
SINGULARITY P1
Containers for Science, Reproducibility and Mobility

Presented By:

Gregory M. Kurtzer
HPC Systems Architect
Lawrence Berkeley National Lab
gmkurtzer@lbl.gov
http://singularity.lbl.gov/

mailto:gmkurtzer@lbl.gov

CONTAINERS IN HPC: SINGULARITY

CONTAINERS …

CONTAINERS IN HPC: SINGULARITY

CONTAINERS IN HPC: SINGULARITY

CONTAINERS: WHAT ARE THEY?

In a nutshell:

Containers are encapsulations of system environments

…

(and a means to use it)

CONTAINERS IN HPC: SINGULARITY

CONTAINERS IN HPC: SINGULARITY

CONTAINERS IN HPC: SINGULARITY

HOW DOES INDUSTRY MAKE USE OF CONTAINERS?

CONTAINERS IN HPC: SINGULARITY

CONTAINERS IN HPC: SINGULARITY

CONTAINERS IN HPC: SINGULARITY

CONTAINERS IN HPC: SINGULARITY

CONTAINERS IN HPC: SINGULARITY

CONTAINERS IN HPC: SINGULARITY

BUT WHAT ABOUT SCIENCE?

WHAT IS THE SCIENTIFIC USE CASE?

CONTAINERS IN HPC: SINGULARITY

CONTAINERS: PRIMARY USE CASES

▸Reproducibility!

▸Extreme mobility of compute (portability)

▸Provides the users, developers and engineers FREEDOM!
▸ Can easily leverage other people’s work

▸ Changes the software distribution and dependency paradigm

▸ Depending on application and use-case, simple extreme scalability

▸ Containers are in many ways the next logical progression from virtual machines

CONTAINERS IN HPC: SINGULARITY

CONTAINERS: DOCKER

▸ Docker is the most well known container platform

▸ Designed for network service virtualization

▸ Facilitates workflow of creating, maintaining and distributing containers

▸ Containers are highly reproducible

▸ Scientists have jumped on the bandwagon because it seems to have solved
their requirements

▸ User demand is high, interest is high, buzzworthiness is very high!

CONTAINERS IN HPC: SINGULARITY

SO WHY DON’T WE SEE HPC CENTERS INTEGRATING DOCKER ON
THEIR RESOURCES?

CONTAINERS IN HPC: SINGULARITY

DOCKER IN HPC: THE PROBLEM
▸ Docker emulates a virtual machine in many aspects (e.g. users can escalate to root)

▸ Non-authorized users having root access to any of our production networks is considered a security breech

▸ To mitigate this security issue, networks must be isolated for Docker access

▸ Precludes access to InfiniBand high performance networks and optimized storage platforms

▸ Typical solution is a virtual cluster within a physical cluster, but without high performance-ness (removed HP from HPC leaving just C)

▸ Docker uses a root owned daemon that users can control by means of a writable socket (users control root process)?!

▸ What ACLs are in place, are they enough to trust? Can we control or fine tune them?

▸ No native GPU support. We need to hack Docker, or/also integrate Docker-Nvidia?

▸ No reasonable support or timeline for MPI… MPI developers estimate this milestone for at least 2 years from now!

▸ Can not limit access to local file systems, especially when user can achieve root inside container, this breaks all file locally mounted file system security

▸ Doesn’t support production distributions/kernels (RHEL7 not even completely supported yet)!

▸ Incompatibilities with existing scheduling and resource manager paradigms:

▸ Root owned Docker daemon is outside the reach and control of the resource manager

▸ MPI/parallel job runs become increasingly complex due to virtual ad-hoc networking assignments

▸ Docker is built, maintained, and emphasized for the enterprise, not HPC

▸ Patches to help make Docker/runC/RKT a better solution for HPC have been submitted … but most have not been accepted!

CONTAINERS IN HPC: SINGULARITY

DOCKER IN HPC: SUMMARY

Lots of technical implementation problems!

The buzz around Docker on HPC is years old and scientists have been begging,
but no HPC centers have integrated a full featured Docker solution on their

traditional HPC systems.

HPC is not the appropriate use-case or interest for the Docker community

CONTAINERS IN HPC: SINGULARITY

SO… WHAT IS THE NEED?

