

Stanley Seibert
Director of Community Innovation
Continuum Analytics

Python Scalability Story
In Production Environments

Sergey Maidanov
Software Engineering Manager for
Intel® Distribution for Python*

Motivation: Why Python

Python is #1 programming

language in hiring demand
followed by Java and C++.

And the demand is growing

What Problems We Solve: Scalable Performance

Make Python usable beyond prototyping environment by
scaling out to HPC and Big Data environments

What Problems We Solve: Out-Of-The-Box Usability

“Any articles I found on your site
that related to actually using the
MKL for compiling something were
overly technical. I couldn't figure
out what the heck some of the
things were doing or talking
about.“ – Intel® Parallel Studio 2015 Beta Survey Response

https://software.intel.com/en-us/forums/intel-math-kernel-library/topic/280832

https://software.intel.com/en-us/articles/building-numpyscipy-with-intel-mkl-and-intel-fortran-on-windows

https://software.intel.com/en-us/articles/numpyscipy-with-intel-mkl

INTEL® DISTRIBUTION FOR PYTHON* 2017
Advancing Python performance closer to native speeds

•  Prebuilt, optimized for numerical computing, data analytics, HPC
•  Drop in replacement for existing Python. No code changes required

Easy, out-of-the-box
access to high

performance Python

•  Accelerated NumPy/SciPy/Scikit-Learn with Intel® MKL
•  Data analytics with pyDAAL, enhanced thread scheduling with TBB,

Jupyter* Notebook interface, Numba, Cython
•  Scale easily with optimized MPI4Py and Jupyter notebooks

Performance with multiple
optimization techniques

•  Distribution and individual optimized packages available through
conda and Anaconda Cloud: anaconda.org/intel

•  Optimizations upstreamed back to main Python trunk

Faster access to latest
optimizations for Intel

architecture

Intel® Xeon® Processors Intel® Xeon Phi™ Product Family

Configuration Info: apt/atlas: installed with apt-get, Ubuntu 16.10, python 3.5.2, numpy 1.11.0, scipy 0.17.0; pip/openblas: installed with pip, Ubuntu 16.10, python 3.5.2, numpy 1.11.1, scipy 0.18.0; Intel Python: Intel Distribution for Python
2017;. Hardware: Xeon: Intel Xeon CPU E5-2698 v3 @ 2.30 GHz (2 sockets, 16 cores each, HT=off), 64 GB of RAM, 8 DIMMS of 8GB@2133MHz; Xeon Phi: Intel Intel® Xeon Phi™ CPU 7210 1.30 GHz, 96 GB of RAM, 6 DIMMS of 16GB@1200MHz
Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components,
software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the
performance of that product when combined with other products. * Other brands and names are the property of their respective owners. Benchmark Source: Intel Corporation

Optimization Notice: Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction
sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for
use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific
instruction sets covered by this notice. Notice revision #20110804 .

Why Yet Another Python Distribution?

Mature AVX2 instructions based product New AVX512 instructions based product

Scaling To HPC/Big Data Production Environment
•  Hardware and software efficiency crucial in production (Perf/Watt, etc.)
•  Efficiency = Parallelism

•  Instruction Level Parallelism with effective memory access patterns
•  SIMD
•  Multi-threading
•  Multi-node

* Roofline Performance Model https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/

Roofline Performance Model*

Arithmetic Intensity

SpMVBLAS1
Stencils

FFT

BLAS3 Particle
Methods

Low High

G
flo

p/
s

Peak Gflop/s

Efficiency = Parallelism in Python
•  CPython as interpreter inhibits parallelism but…
•  … Overall Python tools evolved far toward unlocking parallelism

 Native extensions
numpy*, scipy*, scikit-

learn* accelerated
with Intel® MKL, Intel®

DAAL, Intel® IPP

Composable multi-
threading with
Intel® TBB and

Dask*

Multi-node
parallelism with

mpi4py*
accelerated with

Intel® MPI

Language
extensions for
vectorization &
multi-threading

(Cython*, Numba*)

Integration with Big
Data platforms and
Machine Learning

frameworks (pySpark*,
Theano*, TensorFlow*,

etc.)

