
Wind River Linux

USER'S GUIDE

5.0.1

Copyright Notice

Copyright © 2014 Wind River Systems, Inc.

All rights reserved. No part of this publication may be reproduced or transmitted in any form or
by any means without the prior written permission of Wind River Systems, Inc.

Wind River, Tornado, and VxWorks are registered trademarks of Wind River Systems, Inc.
The Wind River logo is a trademark of Wind River Systems, Inc. Any third-party trademarks
referenced are the property of their respective owners. For further information regarding Wind
River trademarks, please see:

www.windriver.com/company/terms/trademark.html

This product may include software licensed to Wind River by third parties. Relevant notices (if
any) are provided in your product installation at one of the following locations:

installDir/product_name/3rd_party_licensor_notice.pdf
installDir/legal-notices/

Wind River may refer to third-party documentation by listing publications or providing links to
third-party Web sites for informational purposes. Wind River accepts no responsibility for the
information provided in such third-party documentation.

Corporate Headquarters

Wind River
500 Wind River Way
Alameda, CA 94501-1153
U.S.A.
Toll free (U.S.A.): 800-545-WIND
Telephone: 510-748-4100
Facsimile: 510-749-2010

For additional contact information, see the Wind River Web site:

www.windriver.com

For information on how to contact Customer Support, see:

www.windriver.com/support

15 Jan 2014

http://www.windriver.com/company/terms/trademark.html
http://www.windriver.com
http://www.windriver.com/support

