the Robustness of Nano Age
Devices, 2010 International Conference on Dependable Systems and
Networks Workshops (DSN-W), pp. 142–147.

[51]	 Kramer, D., Buchty, R. and Karl, W. (2011). Monitoring and Self-
awareness for Heterogeneous, Adaptive Computing Systems. C,
Müller-Schloer et al. (eds.), Organic Computing - A Paradigm Shift for
Complex Systems, pp. 163–177.

[52]	 Hashimoto, M. (2011). Run-time adaptive performance compensation
using on-chip sensors, Design Automation Conference (ASP-DAC), 2011
16th Asia and South Pacific , pp. 285–290, 25–28 Jan. 2011

[53]	 Johannes Zeppenfeld, Abdelmajid Bouajila, Andreas Herkersdorf,
and Walter Stechele (2010). Towards Scalability and Reliability of
Autonomic Systems on Chip. In Proceedings of the 2010 13th IEEE
International Symposium on Object/Component/Service-Oriented Real-
Time Distributed Computing Workshops (ISORCW ’10).

Author Biographies
Rafael de la Guardia is a senior hardware engineer in Intel Labs. Rafael joined
Intel in 2005, working in the area of adaptive systems. He received a PhD in
engineering from the National Autonomous University of México (UNAM).
His email is Rafael.de.la.guardia@intel.com.

Carlos Gershenson is a full-time researcher and head of the computer science
department at the Instituto de Investigaciones en Matemáticas Aplicadas y
en Sistemas of the Universidad Nacional Autónoma de México. He received
a PhD summa cum laude from the Vrije Universiteit Brussel in 2007 and has
been working on the application of self-organization to engineering. His
Web page is http://turing.iimas.unam.mx/~cgg/ and he can be reached at
cgg@unam.mx.

202 | Workload Consolidation in Virtualized Computing Systems via Hierarchical Control

Contributors

Intel® Technology Journal | Volume 16, Issue 2, 2012

We develop a hierarchical control framework for workload consolidation
in virtualized environments. The hierarchy uses the concept of receding
horizon control and comprises two levels: fully distributed controllers that
independently optimize the CPU share provided to virtual machines (VMs)
under their control, so that the system-wide CPU capacity is appropriately
tuned to the incoming workload intensity; and a supervisory controller that
reduces power consumption during periods of light workload by consolidating
the workload on to fewer VMs and shutting down extra servers. We validate
the framework on a heterogeneous cluster supporting three online services,
showing that the system adapts quickly to dynamic workload changes and
saves, on average, 20 percent in power-consumption costs over a three-hour
period when compared to a system operating without dynamic control. The
framework is quite scalable and accommodates the dynamic addition/removal
of system components while maintaining overall system performance.

Introduction
A preliminary version of this article appeared as a paper in the International
Conference on Autonomic Computing (ICAC) titled “A distributed control
framework for performance management of virtualized computing environments.”

Virtualization technology enables on-demand computing where resources such
as CPU, memory, and disk space are allocated to applications as needed, based
on the currently prevailing workload demand, rather than statically, based
simply on the peak workload demand. By dynamically provisioning virtual
machines (VMs) and turning servers on/off appropriately, data center operators
can maintain the desired quality of service (QoS) while achieving higher server
utilization and lower power consumption.

A promising method of automating system management tasks is to formulate
them as online control problems in terms of cost/performance metrics[1][2].
Most proposed control architectures, however, are centralized designs aimed
at managing the performance of a standalone server or a small-scale system
comprising a few servers. Significant challenges must still be addressed to achieve
real-time control of a large-scale computing system with multiple interacting
components. For an optimization scheme to be of practical value in such a
distributed setting, it must tackle the “curse” of dimensionality: the number
of available tuning options is quite large and the corresponding search space
grows exponentially with each new variable, making centralized controller
designs intractable. Fortunately, control theory provides techniques that can
reduce the computational burden of managing large-scale systems. Concepts

“Operators can maintain desired QoS

while lowering power consumption

by dynamically provisioning VMs

and servers to match the incoming

workload.”

“Routine system management tasks

can be formulated as optimal control

problems and solved online.”

Rui Wang
Drexel University

Nagarajan Kandasamy
Drexel University

Workload Consolidation in Virtualized Computing Systems
via Hierarchical Control

Intel® Technology Journal | Volume 16, Issue 2, 2012

Workload Consolidation in Virtualized Computing Systems via Hierarchical Control | 203

from approximation theory can be used to make relevant approximations when
constructing dynamical models to predict system behavior and when optimizing the
control variables issued to the system[3]. Another method is to structure controllers
in decentralized fashion wherein the overall problem is decomposed into a set of
simpler sub-problems and solved cooperatively by multiple controllers[4].