▸ Reproducibility and archival software and environment stacks

▸ Mobility of Compute (portable, sharable, distributable container images)

▸ User defined and controlled environments (BYOE)

▸ Integratable with existing shared infrastructures and scheduling subsystems

▸ Properly make use of the existing high performance physical hardware

▸ Must support running as the user to facilitate scheduling and MPI workflows

▸ Make use of all of the work that has been done in Docker so far

▸ We needed it yesterday (so it must be compatible with today’s technology)!

CONTAINERS IN HPC: SINGULARITY

SINGULARITY: HELLO WORLD.

CONTAINERS IN HPC: SINGULARITY

SINGULARITY DESIGN GOALS
▸ Architected specifically for scientific reproducibility, “Mobility of Compute” and HPC

▸ Single file based container images: facilitates modification, distribution, and
execution

▸ No sys-admin, architectural or workflow changes necessary to run Singularity

▸ Compatibility with existing shared/multi-tenant computational resources

▸ Maintain user credentials (inside user == outside user)

▸ Separation between the container and the host can be blurred to leverage host’s resources

▸ We don’t have to virtualize everything, we can pick and choose as needed

CONTAINERS IN HPC: SINGULARITY

HOW DOES IT WORK?

CONTAINERS IN HPC: SINGULARITY

User contexts are always maintained when the container is launched (if it is
launched by a particular user, the programs inside will be running as that user)
with no escalation pathway within the container! Thus….

If you want to be root inside of the container,

you must first be root outside of the container

SINGULARITY: PERMISSIONS, ACCESS AND PRIVILEGE

CONTAINERS IN HPC: SINGULARITY

SINGULARITY: WORKFLOW

Root/Superuser

▸ Create a new container

▸ Bootstrap/install container

▸ System (container) modifications

Regular User

➡ singularity shell …

➡ singularity exec …

➡ singularity run …

Copy image

Share image

End Point the User Controls Shared Computational Resource

CONTAINERS IN HPC: SINGULARITY

SINGULARITY: CREATE THE CONTAINER
$ sudo singularity create —size 2048 /tmp/Centos-7.img

CONTAINERS IN HPC: SINGULARITY

SINGULARITY: BOOTSTRAP/INSTALL THE CONTAINER
$ sudo singularity bootstrap /tmp/Centos-7.img centos.def

CONTAINERS IN HPC: SINGULARITY

SINGULARITY: NOW WE HAVE A CONTAINER…

$ singularity shell /tmp/Centos-7.img
$ singularity exec /tmp/Centos-7.img echo “Hello World”
$ singularity run /tmp/Centos-7.img

CONTAINERS IN HPC: SINGULARITY

SINGULARITY: LAUNCHING A CONTAINER

▸ Singularity sets up the container environment and creates the necessary
namespaces and execv()s the application(s) within the container

▸ Directories, files and other resources are shared from the host into the
container (as allowed by the system administrator)

▸ All expected I/O is passed through the container: pipes, program arguments,
stdout, stdin, stderr and X11

▸ When the application(s) finish their foreground execution process, the
container and namespaces collapse and vanish cleanly

CONTAINERS IN HPC: SINGULARITY

SINGULARITY: A PEEK INTO THE CONTAINER

$ cat /etc/redhat-release
cat: /etc/redhat-release: No such file or directory

$ singularity shell /tmp/Centos-7.img
Singularity: Invoking an interactive shell within container...  
 
Singularity.Centos-7.img> cat /etc/redhat-release
CentOS Linux release 7.2.1511 (Core)

CONTAINERS IN HPC: SINGULARITY

SINGULARITY: MODIFY CONTAINER

$ sudo singularity shell —writable /tmp/Centos-7.img
Singularity: Invoking an interactive shell within container...  
 
Singularity.Centos-7.img> yum install …

CONTAINERS IN HPC: SINGULARITY

SINGULARITY: COPY MY PROGRAMS INTO CONTAINER

$ sudo singularity copy /tmp/Centos-7.img script.py /usr/bin/

$ singularity exec /tmp/Centos-7.img /usr/bin/script.py

CONTAINERS IN HPC: SINGULARITY

CONTAINERS IN HPC: SINGULARITY

SINGULARITY: EXTREME MOBILITY AND PORTABILITY

CONTAINERS IN HPC: SINGULARITY

SINGULARITY: EXTREME MOBILITY AND PORTABILITY

CONTAINERS IN HPC: SINGULARITY

SINGULARITY: CONTAINER IS ALWAYS THE SAME ON THE INSIDE

$ cat /etc/redhat-release
cat: /etc/redhat-release: No such file or directory
$ singularity exec /tmp/Centos-7.img cat /etc/redhat-release
CentOS Linux release 7.2.1511 (Core)