iii

Contents

PART I: INTRODUCTION

1 Overview .. 15
Wind River Linux Overview ... 15

Kernel and File System Components ... 16

Supported Run-time Boards ... 18

Optional Add-on Products .. 20

Product Updates ... 22

2 Run-time Software Configuration and Deployment Workflow 27

3 Development Environment .. 29
Directory Structure ... 29

Metadata .. 32

Configuration Files and Platform Projects ... 33

Assigning Empty Values in BitBake Configuration Files 38

README Files in the Development Environment ... 39

Viewing a Specific README File in the Installation ... 39

Cloning a Layer to View Installation README Files .. 40

Viewing All Installation README Files in a Web Browser 40

4 Build Environment .. 41
About the Project Directory ... 41

Creating a Project Directory .. 42

Directory Structure for Platform Projects ... 43

Feature Templates in the Project Directory .. 47

Kernel Configuration Fragments in the Project Directory 51

Viewing Template Descriptions .. 54

About the layers/local Directory ... 54

About README Files in the Build Environment .. 56

Adding a Layer to a Platform Project to View README Files 56

Adding All Layers to a Platform Project to View All README Files 57

PART II: PLATFORM PROJECT IMAGE DEVELOPMENT

Wind River Linux
User's Guide, 5.0.1

iv

5 Configuration and Build .. 61
Introduction .. 61

About Creating the Platform Project Build Directory .. 62

About Configuring a Platform Project Image .. 62

Initializing the Wind River Linux Environment .. 63

About the Configure Script ... 63

About Building Platform Project Images .. 72

About the make Command .. 72

Yocto Project Equivalent make Commands .. 73

About Build Logs .. 75

Build-Time Optimizations ... 76

Examples of Configuring and Building .. 77

Configuring and Building a Complete Run-time ... 77

Commands for Building a Kernel Only ... 78

Configuring and Building a Flash-capable Run-time .. 78

Configuring and Building a Debug-capable Run-time .. 79

Building a Target Package ... 80

About Creating Custom Configurations Using rootfs.cfg ... 80

About the rootfs.cfg File ... 82

About New Custom rootfs Configuration .. 84

EGLIBC File Systems .. 85

Creating and Customizing EGLIBC Platform Project Images 86

EGLIBC Option Mapping Reference .. 88

6 Localization ... 91
About Localization ... 91

Determining which Locales are Available ... 91

Setting Localization .. 93

7 Portability .. 95
About Platform Project Portability .. 95

Copying or Moving a Platform Project .. 96

Updating a Platform Project to a New Wind River Linux Installation Location 96

8 Layers .. 99
About Layers .. 99

Layers Included in a Standard Installation .. 100

Installed Layers vs. Custom Layers .. 102

Layer Structure by Layer Type .. 103

About Layer Processing and Configuration ... 105

About Processing a Project Configuration ... 105

Creating a New Layer .. 106

Contents

v

Enabling a Layer .. 107

Disabling a Layer .. 108

9 Recipes .. 109
About Recipes ... 109

A Sample Application Recipe File .. 110

About Recipe Files and Kernel Modules .. 111

Extending Recipes with .bbappend Files ... 111

Creating a Recipe File .. 112

Identifying the LIC_FILES_CHKSUM Value .. 113

10 Templates .. 115
About Templates .. 115

Adding Feature Templates ... 116

Adding Kernel Configuration Fragments ... 117

11 Finalizing the File System Layout with changelist.xml 119
About File System Layout XML Files .. 119

About File and Directory Management with XML ... 119

Device Options Reference ... 120

Directory Options Reference ... 121

File Options Reference .. 122

Pipe Options Reference .. 123

Symlink Options Reference ... 123

The Touched/Accessed touch.xml Database File ... 124

PART III: USERSPACE DEVELOPMENT

12 Developing Userspace Applications .. 127
Introduction .. 127

About Application Development ... 127

Cross Development Tools and Toolchain ... 128

About Sysroots and Multilibs .. 128

Creating a Sample Application .. 132

Exporting the SDK ... 136

Exporting the SDK ... 136

Exporting the SDK for Windows Application Development 137

Adding Applications to a Platform Project Image .. 138

Options for Adding an Application to a Platform Project Image 138

Adding New Application Packages to an Existing Project 139

Adding an Application to a Root File System Using changelist.xml 140

Wind River Linux
User's Guide, 5.0.1

vi

Adding an Application to a Root File System with fs_final*.sh Scripts 141

Configuring a New Project to Add Application Packages 142

Verifying the Project Includes the New Application Package 143

Importing Packages ... 144

About the Package Importer Tool (import-package) ... 144

Importing a Sample Application Project as a Package 144

Importing a Source Package from the Web (wget) .. 146

Importing a SRPM Package from the Web .. 148

Listing Package Interdependencies ... 151

13 Understanding the User Space and Kernel Patch Model 153
Patch Principles and Workflow .. 153

Patching Principles .. 154

Kernel Patching with scc ... 155

14 Patching Userspace Packages ... 159
Introduction to Patching Userspace Packages .. 159

Patching with Quilt ... 160

Create an Alias to exportPatches.tcl to save time ... 161

Preparing the Development Host for Patching .. 161

Patching and Exporting a Package to a Layer .. 162

Verifying an Exported Patch .. 164

Incorporating a Patch into a Platform Project Image .. 165

15 Modifying Package Lists ... 167
About the Package Manager ... 167

Launching the Package Manager ... 168

Removing Packages ... 169

About Modifying Package Lists ... 172

Adding a Package .. 173

About Adding Templates .. 173

Removing a Package ... 174

PART IV: KERNEL DEVELOPMENT

16 Patching and Configuring the Kernel ... 177
About Kernel Configuration and Patching ... 177

Configuration ... 178

Patching .. 189

17 Creating Alternate Kernels from kernel.org Source ... 199

Contents

vii

18 Exporting Custom Kernel Headers ... 201
About Exporting Custom Kernel Headers for Cross-compile .. 201

Adding a File or Directory to be Exported when Rebuilding a Kernel 201

Exporting Custom Kernel Headers .. 202

19 Using the preempt-rt Kernel Type .. 205
Introduction to Using the preempt-rt Kernel Type ... 205

Enabling Real-time .. 207

Configuring preempt-rt Preemption Level ... 207

PART V: DEBUGGING AND ENABLING ANALYSIS TOOLS SUPPORT

20 Kernel Debugging ... 213
Kernel Debugging .. 213

Debugging with KGDB Using an Ethernet Port (KGDBOE) .. 214

Debugging with KGDB Using the Serial Console (KGDBOC) ... 216

Disabling KGDB in the Kernel ... 217

Kernel Debugging with QEMU .. 218

21 Userspace Debugging .. 219
Adding Debugging Symbols to a Platform Project .. 219

Adding Debugging Symbols for a Specific Package ... 220

Dynamic Instrumentation of User Applications with uprobes .. 221

Configuring uprobes with perf .. 222

Dynamically Obtain User Application Data with uprobes 223

Dynamically Obtain Object Data with uprobes ... 225

Debugging Individual Packages .. 228

Debugging Packages on the Target Using gdb ... 228

Debugging Packages on the Target Using gdbserver ... 229

22 Analysis Tools Support ... 231
About Analysis Tools Support ... 231

Using Dynamic Probes with ftrace .. 231

Preparing to use a kprobe ... 233

Setting up a kprobe .. 234

Enabling and Using a kprobe ... 235

Disabling a kprobe ... 236

Analysis Tools Support Examples ... 237

Adding Analysis Tools Support for MIPS Targets ... 237

Adding Analysis Tools Support for Non-MIPS Targets 237

Wind River Linux
User's Guide, 5.0.1

viii

PART VI: USING SIMULATED TARGET PLATFORMS FOR

DEVELOPMENT

23 QEMU Targets ... 241
QEMU Targets ... 241

QEMU Target Deployment Options .. 241

QEMU Targets .. 244

TUN/TAP Networking with QEMU .. 246

24 Wind River Simics Targets .. 251
Wind River Simics Targets .. 251

Using Simics from the Command Line .. 251

PART VII: DEPLOYMENT

25 Managing Target Platforms ... 257
Customizing Password and Group Files ... 257

Using an fs_final.sh Script to Edit the Password and Group File 258

Using an fs_final_sh Script to Overwrite the Password and Group File 259

About ldconfig .. 259

Enabling ldconfig Support .. 259

Connecting to a LAN ... 260

Adding an RPM Package to a Running Target ... 261

Adding Reference Manual Page Support to a Target .. 262

Using Pseudo .. 263

About Using Pseudo (fakestart.sh) .. 263

Examining Files using Pseudo ... 263

Navigating the Target File System with Pseudo ... 264

26 Deploying Flash or Disk Target Platforms ... 265
About Configuring and Building Bootable Targets ... 265

About Configuring a Boot Disk with a USB/ISO Image (Two Build Directories) 266

Host-Based Installation of Wind River Linux Images .. 266

Booting and Installing from a USB or ISO Device .. 268

Booting and Installing with QEMU .. 269

Configuring and Building the Host Install (Self-Contained Option) 273

Configuring and Building the Host Install (Two Build Directories Option) 274

Creating Bootable USB Images .. 275

Creating ubifs Bootable Flash Images .. 278

Contents

ix

Enforcing Read-only Root Target File Systems .. 279

Installing a Bootable Image to a Disk ... 279

Installing or Updating bzImage .. 280

27 Deploying initramfs System Images ... 283
About initramfs System Images .. 283

Creating initramfs Images ... 284

Adding Packages to initramfs Images ... 285

28 Deploying KVM System Images .. 287
About Creating and Deploying KVM Guest Images .. 287

Create the Host and Guest Systems .. 289

Deploying a KVM Host and Guest .. 290

PART VIII: TESTING

29 Running Linux Standard Base (LSB) Tests ... 295
About the LSB Tests ... 295

Testing LSB on Previously Configured and Built Target Platforms 296

Disabling Grsecurity Kernel Configurations on CGL Kernels .. 297

Running LSB Distribution Tests ... 297

Running LSB Application Tests ... 299

PART IX: OPTIMIZATION

30 About Optimization .. 305

31 Analyzing and Optimizing Runtime Footprint ... 307
Analyzing and Optimizing Runtime Footprint .. 307

Collecting Platform Project Footprint Data .. 308

Footprint (fetch-footprint.sh) Command Option Reference .. 311

32 Reducing the Footprint .. 313
About BusyBox .. 313

Configuring a Platform Project Image to Use BusyBox ... 313

About devshell ... 314

About Static Linking ... 314

About the Library Optimization Option .. 315

33 Analyzing and Optimizing Boot Time ... 317

Wind River Linux
User's Guide, 5.0.1

x

Analyzing and Optimizing Boot Time .. 317

Creating a Project to Collect Boot Time Data ... 318

Analyzing Early Boot Time .. 319

About Reducing Early Boot Time .. 321

Reducing Network Initialization Time with Sleep Statements 321

Reducing Device Initialization Time ... 323

Removing Unnecessary Device Initialization Times ... 323

PART X: TARGET-BASED NETWORKING

34 About Target-based Networking ... 329

35 Setting Target and Server Host Names ... 331

36 Connecting a Board ... 333
Configuring a Serial Connection to a Board ... 333

Setting-up cu and UUCP .. 333

Setting up the Workbench Terminal ... 334

About Configuring PXE ... 334

Configuring PXE .. 336

Configuring DHCP ... 337

Configuring DHCP for PXE ... 338

Configuring NFS .. 340

Configuring TFTP .. 341

PART XI: REFERENCE

37 Additional Documentation and Resources .. 345
Document Conventions ... 345

Wind River Linux Documentation .. 346

Additional Resources ... 347

Open Source Documentation .. 348

External Documentation .. 350

38 Common make Command Target Reference ... 351

39 Build Variables .. 361

40 Package Variable Listing ... 367

41 Lua Scripting in Spec Files ... 369

Contents

xi

42 Kernel Audit Directory Contents .. 371

Wind River Linux
User's Guide, 5.0.1

xii

13

PA R T I

Introduction

Overview.. 15

Run-time Software Configuration and Deployment
Workflow...

27

Development Environment.. 29

Build Environment... 41

Wind River Linux
User's Guide, 5.0.1

14

15

1
Overview

Wind River Linux Overview 15

Wind River Linux Overview

Wind River Linux is a software development environment that creates optimized Linux
distributions for embedded devices.

Wind River Linux 5.0.1 is based on the Yocto Project implementation of the OpenEmbedded Core
(OE-Core) metadata project. The Yocto Project uses build recipes and configuration files to define
the core platform project image and the applications and functionality it provides.