We develop and validate a control architecture for workload consolidation
in virtualized computing environments using concepts from hierarchical and
distributed control. Considering a heterogeneous cluster hosting multiple
enterprise applications on VMs and processing a time-varying workload, the
problem of interest is: (1) to maintain the applications’ response times under
their respective thresholds (the QoS metric) by dynamically tuning the CPU
shares provided to VMs so that the system-wide CPU capacity can handle
the incoming workload intensity; and (2) to reduce power consumption by
shutting down unneeded servers during light workload periods. This problem is
decomposed via a control hierarchy as follows:

•• Controllers, implemented locally within each server, dynamically solve their
respective subproblems of optimizing CPU shares to VMs under their control
in a cooperative fashion such that the cluster as a whole offers the processing
capacity needed to handle the workload intensity. Local controllers (LCs) are
developed as non-communicating agents wherein each controller infers the
actions of others in the cluster without explicitly exchanging messages. These
fully distributed LCs comprise the L0 level of the control hierarchy. Each LC
uses receding horizon (RH) control, a form of predictive control where the
idea is to solve an optimal control problem over a given prediction horizon
and then continuously extend this horizon forward[8].

•• Since LCs at the L0 level tune the CPU share of VMs to match the
incoming workload, servers have spare processing capacity available during
periods of light workload. A supervisory controller (SC), placed on top of
the L0 level, uses this opportunity to increase server utilization and reduce
energy consumption by consolidating the workload on to fewer VMs/
servers and shutting down unneeded servers. The SC comprises the L1
level of the hierarchy. The control laws governing the SC are simplified
to provide approximate solutions that the LCs can refine further; the SC
predicts the future workload and decides only which servers to operate
such that the cluster possesses enough processing capacity to satisfy this
workload, leaving the LCs to fine-tune the CPU shares provided to
individual VMs.

We validate the control framework on a heterogeneous cluster hosting three
benchmark applications: Trade6, RUBBoS, and RUBiS. Experimental results
demonstrate that the cluster, when subject to our workload traces and managed
using the proposed approach, saves on average 20 percent in power-consumption
costs over a three-hour period when compared to a system operating without
dynamic control. The framework also shows excellent scalability and allows
for the dynamic addition/removal of servers during system operation while
maintaining the overall QoS.

“The workload consolidation

problem is decomposed into simpler

subproblems and solved by multiple,

decentralized controllers.”

“Receding horizon control is used to

solve the optimal control problem over

a given prediction horizon.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

204 | Workload Consolidation in Virtualized Computing Systems via Hierarchical Control

The article is organized as follows. The next section, “Preliminaries,” introduces
the testbed and the proposed control architecture. We develop the L0 and L1
levels in subsequent two sections, “The L0 Control Level” and “The L1 Control
Level.” Next, in the section “Experimental Results, the framework is validated,
and we summarize our findings in the section “Conclusions.”

Preliminaries
Figure 1 illustrates our system architecture, supporting three services, termed
Gold, Silver, and Bronze. The Gold service is enabled by Trade6, a stock-trading
benchmark. Trade6 resides in the IBM WebSphere* application server, which is
hosted by VMs in the application tier. The Silver service is enabled by RUBBoS,
a bulletin board application. The Bronze service is enabled by RUBiS, an auction
site. The Silver and Bronze services each reside in the Apache application server
hosted by VMs. We focus on resource provisioning within the application tier
only, since this tier typically requires more CPUs than the database tier[5].

Workload
Generator

Gold
Database

Silver
Database

Bronze
Database

Dispatcher

System
StateApplication Tier

Database Tier

Switching
Decisions

Receding Horizon Controller

Supervisory
Controller

(SC)

System

QP
Optimizer

System
Model

Kalman
Filter

EWMA
Filter

Workload for
Gold, Silver, Bronze

services

Local
Controller

(LC)

B
ro

n
ze V

M

S
ilver V

M

G
o

ld
 V

M

Server 11 Server 12 Server 21 Server 22

l(k) l(l)
^

co(l)
^

co(k)

x(l)
^

cs(l)
~

cs(k)~
*

LC

B
ro

n
ze V

M

S
ilver V

M

G
o

ld
 V

M

LC

B
ro

n
ze V

M

S
ilver V

M

G
o

ld
 V

M

LC

B
ro

n
ze V

M

S
ilver V

M

G
o

ld
 V

M

Figure 1: The system architecture and the schematic of the local controller implemented on each server
(Source: Drexel University, 2012)