CONTAINERS IN HPC: SINGULARITY

SINGULARITY VERSION 2.2 IS AVAILABLE NOW!
HTTP://SINGULARITY.LBL.GOV/

CONTAINERS IN HPC: SINGULARITY

SINGULARITY: WHO’S USING IT / NAME DROPS / BANDWAGON

▸ Texas Advanced Computing Center: 462,462 cores / Stampede

▸ GSI Helmholtz Center for Ion Research: 300,000 cores / GreenCube

▸ National Institute of Health: 54,000 cores / Biowulf

▸ UFIT Research Computing at University of Florida: 51,000 cores / HiPerGator

▸ San Diego Supercomputing Center: 50,000 cores / Comet and Gordon

▸ Lawrence Berkeley National Laboratory: 30,000 cores / Lawrencium

▸ Holland Computing Center at UNL/LHC: 14,000 cores / Crane and Tusker

CONTAINERS IN HPC: SINGULARITY

SINGULARITY HUB: REPRODUCIBLE SCIENCE EXPOSED!

CONTAINERS IN HPC: SINGULARITY

QUESTIONS?

CONTAINERS IN HPC: SINGULARITY

HTTPS://GITHUB.COM/SINGULARITYWARE/INTEL-HPC-DEVCON

SINGULARITY: INTRODUCTION TO SINGULARITY WORKSHOP (1)

https://github.com/singularityware/intel-hpc-devcon

CONTAINERS IN HPC: SINGULARITY

HTTPS://LAB.PORTABLE-HPC.NET/

SINGULARITY: LOG INTO AWS COMPUTE INSTANCES

https://lab.portable-hpc.net/

CONTAINERS IN HPC: SINGULARITY

INSTALLATION OF SINGULARITY

CONTAINERS IN HPC: SINGULARITY

Required to build Singularity
$ sudo yum groupinstall “Development Tools”

Download and build Singularity from the GitHub master branch
$ mkdir ~/git
$ cd ~/git
$ git clone https://github.com/singularityware/singularity.git
$ cd singularity
$./autogen.sh
$./configure
$ make dist
$ rpmbuild -ta singularity-2.2.tar.gz

Install the newly build Singularity RPM package
$ sudo yum install $HOME/rpmbuild/RPMS/x86_64/singularity-2.2-0.1.el7.centos.x86_64.rpm

Install dependencies for bootstrapping a Debian container
$ sudo yum install epel-release
$ sudo yum install debootstrap

SINGULARITY: INSTALLATION

CONTAINERS IN HPC: SINGULARITY

$ singularity help
USAGE: singularity [global options...] <command> [command options...] ...

GLOBAL OPTIONS:
 -d --debug Print debugging information
 -h --help Display usage summary
 -q --quiet Only print errors
 --version Show application version
 -v --verbose Increase verbosity +1
 -x --sh-debug Print shell wrapper debugging information

GENERAL COMMANDS:
 help Show additional help for a command

CONTAINER USAGE COMMANDS:
 exec Execute a command within container
 run Launch a runscript within container
 shell Run a Bourne shell within container
 test Execute any test code defined within container
 … snip …

SINGULARITY: CLI OVERVIEW

CONTAINERS IN HPC: SINGULARITY

$ singularity shell docker://ubuntu:latest
library/ubuntu:latest
Downloading layer: sha256:a3ed95caeb02ffe68cdd9fd84406680ae93d633cb16422d00e8a7c22955b46d4
Downloading layer: sha256:668604fde02e75dddb4b44c80d4ce20baaac4832c41c3a945f4a236cd7d2f164
Downloading layer: sha256:2879a7ad31445fe2cea410b8ba76704003c11ee05c0a4d32d1113009ea1a1aae
Downloading layer: sha256:de413bb911fd848383ef2e5068a42c258c898d6ee869fb441fb2391eb327b576
Downloading layer: sha256:fc19d60a83f11bbddc7bd2dfca6095b49100314bfde61d83729112a6b6e11d48
Downloading layer: sha256:6bbedd9b76a496816d86a0af731ea984f40467ef8fb23be752f801cb80436ac6
Singularity: Invoking an interactive shell within container…

Singularity.ubuntu:latest> cat /etc/lsb-release
DISTRIB_ID=Ubuntu
DISTRIB_RELEASE=16.04
DISTRIB_CODENAME=xenial
DISTRIB_DESCRIPTION="Ubuntu 16.04.1 LTS”
Singularity.ubuntu:latest> which apt-get
/usr/bin/apt-get
Singularity.ubuntu:latest> exit

SINGULARITY: CONTAINER TEST FROM DOCKER HUB

CONTAINERS IN HPC: SINGULARITY

CREATING/BOOTSTRAPPING A NEW CONTAINER

CONTAINERS IN HPC: SINGULARITY

$ cat examples/debian.def
Copyright (c) 2015-2016, Gregory M. Kurtzer. All rights reserved.