Wind River Linux builds on this core functionality and adds Wind River-specific extensions,
tools, and services to facilitate the rapid development of embedded Linux platforms. This
support includes:

• Straightforward platform project configuration, build, and deployment that simplifies Yocto
Project development

• A range of popular BSPs to support most embedded hardware platforms
• An enhanced command-line-interface (CLI) to the system
• Developer-specific layer for platform project development and management
• Platform project portability to copy or move platform projects, or create a stand-alone

platform project
• A custom USB image tool for platform project images

If you have experience with using the Yocto Project, Wind River Linux supports all Yocto Project
build commands, but also offers simplified configure and build commands based on the Wind
River Linux 4 build system. This functionality greatly reduces your development time. Wind
River Linux provides development environments for a number of host platforms and supports a
large and ever-growing set of targets, or the platform hardware you are creating your embedded
system for. For details on which development hosts are supported, refer to the Release Notes. For
supported target boards, refer to Wind River Online Support.

The build system consists of a complete development environment that includes a
comprehensive set of standard Linux run-time components, both as binary and source packages.
It also includes cross-development tools that can be used to configure and build customized run-
time systems and applications for a range of commercial-off-the-shelf (COTS) hardware.

Wind River Linux
User's Guide, 5.0.1

16

Wind River supports boards according to customer demand. Please contact Wind River if yours is
not yet officially supported.

Wind River Workbench is included as part of Wind River Linux to provide a robust development
and debugging environment.

For more information about Wind River Linux, see http://www.windriver.com/products

NOTE: Wind River Linux 5 uses a different build system than previous product releases. As a
result, the new Yocto Project-based build system may not directly support custom layers from a
previous release. Custom layers of this type will need to be migrated to the new build system.
For information on migrating these layers, see the Wind River Linux Migration Guide: About
Migrating Wind River Linux Projects.

Kernel and File System Components

Wind River Linux supports a range of kernel type profiles and file systems.

NOTE: Not all kernel feature and file system combinations are supported on any particular
board. For further information on validated combinations, contact your Wind River
representative.

Kernel Type Profiles

A kernel type profile implements a supported set of kernel features. Each contains features
that are compatible with each other and excludes features that are not compatible. Kernel type
profiles use a combination of kernel configuration, kernel patches, and build system changes to
support their features.

The kernel types are layered to build a set of increasingly specific or enhanced functionality. The
set of features that is available and tested on all boards is called the standard kernel profile. This
standard profile is included with Wind River Linux 5.0.1.

Kernel type profiles that add or modify the functionality of the standard profile are called
enhanced kernel profiles. Enhanced profiles are available on a selected set of boards and are
mutually exclusive with other enhanced profiles, such as those included with our add-on
products. A single board may be supported by multiple mutually exclusive (runtime) enhanced
profiles along with the standard profile.

NOTE: All features of the standard kernel profile work within any particular enhanced profile
for future Wind River Linux product releases.

Wind River Linux provides the following kernel type profiles:

standard

All boards support the standard profile, fundamental kernel features are implemented in this
profile to provide a common platform for all boards.

cgl

This is the Carrier Grade Linux profile, designed to support the CGL specification from the
Linux Foundation. See http://www.linuxfoundation.org/collaborate/workgroups/cgl for a summary
and details on the CGL specification.

http://www.windriver.com/products
http://www.linuxfoundation.org/collaborate/workgroups/cgl

1 Overview
Wind River Linux Overview

17

This option is available with the Wind River Linux Carrier Grade Profile add-on product. For
additional information, see Optional Add-on Products on page 20 .

preempt_rt

This kernel profile provides the PREEMPT_RT kernel patches to enable conditional hard real-
time support. Note that this profile does not imply deterministic pre-emption. For additional
information, see Introduction to Using the preempt-rt Kernel Type on page 205.

NOTE: A single board may be in one or more enhanced kernel profiles.

For detailed instructions on reconfiguring and customizing Wind River Linux kernels, see About
Kernel Configuration and Patching on page 177

Supported File Systems

Root file systems are defined in the projectDir/layers/wr-base/templates/rootfs.cfg file. There
are five basic file systems:

Glibc_Core (glibc_core)

A smaller footprint version of the Glibc Standard file system, including all packages necessary
to boot a smaller file system that is not based on BusyBox. This includes the standard kernel, a
minimal BusyBox, and sysvinit.

Glibc Standard (glibc_std)

A full file system, with Glibc but without CGL-relevant packages or extensions.

Glibc Standard Sato (glibc_std_sato)

A full file system with Glibc, optimized for the Sato graphical (sato-gui) interface. Sato is part
of Poky, the Yocto Project platform builder. For additional information, see:

http://www.yoctoproject.org/docs/1.0/poky-ref-manual/poky-ref-manual.html#what-is-poky

Glibc Small (glibc_small)

A much smaller, BusyBox-based file system, with Glibc. This includes a standard kernel,
a reduced size BusyBox, and sysvinit. Note that with this file system, device nodes are not
created automatically. You must create them manually.

Glibc CGL (glibc_cgl)

A full file system, with CGL-relevant packages and CGL extensions. This option is available
with the Wind River Linux Carrier Grade Profile add-on product. For additional information,
see Optional Add-on Products on page 20.

Run-time components are available as source and as pre-built binaries.

Combinations of File System and Kernel Feature Profiles

The following table shows which file systems are available with each kernel profile.

File Systems Standard preempt_rt cgl Tiny

glibc_core Yes Yes No No

http://www.yoctoproject.org/docs/1.0/poky-ref-manual/poky-ref-manual.html#what-is-poky

Wind River Linux
User's Guide, 5.0.1

18

File Systems Standard preempt_rt cgl Tiny

glibc_std Yes1 Yes No No

glibc_std_sato Yes Yes No No

glibc_small Yes Yes No No

glibc_cgl No2 No Yes No

NOTE: Contact your Wind River representative for details on which kernel features and file
systems are supported for your board.

Kernel Features

Wind River Linux 5.0.1 supports the following, additional kernel features:

• Support for the Intel® Performance Counter Monitor (PCM) for Intel® Xeon® Core and Intel®
Atom® BSPs. The Intel® PCM provides sample C++ routines and utilities to estimate the
processor internal resource utilization to help developers gain significant performance boosts
for their platforms.

For information on using the Intel® PCM, see http://software.intel.com/en-us/articles/intel-
performance-counter-monitor.

• Support for turbostat, a Linux tool to observe the proper operation on systems that
use Intel® Turbo Boost Technology (http://www.intel.com/content/www/us/en/architecture-
and-technology/turbo-boost/turbo-boost-technology.html). For additional information
on turbostat, see http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?
id=103a8fea9b420d5faef43bb87332a28e2129816a.

For a list of additional kernel features, listed as configuration fragments you can add to any
platform project image, see Kernel Configuration Fragments in the Project Directory on page 51.

Supported Run-time Boards

Supported run-time boards define the target platforms that Wind River Linux supports.

Wind River Linux comes complete with pre-built Linux kernels and pre-built run-time file system
packages (and will build identical and configurable kernels and file systems from source) for
many boards from a variety of manufacturers. For the most recent list of supported boards, see
Wind River Online Support.