The application tier comprises four heterogeneous servers, each hosting three VMs.
Virtualization is enabled by VMware’s ESX Server* and each VM is dedicated
to supporting one of the three services. VMs residing on different servers but
supporting the same service form a virtual computing cluster. The local controller
(LC) on each server allocates CPU share (in GHz) to its VMs via the ESX server
API. Referring to Figure 1, Server11 and Server12 are Dell PowerEdge* 2950
machines with a total CPU capacity of 14 GHz; the per-VM CPU share ranges
from 1.5 GHz to 5 GHz. Server21 and Server22 are PowerEdge 1950 machines

Intel® Technology Journal | Volume 16, Issue 2, 2012

Workload Consolidation in Virtualized Computing Systems via Hierarchical Control | 205

with a total CPU capacity of 11 GHz; the per-VM CPU ranges from 1.5 GHz to
4 GHz. Servers in the database tier run SUSE Linux with DB2 or MySQL as the
database. Each database is dedicated to a single service.

A workload generator sends a mix of requests to the applications, requiring both
database reads/writes. Incoming requests to an application are dispatched to VMs
within the corresponding virtual computing cluster in a weighted round-robin
fashion with the weights proportional to CPU share, since a VM’s CPU share
reflects processing capacity. At the start of each control step, an LC transmits its
recent CPU-share decision to the dispatcher.

Figure 1 also shows our hierarchical control solution comprising two levels:

•• L0 level: A fully distributed control structure where LCs on each server
independently optimize the CPU share provided to VMs under their control
to handle the incoming workload guarantee response-time requirements.

•• L1 level: A supervisory controller (SC) that consolidates the workload and
dictates which servers to turn on/off based on the system state and estimates
of future workload intensity.

The SC and LCs cooperate to manage the cluster’s power consumption while
satisfying QoS requirements. Since LCs tune the CPU share of VMs based on
the workload intensity, servers have spare CPU capacity available during periods
of light workload. The SC uses this knowledge to shut down servers not needed
and consolidate the workload on to fewer servers. The SC operates on a longer
timescale than LCs. The proposed scheme is highly scalable. First, the number
of servers in the application tier can be increased without affecting the control
structure. Secondly, an upper-level controller with essentially the same logic as the
SC can be added on top to manage multiple L1-level server clusters by switching
them on/off. This can be eventually extended to multiple levels for larger systems.

The L0 Control Level
Design of the L0 level uses this well-known property: given multiple subsystems
whose local cost functions are quadratic and whose dynamics and operating
constraints are uncoupled, having each subsystem independently optimize
its local cost function can potentially achieve the global optimal[6][7]. The
performance management problem considered here falls in this category.
To improve the scalability of our framework, the LCs are developed as non-
communicating agents wherein the CPU capacity of other servers is inferred
independently by each LC. Another issue is, if the LCs operate synchronously,
they would observe the same external environment and system state, and take
the same actions, causing the system to oscillate. Therefore, the LCs in our
framework operate in an asynchronous fashion.

The scheme adopted by each LC, shown in Figure 1, follows receding horizon
(RH) control. At time step k, the global request rate for all services, l, and the
aggregate CPU capacity of other VMs in the virtual clusters co, are estimated
over the prediction horizon h, and used by the system model to forecast future

“Having each controller independently

optimize its local cost function

achieves the global optimal.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

206 | Workload Consolidation in Virtualized Computing Systems via Hierarchical Control

system states x̂. The optimizer then finds an optimal sequence of control actions,
{ () | [,]}c l l k k hs ∈ + −1 , representing CPU shares to VMs on this server in the
next h steps. Then, only the first control action, c ks* (), is applied to the system
and the rest are discarded. The process is repeated at step k + 1.

For a given application, the workload arrival rate l for the coming time step k
is estimated by a Kalman filter[9] as λ̂(k). For a VM being offered a CPU share
c (in GHz), we define the request rate it can handle while satisfying the desired
response time as m ⋅ c, where m is a mapping factor. (The method used to obtain
m is detailed in the section “Experimental Results.”)