Mixed language
profiling with Intel®
VTune™ Amplifier

Numpy* & Scipy* optimizations with Intel® MKL

Linear Algebra

•  BLAS
•  LAPACK
•  ScaLAPACK
•  Sparse BLAS
•  Sparse Solvers

•  Iterative
•  PARDISO* SMP & Cluster

Fast Fourier
Transforms

•  1D and multidimensional FFT

Vector Math

•  Trigonometric
•  Hyperbolic
•  Exponential
•  Log
•  Power
•  Root

Vector RNGs
•  Multiple BRNG
•  Support methods for  

independent streams 
creation

•  Support all key probability
distributions

Summary Statistics
•  Kurtosis
•  Variation coefficient
•  Order statistics
•  Min/max
•  Variance-covariance

And More
•  Splines
•  Interpolation
•  Trust Region
•  Fast Poisson Solver

Functional domain in this color accelerate respective NumPy, SciPy, etc. domain

 Up to
100x
faster!

Up to
10x

faster!

Up to
10x

faster!

Up to
60x

faster!

Configuration Info: apt/atlas: installed with apt-get, Ubuntu 16.10, python 3.5.2, numpy 1.11.0, scipy 0.17.0; pip/openblas: installed with pip, Ubuntu 16.10, python 3.5.2, numpy
1.11.1, scipy 0.18.0; Intel Python: Intel Distribution for Python 2017;. Hardware: Xeon: Intel Xeon CPU E5-2698 v3 @ 2.30 GHz (2 sockets, 16 cores each, HT=off), 64 GB of RAM, 8
DIMMS of 8GB@2133MHz; Xeon Phi: Intel Intel® Xeon Phi™ CPU 7210 1.30 GHz, 96 GB of RAM, 6 DIMMS of 16GB@1200MHz

Scikit-Learn* optimizations with Intel® MKL

0x
1x
2x
3x
4x
5x
6x
7x
8x
9x

Approximate
neighbors

Fast K-means GLM GLM net LASSO Lasso path Least angle
regression,
OpenMP

Non-negative
matrix

factorization

Regression by
SGD

Sampling
without

replacement

SVD

Speedups of Scikit-Learn Benchmarks
Intel® Distribution for Python* 2017 Update 1 vs. system Python & NumPy/Scikit-Learn

System info: 32x Intel® Xeon® CPU E5-2698 v3 @ 2.30GHz, disabled HT, 64GB RAM; Intel® Distribution for Python* 2017 Gold; Intel® MKL 2017.0.0; Ubuntu 14.04.4 LTS; Numpy 1.11.1; scikit-learn 0.17.1. See Optimization Notice.
Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that
product when combined with other products. * Other brands and names are the property of their respective owners. Benchmark Source: Intel Corporation
Optimization Notice: Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other
optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel
microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by
this notice. Notice revision #20110804 .

Effect of Intel MKL
optimizations for

NumPy* and SciPy*

1 1.11

54.13

0x
10x
20x
30x
40x
50x
60x

System Sklearn Intel SKlearn Intel PyDAAL

Sp
ee

du
p

Potential Speedup of Scikit-learn*
due to PyDAAL

PCA, 1M Samples, 200 Features

Effect of DAAL
optimizations for
Scikit-Learn*

Intel® Distribution for Python* ships Intel®
Data Analytics Acceleration Library with
Python interfaces, a.k.a. pyDAAL

Distributed parallelism
Intel® MPI library accelerates Intel® Distribution
for Python* (Mpi4py*, Ipyparallel*)

Intel Distribution for Python* also supports
▪  PySpark* - Python interfaces for Spark*, a fast and general

engine for large-scale data processing.

▪  Dask* - a flexible parallel computing library for analytic
computing.

Mpi4py* performance vs. native Intel® MPI

1.7x 2.2x 3.0x 5.3x
0x
1x
2x
3x
4x
5x
6x

2 nodes 4 nodes 8 nodes 16 nodes

PyDAAL Implicit ALS with
Mpi4Py*

Configuration Info: Intel(R) Xeon(R) CPU E5-2697 v4 @ 2.30GHz, 2x18 cores, HT is ON, RAM 128GB; Versions: Oracle Linux Server 6.6, Intel®

DAAL 2017 Gold, Intel® MPI 5.1.3; Interconnect: 1 GB Ethernet

Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems,
components, software, operations and functions. Any change to any of those factors may cause the results to vary. You
should consult other information and performance tests to assist you in fully evaluating your contemplated purchases,
including the performance of that product when combined with other products. * Other brands and names are the
property of their respective owners. Benchmark Source: Intel Corporation

Optimization Notice: Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for
optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction
sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use
with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice. Notice revision #20110804 .