Bootloaders and Board README Files

In most cases, you just use the boot loader that comes with the board to boot Wind River Linux.
Wind River supplies a boot loader for boards if the boot loader that comes with the board

1 In some cases this combination may not be supported as it is not needed on equipment used for
networking only. Individual board README files contain details.

2 In cases where a board cannot support the cgl kernel profile it instead supports the standard kernel
profile and the glibc_cgl root file system with some features of the user space gracefully failing for
lack of kernel support.

http://software.intel.com/en-us/articles/intel-performance-counter-monitor
http://software.intel.com/en-us/articles/intel-performance-counter-monitor
http://www.intel.com/content/www/us/en/architecture-and-technology/turbo-boost/turbo-boost-technology.html
http://www.intel.com/content/www/us/en/architecture-and-technology/turbo-boost/turbo-boost-technology.html
http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=103a8fea9b420d5faef43bb87332a28e2129816a
http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=103a8fea9b420d5faef43bb87332a28e2129816a

1 Overview
Wind River Linux Overview

19

requires modification to work optimally with Wind River Linux. Any Wind River-provided
bootloader will be contained in the BSP template along with the README file for the board.

NOTE: Wind River strongly recommends that you read the README file for your board,
located within installDir/wrlinux-5/layers/wr-bsps/boardname. This file contains important
information on board bring-up, boot loaders, board features, and board limitations. The board
README and other README files can also be found in your projectDir/READMES
directory after you configure a project.

Information on setting up target servers and booting supported boards, as well as details on
booting with ISO, hard disk, and flash RAM, can be found in About Configuring and Building
Bootable Targets on page 265 and About Target-based Networking on page 329.

BitBake Name Limitations

Currently, the BitBake build system does not support custom BSP names with underscore (_)
characters. For example, if you create a custom BSP and name it intel_x86_64_custom_headers,
when you try to configure and build the project, the build system will replace each of the
underscore characters with dashes (-), effectively changing your BSP name to intel-x86-64-
custom-headers. If your BSP or other project configuration files have a dependency on the
explicit name of the BSP, then this will cause the build to fail.

To prevent failures of this nature, do not use underscore characters in your BSP names.

BSP Name Cross-reference List

Previous releases of Wind River Linux provided BSPs that have been renamed, and improved to
work with Wind River Linux 5.0.1. The following table provides correlation between Wind River
Linux 4.x and 5.0.1.

Processor Family 4.x BSP Name 5.0.1 BSP Name

ARM stm_spear13xx stm_spear13xx

ARM ti_omap3530evm ti_omap3

MIPS cav_octeon_cn63xx
cav_octeon_cn68xx
cav_octeon2

cav_octeon2

PPC fsl_p2020 fsl_p2020

PPC fsl_p204x
fsl_p3041
fsl_p4080

fsl_e500mc

PPC fsl_p50x0 fsl_p50xx

PPC lsi_acp3400 lsi_acp34xx

x86 common_pc_64
intel_core_qm57_pch
intel_core_qm67_pch
intel_core_qm77_pch
intel_xeon_3420_pch

intel_xeon_core

Wind River Linux
User's Guide, 5.0.1

20

Processor Family 4.x BSP Name 5.0.1 BSP Name

intel_xeon_5520_ioh
intel_xeon_c600_pch
intel_xeon_core_dh89xx_pch
westmere_ep

x86 intel_atom_eg20t_pch
intel_atom_z530
kbc_km2m806
intel_atom_n4xx_d5xx_82801hm

intel_x86

QEMU MIPS qemu_mips32 qemumips

QEMU PPC qemu_ppc32 qemuppc

QEMU x86 (32-bit) Part of common_pc qemux86

QEMU x86 (64-bit) Part of common_pc_64 qemu86_64

Kernel Virtual Machine (KVM)
x86

common_pc_64_kvm_guest x86-64-kvm-guest

Optional Add-on Products

Wind River Linux supports optional add-on products that extend the capability of the product to
meet your current and future development needs.

This version of Wind River Linux supports the following add-on products:

Wind River Linux Carrier Grade Profile

The Wind River Linux Carrier Grade Profile add-on product extends your development
capabilities to create platforms that meet Carrier Grade Linux (CGL) requirements. This adds the
following features to your Wind River Linux 5.0.1 installation:

• Configuration profile to easily create CGL platforms for all supported run-time boards.
• Tests for validating your CGL platform
• Virtual routing and forwarding support

For additional information, or to purchase the Wind River Linux Carrier Grade Profile, contact
your Wind River sales representative.

Wind River Linux Open Virtualization Profile: Virtual Node

The Open Virtualization Profile (OVP) is a Wind River Linux add-on that provides the resources
and tools required to build, deploy, and manage a virtualization environment built around open
components.

The OVP builds on the Wind River Linux kernel to provide performance enhancements,
management extensions, and application services for virtualized systems.

OVP incorporates technologies that enable unique features and services throughout the overall
solution, from low level kernel performance improvements for host and guest systems, to
the integration of system tuning, profiling, and benchmarking tools. OVP also provides an
extensive set of security and management interfaces for application development with full

1 Overview
Wind River Linux Overview

21

support for remote management of the virtualized environment. Professional services, training,
and a comprehensive set of documentation complement the OVP to provide an open and high
performance virtualization solution.

For additional information, or to purchase Wind River Linux Open Virtualization Profile, contact
your Wind River sales representative.

Wind River Linux Performance Studio for Intel® Architecture (IAPS)

Performance Studio integrates the latest generation of Intel development tools: with Wind River
Linux 4.2 and higher to deliver dramatic performance and productivity enhancements for teams
developing embedded applications on Intel® Architecture platforms. Optimizing your code
means you can tap the full power of your hardware—using your Intel embedded platform of
choice. This includes the Intel platforms running the latest embedded Core™, Xeon®, or Atom™

processors.

Performance Studio consists of the following tools:

• Intel® C/C++ Compiler, to boost performance on Intel architectures
• Intel® Integrated Performance Primitives, which provide platform-optimized algorithms, code

samples and APIs for high-bandwidth applications
• Intel® VTune™ Amplifier XE, which delivers actionable analysis of code behavior and

performance without having to instrument the source code

Wind River Test Management

Wind River Test Management is a test management solution that identifies high-risk segments in
production code, enabling change-based, optimized testing, using real-time instrumentation of
devices under test.

Wind River Test Management provides the following:

• Coverage and performance metrics on the same code you ship to customers
• Optimized test suite generator that runs only the test needed to validate changes
• Full-featured lab management system and a universal, open test execution engine to run any

type of test on any device

For additional information, or to purchase Wind River Test Management, contact your Wind
River sales representative.

Wind River Simics System Simulator

Wind River Simics is a fast, functionally-accurate, full system simulator. Simics creates a high-
performance virtual environment in which any electronic system – from a single board to
complex, heterogeneous, multi-board, multi-processor, multicore systems – can be defined,
developed and deployed.

See Wind River Simics Targets on page 251 for basic information on using Simics with Wind
River Linux.

Simics enables companies to adopt new approaches to the product development life cycle
resulting in dramatic reduction in project risks, time to market, and development costs while also
improving product quality and engineering efficiency. Simics allows engineering, integration and
test teams to use approaches and techniques that are simply not possible on physical hardware.