From an LC’s perspective, the total CPU share offered by a virtual cluster
for an application comprises two terms: the local VM’s CPU share cs, and co,
the aggregate CPU share of other VMs in the virtual cluster. The LC needs
to estimate co at step k without communicating with other LCs. Let ls(k − 1)
and lo(k − 1) denote the request rate to the local VM and other VMs during
the previous time step k − 1, respectively, and let cs(k − 1)

and co(k − 1) be the

corresponding CPU shares. Then, the following condition holds:

λ λ λ
λ λ
() () (),
()
()

()
k k k

k
c k

k
c

s o

s

s

o

o

− = − + −
−
−

=
−

1 1 1
1
1

1
(()

.
k −







 1

The LC is aware of l(k - 1), ls(k - 1), and cs(k - 1), and so co(k - 1)

can be

computed using the above condition. An EWMA filter then estimates ˆ ()c ko in
the coming step k as

ˆ () () () ˆ (),c k c k c ko o o= ⋅ − + − ⋅ −η η1 1 1 � (1)

where h is a smoothing factor.

For the LC, the dynamics at time k of a virtual cluster supporting an application
can be represented as

ˆ() () [ˆ() ˆ () ()],x k x k T k m c k m c ks o s+ = + ⋅ − ⋅ − ⋅1 λ � (2)

where Ts is the sampling period and x̂ is the state of the application representing
the accumulated error between λ̂ and m c m co s⋅ + ⋅ˆ . So, the LC aims to drive
ˆ()x k +1 to 0 by tuning cs so that the response time is satisfied while minimizing

the corresponding CPU share.

Based on equation 2, the LC constructs a model that includes all the applications
hosted on the server as

ˆ() () (),x A x B uk k k+ = ⋅ + ⋅1 � (3)

where

A I B T I u c= = ⋅ − − = (), [, diag(), diag()], () [ˆ , ˆs i im m k kλ oo sc(), ()] ,k k T

the subscript i  =  g, s, b denotes the Gold, Silver, and Bronze applications, respectively,
mi denotes the corresponding mapping factor, and T denotes transpose. To ensure

Intel® Technology Journal | Volume 16, Issue 2, 2012

Workload Consolidation in Virtualized Computing Systems via Hierarchical Control | 207

QoS while reducing the CPU share, the LC poses this problem as a quadratic
programming (QP) problem, maintaining both vectors x and u near their set
points x- and u-  , respectively, along the one-step prediction horizon:

min [(() ()) (() ())] (() ()x x P x x u ul l l l k kT

l k

k

− − + −
=

+

∑
1

)) (() ())T k kQ u u− � (4)

where

P = p ⋅ diag(pi),   Q = q ⋅ I.

The variables p and q are weights reflecting the tradeoff between application
performance and CPU share, and pi reflects the relative priority of application i.
The optimizer must also consider constraints on the upper and lower bounds on a
VM’s CPU share, and the fact that the sum of CPU shares offered to VMs within
the host must not exceed the total CPU capacity. Solving equation 4, the LC
obtains the optimal CPU share vector c ks* () and applies it to VMs in the server.

The L1 Control Level
Powering up servers, instantiating the VMs, and finally launching applications,
incurs significant dead time, typically ranging from five to ten minutes. So, if
the SC needs a usable server during step k + 1, it must power on that host in
advance; that is, at the start of step k. Such actions require predictive control
where the decision must be made in anticipation of future workload intensity.
The SC uses two-step RH control and its sampling time is set as 15 minutes so
as to make timely but not overly frequent switching decisions. Figure 2(a) shows
the overall scheme comprising these steps:

•• With λ̂(l ) and the system model, a QP optimizer finds a sequence of
control vectors, C (l ), representing the aggregate CPU share needed by the
virtual clusters along the prediction horizon.

“Powering up servers and

instantiating VMs requires making

control decisions in anticipation of

future workload intensity.”

Figure 2: The control scheme of the supervisory controller. To improve scalability, servers are logically grouped
based on their processing capabilities.
(Source: Drexel University, 2012)

Kalman
Filter

System
Model

QP
Optimizer

MINLP
Optimizer

System

Supervisory
Controller

Supervisory Controller S11, S12 S21, S22

l(k) l(l)
^

x(l)^

C(l)
~

C*(k + 1)
~

s (k + 1)

Server 11, Server 12

(b) A logical grouping of application servers(a) The control scheme of the supervisory controller

Group 1, n1 = {0, 1, 2} Group 2, n2 = {0, 1, 2}

Ch1

Cg1 Cs1 Cb1

B
ro

n
ze

S
ilver

G
o

ld

Server 21, Server 22

Ch2

Cg2 Cs2 Cb2

B
ro

n
ze

S
ilver

G
o

ld

Intel® Technology Journal | Volume 16, Issue 2, 2012

208 | Workload Consolidation in Virtualized Computing Systems via Hierarchical Control

•• The second control vector in C (l   ), denoted as C *(K + 1), acts as a
constraint to a mixed-integer nonlinear programming (MINLP) problem
that determines the set of servers to power on/off.