Composable multi-threading with Intel® TBB
•  Amhdal’s law suggests extracting parallelism at all levels
•  Software components are built from smaller ones
•  If each component is threaded there can be too much!
•  Intel TBB dynamically balances thread loads and effectively manages oversubscription

MKL

TBB

DAAL

pyDAALNumPy
SciPy TBB

Joblib
Dask

Application

Py
th

on
 p

ac
ka

ge
s

N
at

iv
e

lib
s

12

Application
Component 1

Component N

Subcomponent 1

Subcomponent 2

Subcomponent K

Subcomponent 1

Subcomponent M

Subcomponent
1

Subcomponent
1

Subcomponent
1

Subcomponent
1

Subcomponent
1

Subcomponent
1

Subcomponent
1

Subcomponent
1

>python –m TBB myapp.py

Composable Parallelism: QR Performance

Numpy
1.00x

Numpy
0.22x

Numpy
0.47xDask

0.61x
Dask
0.89x

Dask
1.46x

0.0x

0.2x

0.4x

0.6x

0.8x

1.0x

1.2x

1.4x

Default MKL Serial MKL Intel® TBB

Speedup relative to Default Numpy*

Intel® MKL,
OpenMP* threading

Intel® MKL,
Serial

Intel® MKL,
Intel® TBB threading

Over-
subscription

App-level
parallelism
only

TBB-
composable
nested
parallelism

System info: 32x Intel(R) Xeon(R) CPU E5-2698 v3 @ 2.30GHz, disabled HT, 64GB RAM; Intel(R) MKL 2017.0 Beta Update 1 Intel(R) 64 architecture,
Intel(R) AVX2; Intel(R)TBB 4.4.4; Ubuntu 14.04.4 LTS; Dask 0.10.0; Numpy 1.11.0. Software and workloads used in performance tests may have been
optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other
information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when
combined with other products. * Other brands and names are the property of their respective owners. Benchmark Source: Intel Corporation
Optimization Notice: Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to
Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in
this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered
by this notice. Notice revision #20110804 .

15

Feature cProfile Line_profiler Intel® VTune™ Amplifier
Profiling technology Event Instrumentation Sampling, hardware events

Analysis granularity Function-level Line-level Line-level, call stack, time windows,
hardware events

Intrusiveness Medium (1.3-5x) High (4-10x) Low (1.05-1.3x)

Mixed language programs Python Python Python, Cython, C++, Fortran

Right tool for high performance application profiling at all levels
•  Function-level and line-level hotspot analysis, down to disassembly
•  Call stack analysis
•  Low overhead
•  Mixed-language, multi-threaded application analysis
•  Advanced hardware event analysis for native codes (Cython, C++, Fortran) for cache misses,

branch misprediction, etc.

Profiling Python* code with Intel® VTune™ Amplifier

Stanley Seibert
Director of Community Innovation
Continuum Analytics
November 2016

Scaling Python with JIT Compilation

17

Creating a Compiler For Python

Many valid approaches, but we think these are the most important for data science:

▪  Cannot replace the standard interpreter
–  Must be able to continue to use pandas, SciPy, scikit-learn, etc

▪  Minimize boilerplate
–  Traditional compiled Python extensions require a lot of infrastructure. Try to stay simple

and get out of the way.

▪  Be flexible about execution model
–  Not all hardware is a general purpose CPU

▪  Integrate well with Python’s adaptable ecosystem
–  Must be able to continue to use pandas, SciPy, scikit-learn, etc

18

Numba: A JIT Compiler for Python Functions

▪  An open-source, function-at-a-time compiler library for Python

▪  Compiler toolbox for different targets and execution models:
–  single-threaded CPU, multi-threaded CPU, GPU

–  regular functions, “universal functions” (array functions), GPU kernels

▪  Speedup: 2x (compared to basic NumPy code) to 200x (compared to pure
Python)

▪  Combine ease of writing Python with speeds approaching FORTRAN

▪  Empowers data scientists who make tools for themselves and other data
scientists

19

How does Numba work?