To purchase Wind River Simics, contact your Wind River sales representative.

Wind River Linux
User's Guide, 5.0.1

22

Product Updates

Wind River delivers new fixes, and occasionally new functionality, through the product installer.

Overview

When updates become available, they are posted to Wind River Customer Support. This includes
new Rolling Cumulative Patch Layer(RCPL) releases which may include new functionality and
documentation updates.

You can log into Wind River Customer Support at http://www.windriver.com/support/ to view
product information, or run the Wind River Maintenance Tool to obtain product updates specific
to your Wind River Linux license.

About RCPL Releases

With RCPL patches, Wind River provides the flexibility of letting developers choose to
incorporate the latest patch, or continue to use the version their project was initially developed
with. Since updates are selected at project configuration, and not product installation, installing a
new patch release does not force existing projects to use the new changes.

This allows one installation to support projects based off of older patch releases and also support
new projects based off the new patch release. At anytime, you can use the make upgrade
command to bring a platform project up to the latest RCPL release. For additional information,
see Updating Wind River Linux on page 23.

Once you have updated the product, note that for new platform projects, the default for new
configure script commands is to use the most recent RCPL installed on the machine. To specify
an earlier patch release, you can use the --with-rcpl-version=000x configure script option,
where 000x is the RCPL version, for example, 0006. This allows you to reproduce a previous
environment, such as one used to release a product.

About the Experimental Feature Layer

The Experimental Feature Layer provides optional new features, new packages or package
upgrades. If you want to use these new packages or features, the Experimental Feature Layer can
be added to your installation. It not added by default. Once the Experimental Feature Layer has
been installed these new features or packages can be added to the project using the appropriate
options to the configure command. Without these configure options the Experimental Feature
Layer will not be used by the project.

WARNING: The Experimental Feature Layer may contain up-revved versions of packages in
the standard product and/or additional packages which have not been fully regression tested.
While Wind River strives to maintain binary compatibility with the rest of the standard system,
including this layer may cause issues in non-standard environments. All related bugs reported
via Wind River Support channels will be accepted and investigated.

See Updating Wind River Linux on page 23 for details on installing the Experimental Feature
layer.

The Experimental Feature layer currently provides these four packages:

libedit-20121213-3.0

A BSD replacement for libreadline.

http://www.windriver.com/support/

1 Overview
Updating Wind River Linux

23

fuse-2.9.3

FUSE (Filesystem in Userspace) is a simple interface for user-space programs to export a
virtual file system to the Linux kernel. FUSE also aims to provide a secure method for non
privileged users to create and mount their own file system implementations.

nmap-6.40

Nmap ("Network Mapper") is a free and open source utility for network discovery and
security auditing.

syslog-ng-logrotate

This is a package that adds logrotate capability to the syslog-ng package.

Updating Wind River Linux

To obtain product and documentation updates, you will run the Wind River product
maintenance tool.

The updated product and documentation will be automatically placed at the correct locations in
your installation.

NOTE: The product maintenance tool can retrieve documentation updates and any additional
functionality you are entitled to. During the update process, you can select the specific features
you want to install.

To install an online update, follow the steps below.

Step 1 Close Wind River programs.

Before installing online updates with the maintenance tool, it is recommended that you exit any
Wind River programs or tools that may be running, including the Wind River registry. If the
maintenance tool is blocked by a process, it displays an error, showing the process ID.

NOTE: Before you exit Workbench, you can start the maintenance tool by selecting Help >
Update Wind River Products.

Step 2 Launch the maintenance tool.

If you launched the maintenance tool from Workbench prior to exiting, proceed to Step 3.
Otherwise, to start the maintenance tool, run the following commands from a command prompt:

$ cd installDir/maintenance/wrInstaller/hostType
$./wrInstaller

Step 3 Proceed through the maintenance tool screens.

Choose the available product and documentation updates. For detailed instructions on
configuring the maintenance tool, see the Help system within the installer program.

If you wish to use the optional and experimental Experimental Feature Layer, see Installing the
Experimental Feature Layer on page 24

Step 4 Update platform projects to the latest RCPL build.

Wind River provides a method to update platform projects to the latest installation build.

Wind River Linux
User's Guide, 5.0.1

24

a) Navigate to the platform project directory.
b) Update the platform project.

$ make upgrade

Once the command completes, the platform project is configured to use the latest product
update(s).

c) Rebuild the platform project.

$ make

Installing the Experimental Feature Layer

Install the Experimental (Rolling) Feature Layer (RCFL) to use the additional features it provides
in your platform project build.

To install the Experimental Feature Layer, you must first install the latest RCPL product update
as described in Updating Wind River Linux on page 23. This update is required for the contents
of the Experimental Feature Layer to work.

NOTE: This product add-on is optional and is not enabled by default.

Step 1 Start the Product Maintenance Tool.

$ installDir/maintenance/wrInstaller/x86-linux2/wrInstaller

Step 2 Select Configure to display the Configure online settings window.

Step 3 Add the Experimental Feature Layer location to the Product Maintenance Tool locations list.
a) Click Add to display the Add Site window.
b) Enter a name for the location.

For example, enter Wind River Experimental Feature Layer.
c) Enter the following location.

http://updates.windriver.com/repos/wrlinux/wrlinux-5.0/DVD-R180065.1-1-00.repos
d) Click OK to save the new location.
e) Click Apply to return to the main Product Maintenance Tool window.
f) Select Online Content and click Next to continue.

Step 4 Continue through the Product Maintenance Tool installation process.

The Wind River Linux Experimental Feature Layer will display in the list of available updates.
Once installation completes successfully, it will be available for use.

Adding Packages from the Experimental Feature Layer

You can use the Experimental Feature layer to add extra features to a Wind River Linux project.

You can add packages from the Experimental Features Layer to a Wind River Linux project using
the Wind River configure command.

http://updates.windriver.com/repos/wrlinux/wrlinux-5.0/DVD-R180065.1-1-00.repos

1 Overview
Wind River Linux Overview

25

Step 1 Run configure using the --enable-addons=wr-rcfl and --with-layer=rcfl options to add packages
from the Experimental Feature Layer to your project.

$ configDir/configure \
--enable-board=qemux86-64 \
--enable-kernel=standard \
--enable-rootfs=glibc_small \
--with-template=feature/debug,feature/analysis,features/syslog-ng-logrotate \
--with-layer=wr-intel-support \
--enable-addons=wr-rcfl
--with-layer=rcfl

Step 2 Include any of the packages provided by the Experimental Feature Layer.

To do this, you would use the make -C build packageName.addpkg command for each package
that you want to add.

For example:

• To include libedit:

$ make -C build libedit.addpkg

• To include FUSE:

$ make -C build fuse.addpkg

• To include nmap-6.40:

$ make -C build nmap.addpkg

• If you used --with-template=feature/debug,feature/analysis,features/syslog-ng-logrotate
when you ran configure, as shown in step 1 on page 25, it is included on your target.
Otherwise, you can do so at any time using the following command prior to the build:

$ echo IMAGE_INSTALL += syslog-ng-logrotate >> project/default-image.bb

Step 3 Rebuild the platform project file system.

$ make fs

When these steps have completed successfully, the package(s) have been added to your project.