The first step adopts the method detailed in the previous section. From the
SC’s viewpoint, the dynamics of a virtual computing cluster supporting one
application at step k is

ˆ() () [ˆ ()],x k x k T k m C ks+ = + ⋅ () − ⋅1 λ � (5)

where Ts is the sampling period of the SC, C is the aggregate CPU share of the
whole virtual cluster, and x̂ represents the accumulated error between λ̂ and m ⋅ C.

Thus the system model that includes all applications is

ˆ() () ()x Ax Buk k k+ = +1 � (6)

where

A I B I u C= = ⋅ − =, [, diag()], () [ˆ(), ()]T m k k ks i
Tλ .

The SC aims to guarantee the QoS and minimize the system wide CPU capacity.
So it keeps x and u near the set points x- and u-  , respectively, along the two-step
prediction horizon:

min [(() ()) (() ())] [(() (x x P x x u ul l l l l lT

l k

k

− − + −
=

+

∑
2

))) (() ())]T

l k

k

l lQ u u−
=

+

∑
1

� (7)

The aggregate CPU share provided to service i should obey a lower and upper
bound (as determined by the capacity of the cluster), and the total CPU share
to all the services should not exceed the cluster’s maximum capacity. Solving
equation 7, the QP optimizer gets C *(K + 1), the desired aggregate CPU share
for the cluster at step k + 1.

A MINLP optimizer then guarantees C *(K + 1)

by determining the optimal

set of servers to power on/off. To improve scalability, we logically group the
heterogeneous application servers based on their CPU capabilities as shown in
Figure 2(b) and solve this problem in two steps. We first determine the number
of servers to keep operational in each group by optimizing:

min ()
n hj j

j

c n⋅∑ � (8)

subject to

n N

c c c

c c

n c C

j j

lj ij uj

iji hj

j ij i

∈

≤ ≤

≤

⋅ ≥
∑

{ , , , }

() * (

0 1…

� kk
j

+












∑ 1)

� (9)

Here, the subscript i denotes applications, and j = 1, 2 denotes Group 1 and
Group 2, respectively. Nj is the maximum number of hosts in group j, while nj is
the number of hosts to keep operational, and chj is the maximum CPU capacity
of each host. Since power consumption depends on operating frequency,
∑ j(chj ⋅ nj) approximates the power consumed by all operational hosts. A feasible
CPU share to a VM supporting application i and residing in Group j is denoted

Intel® Technology Journal | Volume 16, Issue 2, 2012

Workload Consolidation in Virtualized Computing Systems via Hierarchical Control | 209

as cij while clj and cuj are the lower and upper bounds. (Note that cij is simply
a value assumed by the SC to ensure a feasible solution. The optimal CPU is
determined by the LCs in a finer timescale.) The last constraint in equation 9
ensures that the aggregate CPU share offered by the operational VMs in each
virtual cluster is no less than the desired C *(K + 1). After nj is obtained, the
optimizer decides the status of individual hosts in each group by optimizing:

min ()
s jk jk

k

s s−∑ – 2

� (10)

subject to

s

s n
jk

jk jk

∈

=





∑
 { , }0 1

� (11)

Here, s‒jk and sjk represent the current and next state of the kth host in Group j:
sjk = 0/1 denotes that the host is off/on and so (sjk − s‒jk   )

2 captures the corresponding
switching cost. After sjk is obtained, the SC applies it to the hosts.

Experimental Results
The framework developed in the previous two sections has been validated on
the testbed shown in Figure 1. The LCs in our experiments have a sampling
period of two minutes and their starting times are each staggered by 30 seconds
for asynchronous execution. The SC has a sampling period of 15 minutes and
implements a policy to avoid frequent switching activity: once a server is turned
on, it is held operational for at least four time steps (one hour); and if a server is
turned off, it remains powered down for at least two time steps. In equation 1,
h is set to 0.1 to focus more on the past observations. In equations 4 and 7, pi
are set to 5, 3, and 1, respectively, to prioritize the three services, and p  = 2 and
q =  1, giving greater priority to satisfying the response time over assigning lower
CPU shares. Finally, both x- and u-   are set to 0.