Python Function
(bytecode)

Bytecode
Analysis

Functions
Arguments

Numba IR

Machine
Code

Execut
e!

Type
Inference

LLVM/NVVM JIT LLVM IR

Lowering

Rewrite IR

Cache

@jit
def do_math(a, b):
 …
>>> do_math(x, y)

20

Supported Platforms and Hardware

OS HW SW

Windows (7 and later) 32 and 64-bit x86 CPUs Python 2 and 3

OS X (10.9 and later) CUDA & HSA Capable GPUs NumPy 1.7 through 1.11

Linux (RHEL 5 and later)
Experimental support for
ARM, Xeon Phi, AMD Fiji
GPUs

21

Basic Example

22

Basic Example
Array Allocation

Looping over ndarray x as an iterator
Using numpy math functions

Returning a slice of the array

2.7x speedup!

Numba decorator
(nopython=True not required)

23

Releasing the GIL

0.

0.9

1.8

2.6

3.5

1 2 4
Sp

ee
du

p
Ra

tio

Number of Threads

Option to release the GIL

Using Python
concurrent.futures

24

Universal Functions (Ufuncs)

Ufuncs are a core concept in NumPy for array-oriented computing.

▪  A function with scalar inputs is broadcast across the elements of the input
arrays:

–  np.add([1,2,3], 3) == [4, 5, 6]

–  np.add([1,2,3], [10, 20, 30]) == [11, 22, 33]

▪  Parallelism is present, by construction. Numba will generate loops and can
automatically multi-thread if requested.

▪  Before Numba, creating fast ufuncs required writing C. No longer!

25

Universal Functions (Ufuncs)

Different decorator!

1.8x speedup!

26

Multi-threaded Ufuncs

Specify type signature

Select parallel target

Automatically uses all CPU cores!

27

Distributed Computing
Example: Dask

Dask Client
(Haswell) Dask Scheduler

Dask Worker
(Skylake)

Dask Worker
(Skylake)

Dask Worker
(Knight’s Landing)

@jit
def f(x):
 …

-  Serialize with pickle module
-  Works with Dask and Spark (and others)
-  Automatic recompilation for each target

f(x)

f(x)

f(x)

28

Other Numba Features

▪  Detects CPU model during code generation and instructs LLVM to optimize for that
architecture.

▪  Automatic dispatch to multiple type-specialized implementations of the same
function

▪  Uses LLVM autovectorization optimization passes for SIMD code generation

▪  Supports calls directly to C with CFFI and ctypes

▪  Optional caching of compiled functions to disk

▪  Ahead of time compilation to shared libraries

▪  Extension API allowing 3rd parties to extend the compiler with new data types and
functions.

29

Conclusion

▪  Numba - Create new high performance functions on-the-fly with pure Python

▪  Understands NumPy arrays and many NumPy operations

▪  Supplies several compilation modes and options for multi-threading

▪  Use with your favorite distributed computing framework

▪  For more information: http://numba.pydata.org

▪  Comes with Anaconda: https://www.continuum.io/downloads

Call To Action

•  Start with either Intel’s or Continuum’s distribution

•  Both have Intel performance goodness baked in!

•  You cannot go wrong either way!

•  Give Numba* a try and see performance increase

•  Try Python* performance profiling with Intel® VTune™ Amplifier!

•  Intel Distribution for Python is free!

https://software.intel.com/en-us/intel-distribution-for-python

–  Commercial support included for Intel® Parallel Studio XE customers!

–  Easy to install with Anaconda* https://anaconda.org/intel/

Intel is working with community leaders like Continuum Analytics to bring the
BEST performance on IA to Python developers

Thank you for your time
Stan Seibert

stan.seibert@continuum.io

www.intel.com/hpcdevcon

Sergey Maidanov

sergey.Maidanov@intel.com

www.intel.com/hpcdevcon

Intel® Distribution for Python*
Powered by Anaconda*

Legal Disclaimer & Optimization Notice
INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO
ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND
INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.
Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information
and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product
when combined with other products.

For more complete information about compiler optimizations, see our Optimization Notice at https://software.intel.com/en-us/
articles/optimization-notice#opt-en.

Copyright © 2016, Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/
or other countries. *Other names and brands may be claimed as the property of others.