Wind River Linux
User's Guide, 5.0.1

26

27

2
Run-time Software Configuration

and Deployment Workflow

Use this information as a guideline for creating and deploying a complete run-time system.

Overview

In this context, run-time software refers to the platform project image and applications you create
as part of developing your complete target operating system. There are different workflows for
developing platform projects and/or application projects. For an overview with working examples of
these workflows, see:

• Wind River Linux Getting Started Guide: Platform Project Workflow
• Wind River Linux Getting Started Guide: Application Development Workflow

In this section, we provide a detailed workflow that includes the entire run-time system, with links
to relevant material to aid in your development. This includes planning the system, configuring and
building the run-time system, customizing the system and adding applications, deploying to a target, and
debugging with Workbench or some other tool.

Creating and deploying run-time software with Wind River Linux Platforms includes the following
development sequence of events:

NOTE: If you already know what your project requires, and want to start working with Wind
River Linux right away, see the Wind River Linux Getting Started Guide for information on
creating, modifying, and debugging a run-time software platform.

Workflow

1. Plan your platform and/or application projects for your own use or your customers' needs.

This includes choosing a board, kernel, and root file system and determining any special hardware/
software requirements your project may need.

2. Create the platform project directory.

The platform project directory is a directory that you create in the build environment, as opposed to
the development environment. For additional information, see: About Creating the Platform Project Build
Directory on page 62

For additional information on the build and/or development environments, see:

Wind River Linux
User's Guide, 5.0.1

28

• Directory Structure for Platform Projects on page 43
• Directory Structure on page 29

3. Configure and build the project.

Within your projectDir, issue a configure command with the necessary options to configure the
appropriate build environment and makefiles. You then issue a make command to build a complete
platform including the kernel and root file system.

For additional information, see:

• Introduction on page 61
• About Configuring a Platform Project Image on page 62
• About Building Platform Project Images

4. Launch the platform project image on the target.

You run the platform project image and any additional applications on a target so you can develop
the system. A target may consist of a hardware board or it may be a virtual target for development
purposes. If your target does not exactly match one of the supported boards, you can create a custom
board support package, generally based on one of the provided definitions. Contact your Wind River
representative information regarding creating custom BSPs.

For additional information, see:

• QEMU Targets on page 241
• Wind River Simics Targets on page 251
• About Target-based Networking on page 329

5. Update, develop, and debug the project.

NOTE: See the Wind River Linux Getting Started Guide: About Developing Platform Projects for
hands-on examples on modifying and debugging your platform project.

Updating may require adding and/or patching packages, debugging an application on the target, and
making necessary configurations for the host and target to communicate effectively.

Platform developers create a platform project and then produce a sysroot (with make export-sdk) for
application developers. See Exporting the SDK on page 136. The sysroot provides the target runtime
libraries and header files for use by the application developers on their development hosts. Because
the sysroot duplicates application dependencies of the eventual runtime environment, applications are
easily deployed after development.

Platform developers can also:

• Incorporate developed applications in a project. See About Application Development on page 127.
• Debug applications and the kernel. See Kernel Debugging on page 213 and the section Userspace

Debugging.
6. Optimize the platform project image.

In this context, optimization includes analyzing and optimizing the runtime footprint and/or boot
time.

For additional information, see About Optimization on page 305.

29

3
Development Environment

Directory Structure 29

Metadata 32

Configuration Files and Platform Projects 33

README Files in the Development Environment 39

Directory Structure

Learn about the structure and content of the development environment including the function
and contents of the prominent structural features of Wind River Linux and the BitBake build
system—layers, recipes, and templates.

The build environment, including the use of the configure script and the make command to
build runtime software, is described in Directory Structure for Platform Projects on page 43.

The Wind River Linux development environment can be installed anywhere on a supported
host. This document uses the convention that it is installed in the /opt/WindRiver/ directory.
Throughout this document, the installed location is referred to as installDir.

The Yocto Project BitBake build system relies on a system installDir path that does have any
of the following characters:

Character Description

+ Plus symbol

@ 'At' symbol

~ Tilde symbol

^ Carat symbol

Pound symbol

Having any of these characters in the installDir path will cause project builds to fail.

Wind River Linux
User's Guide, 5.0.1

30

Installed Development Environment Directory Structure

The following figure illustrates part of the development environment structure. Note that this
structure includes a combination of Yocto Project and Wind River Linux components.

Figure 1: Development Environment Directories

The structure shown in Development Environment Directories depicts a simplified view of the
development environment. When you compare this to the build environment in Directory
Structure for Platform Projects on page 43, you can see that the development environment
includes the layers (everything under layers/) necessary for configuring a platform project image.

NOTE: Not all layers are shown in the preceding figure and additional layers may be added.

The directories and executables shown in the figure, above, are discussed in the following
sections.

startWorkbench.sh and the Workbench Directories

The startWorkbench.sh shell script starts the Workbench application. You can start Workbench
through clicking a desktop icon or, from the command line, entering the path and name of the
script. Workbench is introduced in the Wind River Workbench User’s Guide, and examples of its use
are in Wind River Workbench by Example, Linux Version.

NOTE: This script and the following directories are only available when you purchase and
install Wind River Workbench.

3 Development Environment
Directory Structure

31

Not specifically shown in Development Environment Directories are several directories of interest to
Workbench users:

workbench-3.3/

Contains the Wind River Workbench installation.

docs/

Contains the documentation for the online help system. The .html and .pdf files may also
be accessed directly by browsing. See Wind River Linux Documentation on page 346 for
additional information.

The updates Directory

Use this location for patches and other updates from Wind River. In a new or default installation,
this directory is typically empty.

The wrlinux-5 Directory

The wrlinux-5/ directory contains the Wind River Linux development environment, with the
contents as shown in and discussed in this section. Subdirectories include:

adt

Though not shown in Development Environment Directories, this directory contains the files
required for using the Yocto Project Application Developer’s Toolkit.

docs

Though not shown in Development Environment Directories, this directory contains intellectual
property (ip) product disclosure documents.

git/

Contains the oe-core git repository with packages and configuration files used by BitBake to
configure and build platform project images. This concept of using a live git repository in the
build environment is new to Wind River Linux 5. After you configure a platform project, the
contents of this repository at build time are copied to the projectDir/layers/oe-core/meta
directory of the platform project. See Directory Structure for Platform Projects on page 43.

layers/

Contains layers required by the development environment. For additional information on
layers in general, see About Layers on page 99.

Wind River Linux layers have the prefix wr, for example wr-bsps, which is the layer
containing the kernel and file system sources as well as associated machine-related
configuration files.

The layers directory may also contain other layers including optional products, such as the
wr-simics layer directory.