Profiling experiments were performed to obtain the mapping factor mi used in
equations 3 and 6. Consider the response times achieved by a VM hosting the Gold
service as a function of CPU share and request arrival rate. If the VM is assigned
a fixed CPU share of 3 GHz, then for an arrival rate under 65 req/s we achieve
a relatively steady response time below 200 ms. Once the rate exceeds 65 req/s,
the response time jumps dramatically, indicating an unstable system. So, a 3 GHz
VM can accommodate approximately 65 req/s. This procedure is repeated with
different CPU shares. Since a stable response time of below 200 ms is achievable
in our experiments, it is set as the QoS for Gold service. The Silver and Bronze
services show similar profiles and their QoS goals are set as 250 ms and 300 ms. By
analyzing the request rates accommodated by a VM as a function of CPU share, the
factor is obtained as 20.8, 14.5, and 12.8 for each of the three services, respectively.

We drive the testbed using the dynamic workload shown in Figure 3(a). The
workload mix for the three services has a 50:50, 80:20, and 90:10 ratio of
database reads to writes, respectively. (Experiments with other workload traces
are qualitatively similar.) Figure 3(b) shows the switching behavior of the servers
as dictated by the SC. About 1800 secs into the run, the SC estimates that

Intel® Technology Journal | Volume 16, Issue 2, 2012

210 | Workload Consolidation in Virtualized Computing Systems via Hierarchical Control

three servers are sufficient to process the incoming workload and powers down
Server22. At 3600 secs, the supervisory further fine-tunes the cluster’s CPU
capacity to match the workload intensity by powering up Server22 (with a
CPU capacity of 11 GHz) and turning off Server12 (with a slightly higher CPU
capacity of 14 GHz).

Figure 3: (a) The workload supplied to the cluster (b) switching behavior
of the servers as commanded by the SC
(Source: Drexel University, 2012)

C
P

U
 S

h
ar

e
(G

H
z)

Time (s)

Server 22

Server 21

Server 12

Server 11

(b) Switching behavior of the cluster.

0

5

11

1000 2000 3000 4000 5000 6000 7000 80000 9000

0

5

11

1000 2000 3000 4000 5000 6000 7000 80000 9000

1000 2000 3000 4000 5000 6000 7000 80000 9000

0
5

10
14

1000 2000 3000 4000 5000 6000 7000 80000 9000

0
5

10
14

Time (s)

(a) Number of requests to each service, plotted at 30-second granularity.

A
rr

iv
al

 R
at

e
(r

eq
/s

)

240

40

60

80

100

120

140

160

180

200

220

1000 2000 3000 4000 5000 6000 7000 80000 9000

Gold Workload

Silver Workload

Bronze Workload

Intel® Technology Journal | Volume 16, Issue 2, 2012

Workload Consolidation in Virtualized Computing Systems via Hierarchical Control | 211

Figure 4 shows the aggregate CPU share provided to the Silver and Bronze
virtual clusters in response to the workload traces. (The Gold cluster behaves
similarly.) The plots show that even when the workload intensity is highly
variable and bursty, each virtual cluster’s CPU capacity tracks this variability
well. Note that the CPU capacity dips briefly when servers are turned off by the
SC but then bounces back quickly (within two LC control steps) since other LCs
appropriately tune the CPU shares of their VMs.

Next, we characterize the performance of individual VMs in the Bronze virtual
cluster. We denote a VM supporting the Bronze service and residing in the jth
server (j ∈ (1, 2, 3, 4)) as VMbj, and the corresponding LC as LCk. Referring to
Figure 5, we note that though the Bronze workload trends upward, a total CPU

Figure 4: The aggregate CPU share provided by LCs to Silver and
Bronze virtual clusters in response to the workload
(Source: Drexel University, 2012)

180

160

140

120

100

80

60

5

10

15

0 1000 2000

A
rr

iv
al

 R
at

e
(r

eq
/s

)
C

P
U

 S
h

ar
e

(G
H

z)

3000 4000 5000 6000 7000 8000 9000

0 1000 2000 3000 4000

Time (s)

(a) CPU share provided to the Silver cluster.

5000 6000 7000 8000 9000

Request arrival rate for Silver service

CPU share of Silver virtual cluster

180

160

140

120

100

80

60

4

6

8

10

12

14

0 1000 2000

A
rr

iv
al

 R
at

e
(r

eq
/s

)
C

P
U

 S
h

ar
e

(G
H

z)

3000 4000 5000 6000 7000 8000 9000

0 1000 2000 3000 4000

Time (s)

(b) CPU share provided to the Bronze cluster.

5000 6000 7000 8000 9000

Request arrival rate for Bronze service

CPU share of Bronze virtual cluster

Intel® Technology Journal | Volume 16, Issue 2, 2012

212 | Workload Consolidation in Virtualized Computing Systems via Hierarchical Control

R
es

p
o

n
se

Ti
m

e
(m

s)

Time (s)

Request response time at VMb1

(a) CPU share provided to virtual machine VMb1 in Server11.