"Singularity" Copyright (c) 2016, The Regents of the University of California,
through Lawrence Berkeley National Laboratory (subject to receipt of any
required approvals from the U.S. Dept. of Energy). All rights reserved.

BootStrap: debootstrap
OSVersion: stable
MirrorURL: http://ftp.us.debian.org/debian/

%runscript
 echo "This is what happens when you run the container..."

%post
 echo "Hello from inside the container"
 apt-get update
 apt-get -y install vim

SINGULARITY: BOOTSTRAP DEFINITION/RECIPE

CONTAINERS IN HPC: SINGULARITY

$ sudo singularity create /tmp/Debian.img
Creating a new image with a maximum size of 768MiB...
Executing image create helper
Formatting image with ext3 file system
Done.

$ ls -l /tmp/Debian.img
-rwxr-xr-x. 1 root root 805306399 Nov 5 07:22 /tmp/Debian.img

$ /tmp/Debian.img
ERROR : Container does not have a valid /bin/sh
ABORT : Retval = 255

SINGULARITY: NEW IMAGE CREATION

CONTAINERS IN HPC: SINGULARITY

$ sudo singularity bootstrap /tmp/Debian.img examples/debian.def
Bootstrap initialization
Checking bootstrap definition
Executing Prebootstrap module
Executing Bootstrap 'debootstrap' module
… snip …
Processing /usr/share/vim/addons/doc
Setting up vim (2:7.4.488-7) ...
update-alternatives: using /usr/bin/vim.basic to provide /usr/bin/vim (vim) in auto mode
update-alternatives: using /usr/bin/vim.basic to provide /usr/bin/vimdiff (vimdiff) in auto mode
update-alternatives: using /usr/bin/vim.basic to provide /usr/bin/rvim (rvim) in auto mode
update-alternatives: using /usr/bin/vim.basic to provide /usr/bin/rview (rview) in auto mode
update-alternatives: using /usr/bin/vim.basic to provide /usr/bin/vi (vi) in auto mode
update-alternatives: using /usr/bin/vim.basic to provide /usr/bin/view (view) in auto mode
update-alternatives: using /usr/bin/vim.basic to provide /usr/bin/ex (ex) in auto mode
update-alternatives: using /usr/bin/vim.basic to provide /usr/bin/editor (editor) in auto mode
Processing triggers for libc-bin (2.19-18+deb8u6) ...
Done.

SINGULARITY: BOOTSTRAP

CONTAINERS IN HPC: SINGULARITY

USING THE CONTAINERS

CONTAINERS IN HPC: SINGULARITY

Notice the PS output is now in a new process namespace
$ singularity exec -p /tmp/Debian.img ps auxf

What happens when Contained? Create some files in your home, are they persistent?
$ singularity shell --contain /tmp/Debian.img

Contain but define a new directory to use for your home
$ singularity shell --contain --home ~/git /tmp/Debian.img

User defined bind points. What happens if you specify a bind point that doesn’t exist? What
about if you bind ontop of a system location (e.g. /bin/)?
$ singularity shell --bind /tmp:/opt /tmp/Debian.img

How is the shell environment transposed into the container?
$ singularity exec /tmp/Debian.img env
$ singularity exec /tmp/Debian.img env | wc -l
$ env -i singularity exec /tmp/Debian.img env | wc -l
$ env -i FOO=BAR singularity exec /tmp/Debian.img env

SINGULARITY: USAGE AND OPTION EXAMPLES

CONTAINERS IN HPC: SINGULARITY

$ singularity shell /tmp/Debian.img
Singularity: Invoking an interactive shell within container...