See Layers Included in a Standard Installation on page 100 for a breakdown of the layers
included with your installation.

scripts

Contains scripts useful for Workbench and otherwise, including a script to help in adding
packages to a project (see About the Package Importer Tool (import-package) on page 144).

setup

Wind River Linux
User's Guide, 5.0.1

32

Contains installation-related scripts that setup the development environment.

samples/

Sample projects that can be used in Workbench as well as from the command line. This
includes the following sample projects:

clientserver

A client server application for testing communications.

hello_Linux

The classic “Hello World” application. See the Wind River Linux Getting Started Guide:
Creating and Deploying an Application for instructions on adding this application to an
existing platform project and launching it on a target for debugging.

moduledebug_userprj

A sample kernel module project that uses a user-defined makefile to pass macro values
from the build specs to the existing project Makefile.

mthread

A multi-threaded application for demonstrating multi-threaded debugging and stepping
into, over, and out of code threads.

penguin

An application similar to the ball program provided with Wind River Workbench, but uses
a Linux penguin instead.

wrlinux/

Contains the configure script you use when configuring a project and a config directory that
contains files setting default configure script behavior.

The configure script is a Wind River Linux-specific feature that greatly simplifies platform
project development by creating the framework for a complete platform project image, using
basic information about your target platform and file system. See About the Configure Script on
page 63 and About Configure Options on page 65.

Metadata

The build system uses metadata, or “data about data”, to define all aspects of the platform project
image and its applications, packages, and features.

Metadata resides in the development and build environments. From a build system perspective,
metadata includes input from the following sources:

Configuration (.conf) files

These can include application, machine, and distribution policy-related configuration files. See
Configuration Files and Platform Projects on page 33

Recipes (.bb) files

See About Recipes on page 109.

Classes (.bbclass) files.

Appends (.bbappends) files to existing layers and recipes. See About Recipes on page 109.

3 Development Environment
Configuration Files and Platform Projects

33

The build system uses this metadata as one source of input for platform project image creation. In
the Wind River Linux development environment, other sources of input include:

• Project configuration information, such as BSP name, file system, and kernel type, entered
using the configure command. See Introduction on page 61, and About Building Platform
Project Images.

• Custom layers and/or templates with their own configuration, recipes, classes, and append
files. About Layers on page 99.

• Additional changes and additions that apply to the runtime file system only, and not the
platform project image. See Options for Adding an Application to a Platform Project Image on page
138.

It is important to organize your metadata in a manner that lets you easily create, modify, and
append to it. It is also important to understand what you are already working with so that you
can leverage existing metadata and reuse it as necessary.

Since metadata is included in over 800 existing recipes, knowing how the existing data impacts
your platform project build will help you understand what you already have. With this
knowledge, you are better prepared to plan the use of append (.bbappend) files to extend or
modify the capability, and only create new recipes when necessary.

The idea is to avoid overlaying entire recipes from other layers in your existing configuration,
and not simply copy the entire recipe into your layer and modify it.

For additional information on using append files, see The Yocto Project Development Manual:
Using .bbappend Files:

http://www.yoctoproject.org/docs/current/dev-manual/dev-manual.html#using-bbappend-files

See also:

• Configuration Files and Platform Projects on page 33
• Creating a New Layer on page 106
• Creating a Recipe File on page 112

Configuration Files and Platform Projects

Learn about the various .conf files that define specific aspects of your platform project build.

The bblayers.conf File

Each platform project has a projectDir/bitbake_build/conf/bblayers.conf file. This file
provides s sequential list of what layers to include when building a platform project image. What
makes this file unique, is how it simplifies the task of including or excluding layers. To include a
layer, simply add the layer path to this file and save the file. To exclude a layer, remove the layer
path and save the file.

See Enabling a Layer on page 107 and Disabling a Layer on page 108 for details on modifying
your bblayers.conf file.

The following is an example of a bblayers.conf file used to create the platform project image from
the Wind River Linux Getting Started Guide:

LCONF_VERSION = "6"

BBPATH = "${TOPDIR}"
BBFILES ?= ""
WRL_TOP_BUILD_DIR ?= "${TOPDIR}/.."
resolve WRL_TOP_BUILD_DIR immediately with a canonical path

http://www.yoctoproject.org/docs/current/dev-manual/dev-manual.html#using-bbappend-files

Wind River Linux
User's Guide, 5.0.1

34

to satisfy the bitbake logger
WRL_TOP_BUILD_DIR := "${@os.path.realpath(d.getVar('WRL_TOP_BUILD_DIR', True))}"

BBLAYERS = " \
 ${WRL_TOP_BUILD_DIR}/layers/wrlinux \
 ${WRL_TOP_BUILD_DIR}/layers/wrlcompat \
 ${WRL_TOP_BUILD_DIR}/layers/wr-toolchain \
 ${WRL_TOP_BUILD_DIR}/layers/oe-core/meta \
 ${WRL_TOP_BUILD_DIR}/layers/oe-core-dl \
 ${WRL_TOP_BUILD_DIR}/layers/meta-downloads \
 ${WRL_TOP_BUILD_DIR}/layers/wr-kernel \
 ${WRL_TOP_BUILD_DIR}/layers/wr-bsps/qemux86-64 \
 ${WRL_TOP_BUILD_DIR}/layers/wr-base \
 ${WRL_TOP_BUILD_DIR}/layers/wr-features \
 ${WRL_TOP_BUILD_DIR}/layers/wr-tools-profile \
 ${WRL_TOP_BUILD_DIR}/layers/wr-tools-debug \
 ${WRL_TOP_BUILD_DIR}/layers/meta-networking \
 ${WRL_TOP_BUILD_DIR}/layers/meta-webserver \
 ${WRL_TOP_BUILD_DIR}/layers/wr-prebuilts \
 ${WRL_TOP_BUILD_DIR}/layers/local \
 "

Note that layers are processed from top to bottom in the bblayers.conf file.

The local.conf File

Each platform project directory has a projectDir/local.conf file. This file defines many aspects
of the build environment, and the intended target architecture and file system.

The contents of this file include:

• A copy of the configure script command used to configure and build the platform project
image.

• Machine, image, and kernel type definitions
• Distribution, networking and make variables

The following is an example of a local.conf file used to create the platform project image from the
Wind River Linux Getting Started Guide:

File originally generated by configure:
/home/revo/WindRiver/wrlinux-5/wrlinux/configure --enable-board=qemux86-64 --enable-
rootfs=glibc_small --enable-rm-oldimgs --with-template=feature/debug --enable-jobs=3 --
enable-parallel-pkgbuilds=3 --enable-reconfig --with-rcpl-version=0006

CONF_VERSION = "1"

#
Distribution choice. Normally "wrlinux" but can be customized by
the user with --with-custom-distro=<name>
#
DISTRO = "wrlinux"
WRLINUX_RCPLVERSION = ".6"

DL_DIR = "${WRL_TOP_BUILD_DIR}/bitbake_build/downloads"
#
Parallelism Options
These two options control how much parallelism BitBake should use. The first
option determines how many tasks bitbake should run in parallel:
#
BB_NUMBER_THREADS ?= "3"
#
#
The second option controls how many processes make should run in parallel when
running compile tasks:
#
PARALLEL_MAKE ?= "-j 3"
#
For a quad-core machine, BB_NUMBER_THREADS = 4, PARALLEL_MAKE = -j 4 would
be appropriate for example.