0
100

500

1000 2000 3000 4000 5000 6000 7000 80000 9000

300

C
P

U
 S

h
ar

e
(G

H
z)

A
rr

iv
al

 R
at

e
(r

eq
/s

)

CPU share of VMb1
0

1.5

5

1000 2000 3000 4000 5000 6000 7000 80000 9000

3

Request arrival rate for VMb1
0

20

60

1000 2000 3000 4000 5000 6000 7000 80000 9000

40

R
es

p
o

n
se

Ti
m

e
(m

s)

Time (s)

(b) CPU share provided to virtual machine VMb2 in Server12.

C
P

U
 S

h
ar

e
(G

H
z)

A
rr

iv
al

 R
at

e
(r

eq
/s

)

CPU share of VMb2

0
1.5

5

1000 2000 3000 4000 5000 6000 7000 80000 9000

3

Request response time at VMb2

0
100

500

1000 2000 3000 4000 5000 6000 7000 80000 9000

300

0
20

1000 2000 3000 4000 5000 6000 7000 80000 9000

40
60 Request arrival rate for VMb2

R
es

p
o

n
se

Ti
m

e
(m

s)

Time (s)

(c) CPU share provided to virtual machine VMb3 in Server21.

C
P

U
 S

h
ar

e
(G

H
z)

A
rr

iv
al

 R
at

e
(r

eq
/s

)

CPU share of VMb30

1.5

4

1000 2000 3000 4000 5000 6000 7000 80000 9000

3

Request response time at VMb3

0
100

500

1000 2000 3000 4000 5000 6000 7000 80000 9000

300

Request arrival rate for VMb30
20

1000 2000 3000 4000 5000 6000 7000 80000 9000

40
60

Figure 5: The performance of VMs in the Bronze virtual cluster
(Source: Drexel University, 2012)

Intel® Technology Journal | Volume 16, Issue 2, 2012

Workload Consolidation in Virtualized Computing Systems via Hierarchical Control | 213

capacity of less than 6 GHz is sufficient until 1800 sec. So, each LC provides the
VM with the minimum 1.5 GHz CPU. At 1800 sec, VMb4 leaves the system
as Server22 is switched off by the SC causing a dip in the total CPU capacity,
and VMb4’s workload is distributed to other VMs resulting in transient spikes in
response times. Meanwhile, LC1 estimates that the arrival rate is trending upward
and infers that the current CPU capacity of the Bronze cluster is insufficient.
So, it increases VMb1’s CPU share properly; LCs managing VMb2 and VMb3
behave similarly as well. VM switching activities also happen at 3600 and
7200 seconds, and are handled appropriately by the LCs as expected. During the
entire experiment, the LCs cooperate very well and the response time is maintained
mostly under 300 ms with very few QoS violations, as shown in Table 1.

Control type Services QoS violations Power savings

Gold 23 (1.91%)

Practical Silver 15 (1.25%) 506 Watth
Bronze 41 (3.41%) (20%)
Gold 58 (4.82%)

Oracle Silver 35 (2.91%) 759 Watth
Bronze 30 (2.49%) (30%)

Table 1: Performance of practical and oracle controllers.
(Source: Drexel University, 2012)

Our final tests were aimed at comparing the practical controller implementation
against an “oracle” with perfect knowledge of other controllers’ actions and
future workload arrivals at both the L1 and L0 levels. As Table 1 shows, the
practical controllers maintain a very low percentage of QoS violations, and
save, on average, 20 percent in power consumption at the application tier
when compared to a system operating without dynamic control where servers
are always powered on. (The power savings achieved, of course, also depend

“The control scheme saves 20 percent

in power consumption costs while

incurring few QoS violations.”

0
20
40
60

1000

A
rr

iv
al

 R
at

e
(r

eq
/s

)

2000 3000 4000 5000 6000 7000 80000 9000

0

1.5

3
4

1000

C
P

U
 S

h
ar

e
(G

H
z)

2000 3000 4000 5000 6000 7000 80000 9000

0
100

300

500

1000

R
es

p
o

n
se

Ti
m

e
(m

s)

2000 3000 4000

Time (s)

(d) CPU share provided to virtual machine VMb4 in Server22.