Singularity.Debian.img> uname -a
Linux ip-172-31-20-175 3.10.0-327.28.2.el7.x86_64 #1 SMP Wed Aug 3 11:11:39 UTC 2016 x86_64 GNU/
Linux
Singularity.Debian.img> whoami
gmk
Singularity.Debian.img> pwd
/home/gmk/git/singularity
Singularity.Debian.img> ./configure
checking build system type... x86_64-unknown-linux-gnu
checking host system type... x86_64-unknown-linux-gnu
checking target system type... x86_64-unknown-linux-gnu
checking for a BSD-compatible install... /usr/bin/install -c
… snip …
configure: error: in `/home/gmk/git/singularity':
configure: error: no acceptable C compiler found in $PATH
See `config.log' for more details
Singularity.Debian.img> exit

SINGULARITY: USING YOUR NEW CONTAINER

CONTAINERS IN HPC: SINGULARITY

$ singularity exec /tmp/Debian.img uname -a
Linux ip-172-31-20-175 3.10.0-327.28.2.el7.x86_64 #1 SMP Wed Aug 3 11:11:39 UTC 2016 x86_64 GNU/
Linux
$ singularity exec /tmp/Debian.img whoami
gmk
$ singularity exec /tmp/Debian.img pwd
/home/gmk/git/singularity
$ singularity exec /tmp/Debian.img ./configure
checking build system type... x86_64-unknown-linux-gnu
checking host system type... x86_64-unknown-linux-gnu
checking target system type... x86_64-unknown-linux-gnu
checking for a BSD-compatible install... /usr/bin/install -c
… snip …
configure: error: in `/home/gmk/git/singularity':
configure: error: no acceptable C compiler found in $PATH
See `config.log' for more details
$ singularity run /tmp/Debian.img
This is what happens when you run the container...
$ /tmp/Debian.img
This is what happens when you run the container...

SINGULARITY: USING YOUR NEW CONTAINER

CONTAINERS IN HPC: SINGULARITY

$ singularity exec /tmp/Debian.img python —version
/.exec: line 3: exec: python: not found
$ sudo singularity exec --writable /tmp/Debian.img apt-get -y install python
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following extra packages will be installed:
 file libexpat1 libffi6 libmagic1 libpython-stdlib libpython2.7-minimal libpython2.7-stdlib
libsqlite3-0 libssl1.0.0 mime-support python-minimal python2.7 python2.7-minimal
 … snip …
Setting up libpython-stdlib:amd64 (2.7.9-1) ...
Setting up python (2.7.9-1) ...
Setting up file (1:5.22+15-2+deb8u2) ...
Processing triggers for libc-bin (2.19-18+deb8u6) ...
$ singularity exec /tmp/Debian.img python --version
Python 2.7.9

SINGULARITY: CHANGING YOUR CONTAINER

CONTAINERS IN HPC: SINGULARITY

$ cat ~/hello.py
#!/usr/bin/python
import sys
print("Hello World: The Python version is %s.%s.%s" % sys.version_info[:3])
$ python ~/hello.py
Hello World: The Python version is 2.7.5
$ singularity exec /tmp/Debian.img python ~/hello.py
Hello World: The Python version is 2.7.9
$ cat ~/hello.py | singularity exec /tmp/Debian.img python
Hello World: The Python version is 2.7.9
$ singularity exec docker://python:latest /usr/local/bin/python ~/hello.py
library/python:latest
Downloading layer: sha256:a3ed95caeb02ffe68cdd9fd84406680ae93d633cb16422d00e8a7c22955b46d4
Downloading layer: sha256:0a587a7fabdab20075256ed13afc7a39228dba7e9aaf0835c10860fe5abc1bd7
Downloading layer: sha256:d96297b6dc069127b12c63f533f253436496380a42c4a48d3702327ab028f275
Downloading layer: sha256:a3ed95caeb02ffe68cdd9fd84406680ae93d633cb16422d00e8a7c22955b46d4
Downloading layer: sha256:a3ed95caeb02ffe68cdd9fd84406680ae93d633cb16422d00e8a7c22955b46d4
 … snip …
Hello World: The Python version is 3.5.2

SINGULARITY: MORE CONTAINER AWESOMENESS

CONTAINERS IN HPC: SINGULARITY

WORKFLOWS/RUNSCRIPTS

CONTAINERS IN HPC: SINGULARITY

$ cat examples/debian.def
Copyright (c) 2015-2016, Gregory M. Kurtzer. All rights reserved.

"Singularity" Copyright (c) 2016, The Regents of the University of California,
through Lawrence Berkeley National Laboratory (subject to receipt of any
required approvals from the U.S. Dept. of Energy). All rights reserved.