5000 6000 7000 80000 9000

Request response time at VMb4

Request arrival rate for VMb4

CPU share of VMb4

Figure 5: (continued)

Intel® Technology Journal | Volume 16, Issue 2, 2012

214 | Workload Consolidation in Virtualized Computing Systems via Hierarchical Control

on the specific workload traces.) When compared with the oracle, the practical
ones achieve higher QoS satisfaction but less power savings. This is because
the Kalman filters slightly overestimate the workload to cover the variability,
making the LCs more generous when assigning CPU shares and the SC more
conservative when turning off servers. The oracle does not use prediction and is
more accurate when allocating CPU shares and switching servers, saving about
30 percent in power consumption.

Our scheme is an attractive option for controlling large systems. Since each
LC is only responsible for VMs residing in a single server, the corresponding
execution time is only 0.01 seconds; for a sampling period of 120 seconds, the
control overhead is 0.008 percent. Moreover, the execution time of the SC as
a function of cluster size is small as well: an SC managing 80 servers incurs a
control overhead of 1.949 percent for a sampling time of 900 seconds and only
6 percent when managing 100 servers.

Conclusions
We have developed a two-level framework to manage the performance/power
of virtualized computing environments using concepts from hierarchical and
distributed control. We have validated the control framework on a cluster of
heterogeneous servers hosting multiple applications. Experimental results show
that, the structure adapts quickly to dynamic workload changes, guarantees QoS
most of the time, and saves, on average, 20 percent in power consumption costs.
The framework is quite flexible in that it can scale up to multiple levels and
tolerate the dynamic addition/removal of system components while maintaining
the overall system performance.

References
[1]	 J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury, Feedback

Control of Computing Systems. Wiley-IEEE Press, 2004.

[2]	 J. Hellerstein, S. Singhal, and Q. Wang, “Research challenges in control
engineering of computing systems,” IEEE Trans. Network & Service
Mgmt., vol. 6, no. 4, pp. 206–211, Dec. 2009.

[3]	 K. Narendra and S. Mukhopadhyay, “Adaptive control using neural
networks and approximate models,” IEEE Trans. Neural Networks, vol. 8,
no. 3, pp. 475–485, May 1997.

[4]	 N. Sandell, P. Varaiya, M. Athans, and M. Safonov, “Survey of decentralized
control methods for large scale systems,” IEEE Trans. Automatic Control,
vol. 23, no. 2, pp. 108–128, April 1978.

[5]	 T. Atwood, “Right architecture for the right workload: The application
tier,” Sun Microsystems Report, Enterprise Systems Products, Tech. Rep.,
Jul. 2004.

“Both local and supervisory controllers

have low computational cost and can

be scaled up to manage large systems.”

Intel® Technology Journal | Volume 16, Issue 2, 2012

Workload Consolidation in Virtualized Computing Systems via Hierarchical Control | 215

[6]	 A. Guez, I. Rusnak, and I. B. Kana, “Multiple objectives optimization
approach to adaptive and learning control,” Int’l Journal Control, vol. 56,
no. 2, pp. 469–482, September 1992.

[7]	 W. B. Dunbar and R. M. Murray, “Distributed receding horizon control
for multi-vehicle formation stabilization,” Automatica, vol. 42, no. 4,
pp. 549–558, 2006.

[8]	 J. M. Maciejowski, Predictive Control with Constraints. London: Prentice
Hall, 2002.

[9]	 S. G. Makridakis, S. C. Wheelwright, and R. J. Hyndman, Forecasting:
methods and applications, 3rd ed., S. C. Wheelwright (Editor), Wiley,
1998.

Author Biographies
Rui Wang is a PhD candidate in the Department of Electrical and Computer
Engineering at Drexel University. His research focuses on the application of
control theory to the performance management of virtualized computing
systems. He received his BS degree in Automation from the University of Science
and Technology Beijing, China.

Nagarajan Kandasamy is an Associate Professor in the Electrical and Computer
Engineering Department at Drexel University. He holds a PhD degree from the
University of Michigan and his research interests include dependable computing,
embedded systems, self-managing systems, and computer architecture. Dr.
Kandasamy is a recipient of the NSF CAREER award in 2007 as well as best
paper awards in the IEEE Conference on Autonomic Computing in 2006 and
2008. He is a senior member of the IEEE.

Intel® Technology Journal | Volume 16, Issue 2, 2012

216 | Workload Consolidation in Virtualized Computing Systems via Hierarchical Control

	3520011_FM0001
	3520011_CH0001
	3520011_CH0002
	3520011_CH0003
	3520011_CH0004
	3520011_CH0005
	3520011_CH0006
	3520011_CH0007
	3520011_CH0008
	3520011_CH0009
	3520011_CH0010