BootStrap: debootstrap
OSVersion: stable
MirrorURL: http://ftp.us.debian.org/debian/

%runscript
 for i in $@; do
 grep "$i" /etc/services
 done

%post
 echo "Hello from inside the container"
 apt-get update
 apt-get -y install netbase

SINGULARITY: BOOTSTRAP DEFINITION/RECIPE (EDIT THE EXAMPLE FILE)

Edit Here

CONTAINERS IN HPC: SINGULARITY

$ sudo singularity create -F /tmp/Debian-workflow.img
Creating a new image with a maximum size of 768MiB...
Executing image create helper
Formatting image with ext3 file system
Done.
$ sudo singularity bootstrap /tmp/Debian-workflow.img examples/debian.def
Bootstrap initialization
Checking bootstrap definition
Executing Prebootstrap module
Executing Bootstrap 'debootstrap' module
… snip …
Setting up libisccfg-export90 (1:9.9.5.dfsg-9+deb8u6) ...
Setting up libirs-export91 (1:9.9.5.dfsg-9+deb8u6) ...
Setting up iproute2 (3.16.0-2) ...
Setting up ifupdown (0.7.53.1) ...
Creating /etc/network/interfaces.
Setting up isc-dhcp-common (4.3.1-6+deb8u2) ...
Setting up isc-dhcp-client (4.3.1-6+deb8u2) ...
Setting up libxtables10 (1.4.21-2+b1) ...
Setting up netbase (5.3) ...
Processing triggers for libc-bin (2.19-18+deb8u6) ...
Processing triggers for systemd (215-17+deb8u5) ...
Done.

SINGULARITY: BOOTSTRAP

CONTAINERS IN HPC: SINGULARITY

$ singularity run /tmp/Debian-workflow.img ^http
http 80/tcp www # WorldWideWeb HTTP
http 80/udp # HyperText Transfer Protocol
https 443/tcp # http protocol over TLS/SSL
https 443/udp
http-alt 8080/tcp webcache # WWW caching service
http-alt 8080/udp

$ ls -l /tmp/Debian-workflow.img
-rwxr-xr-x. 1 root root 805306399 Nov 5 07:22 /tmp/Debian-workflow.img

$ sudo mv /tmp/Debian-workflow.img /usr/local/bin/service_lookup
$ service_lookup ^ftp ^smtp
ftp-data 20/tcp
ftp 21/tcp
ftps-data 989/tcp # FTP over SSL (data)
ftps 990/tcp
smtp 25/tcp mail

SINGULARITY: EXECUTING THE RUNSCRIPT

CONTAINERS IN HPC: SINGULARITY

SINGULARITY: EXTREME MOBILITY AND PORTABILITY

CONTAINERS IN HPC: SINGULARITY

$ cat examples/contrib/debian85-tensorflow-0.10.def
BootStrap: debootstrap
OSVersion: stable
MirrorURL: http://ftp.us.debian.org/debian/

%runscript
 exec /usr/bin/python

%post
 apt-get update
 apt-get -y install vim python-pip python-dev
 pip install --upgrade https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.10.0-
cp27-none-linux_x86_64.whl

%test
 # This runs usually less then 30 minutes depending on your host type
 python -m tensorflow.models.image.mnist.convolutional

SINGULARITY: TENSORFLOW

CONTAINERS IN HPC: SINGULARITY

$ sudo singularity create --size 4096 /tmp/Tensor.img
Creating a new image with a maximum size of 4096MiB...
Executing image create helper
Formatting image with ext3 file system
Done.
$ sudo singularity bootstrap /tmp/Tensor.img examples/contrib/debian85-tensorflow-0.10.def
Bootstrap initialization
Checking bootstrap definition
Executing Prebootstrap module
W: Cannot check Release signature; keyring file not available /usr/share/keyrings/debian-archive-
keyring.gpg
I: Retrieving Release
I: Retrieving Packages
 … snip …
Minibatch loss: 1.603, learning rate: 0.006302
Minibatch error: 0.0%
Validation error: 0.9%
Test error: 0.8%
Done.

SINGULARITY: TENSORFLOW

CONTAINERS IN HPC: SINGULARITY

DISCUSSION AND QUESTIONS

SINGULARITY P1
Containers for Science, Reproducibility and Mobility

Presented By:

Gregory M. Kurtzer
HPC Systems Architect
Lawrence Berkeley National Lab
gmkurtzer@lbl.gov
http://singularity.lbl.gov/

mailto:gmkurtzer@lbl.gov