MACHINE = "qemux86-64"

3 Development Environment
Configuration Files and Platform Projects

35

Set default machine to select in the hob interface
HOB_MACHINE = "qemux86-64"
DEFAULT_IMAGE = "wrlinux-image-glibc-small"
LINUX_KERNEL_TYPE = "standard"

Log file format configuration
BB_LOGFMT = "{task}/log.{task}.{pid}"
BB_RUNFMT = "{task}/run.{taskfunc}.{pid}"

External cache directory for sstate
#SSTATE_DIR = "/home/revo/SSTATE_CACHE"

Shared-state files from other locations
#SSTATE_MIRRORS ?= "\
file://.* http://someserver.tld/share/sstate/PATH \n \
file://.* file:///some/local/dir/sstate/PATH"

Activate or de-activate CCACHE settings with CCACHE_DIR
#CCACHE_DIR = "/home/revo/Builds/test/ccache"
CCACHE_DISABLE = "1"
BB_HASHBASE_WHITELIST_append += "CCACHE_DISABLE"

PREFERRED_PROVIDER_virtual/kernel_qemux86-64 = "linux-windriver"
KTYPE_ENABLED = "standard"
Ucomment the following line if you want to build an SDK
that will on a 32 bit host when your your host is 64 bit.
against the native host compiler
#SDKMACHINE = "i686"
Use the rpm package class by default, you can specify multiple
package classes in the list
PACKAGE_CLASSES ?= "package_rpm"

Enable empty root password
EXTRA_IMAGE_FEATURES += "debug-tweaks"

BBINCLUDELOGS = "yes"

Enable wrlinux compatibility
NOTE: WRL_TOP_BUILD_DIR is defined in bblayers.conf
INHERIT += "wrlcompat"
INHERIT += "wrlquiltprep"
INHERIT += "save_native_sstate"

Additional image features
#
The following is a list of additional classes to use when building
images which enable extra features. Some available options which can
be included in this variable are:
- 'buildstats' collect build statistics
- 'image-mklibs' to reduce shared library files size for an image
- 'image-prelink' in order to prelink the filesystem image
- 'image-swab' to perform host system intrusion detection
NOTE: if listing mklibs & prelink both, then make sure mklibs is
before prelink
NOTE: mklibs also needs to be explicitly enabled for a given image,
see local.conf.extended
#
The mklibs library size optimization is more useful to smaller images,
and less useful for bigger images. Also mklibs library optimization
can break the ABI compatibility, so should not be applied to the
images which are to be extended or upgraded later.
#
#This enabled mklibs library size optimization just for the specified image.
exmaple: MKLIBS_OPTIMIZED_IMAGES ?= "wrlinux-image-glibc-small"
#This enable mklibs library size optimization will be for all the images.
example: MKLIBS_OPTIMIZED_IMAGES ?= "all"
#
##-- To turn on build stats uncomment the next line --##
#U_CLASSES += "buildstats"
##-- To turn on image-mklibs uncomment the following 2 lines --##
#MKLIBS_OPTIMIZED_IMAGES ?= "all"
#U_CLASSES += "image-mklibs"
##-- To turn on prelink uncomment the next next --##
U_CLASSES += "image-prelink"
##-- Simulator export variable class --##

Wind River Linux
User's Guide, 5.0.1

36

U_CLASSES += "image-export-vars"
##-- Setup USER_CLASSES based on values above --##
USER_CLASSES ?= "${U_CLASSES}"

#
SDK image filesystem normalization.
If the SDK filesystem needs to be canonicalized (as in Win32/64 where case is
insignificant and there are no symlinks) set NORMALIZE_SDK_FS to the type of
normalization desired (or 'no' if none)
Currently available normalizations:
- winfs
NORMALIZE_SDK_FS ?= "no"

#
Windows SDK ancilliary settings. If EXPORT_SYSROOT_HOSTS (named for backwards
compatability with WB) contains a space-seperated token 'x86-win32', a second
SDK archive will be constructed by normalizing the Linux SDK for Win32 as
described above, and will be augmented with Win32 toolchain binaries.
EXPORT_SYSROOT_HOSTS is expected to be set as an environment variable by WB.
The variable TOOLCHAIN_WIN32_DIR can be set to point to the base directory
of the Windows win32 toolchain directory hierarchy
(e.g. ${WRL_TOP_BUILD_DIR}/layers/wr-toolchain/<vvvv-build>-other)
if it is not installed as a peer to the normal toolchain layer
TOOLCHAIN_WIN32_DIR is not currently imported from environment variables.
EXPORT_SYSROOT_HOSTS ?= "x86-linux2 "
#TOOLCHAIN_WIN32_DIR ?= ""

#Install the documentation pages on the target system
#EXTRA_IMAGE_FEATURES += "doc-pkgs"

#Install all staticdev-pkgs to SDK image
#SDKIMAGE_FEATURES += "staticdev-pkgs"

incrementally erase temporary objects if built successfully
#INHERIT += "rm_work"

#Location of the bitbake_build/tmp directory
#TMPDIR ?= "${TOPDIR}/tmp"

Control patch resolution process
PATCHRESOLVE = "user"

Disable network access for the fetcher
BB_NO_NETWORK ?= "1"
#
ENABLE_BINARY_LOCALE_GENERATION = ""
GLIBC_INTERNAL_USE_BINARY_LOCALE = "precompiled"
Enable debugging for all packages
#SELECTED_OPTIMIZATION = "${DEBUG_OPTIMIZATION}"
Enable profiling for all packages
#SELECTED_OPTIMIZATION = "${PROFILING_OPTIMIZATION}"
Use SELECTED_OPTIMIZATION_<name> = "<flags>" for individual recipes
Install the debug info packages on the target system
#EXTRA_IMAGE_FEATURES += "dbg-pkgs"
Strip and split packages into separate debug info files
#INHIBIT_PACKAGE_DEBUG_SPLIT = "1"
#INHIBIT_PACKAGE_STRIP = "1"

Syslinux options for boot menus when using isolinux or linux live
SYSLINUX_LABELS = "boot"
SYSLINUX_TIMEOUT = "0"
SYSLINUX_SPLASH = "${WRL_TOP_BUILD_DIR}/layers/wrlcompat/data/syslinux/splash.lss"
AUTO_SYSLINUXMENU = "1"

File system boot image types
iso=live hdd=ext3
IMAGE_FSTYPES += "tar.bz2"
#IMAGE_FSTYPES += "tar.gz"
#IMAGE_FSTYPES += "live"
NOISO = "1"
#IMAGE_FSTYPES += "ext3"
NOHDD = "1"
#IMAGE_FSTYPES += "jffs2"
#IMAGE_FSTYPES += "ubifs"
#MKUBIFS_ARGS ?= "-m 2048 -e 129024 -c 1996"
#IMAGE_FSTYPES += "cpio.gz"

3 Development Environment
Configuration Files and Platform Projects

37

Specify the number of extra blocks of free space for an hdd image
BOOTIMG_EXTRA_SPACE ?= "512"

add/disable licenses
#
#LICENSE_FLAGS_WHITELIST += ""
#INCOMPATIBLE_LICENSE = ""

The extra-addpkg.conf is used by make -C build PKG.addpkg
include extra-addpkg.conf

Included feature templates
require ${WRL_TOP_BUILD_DIR}/layers/wr-kernel/templates/default/template.conf
require ${WRL_TOP_BUILD_DIR}/layers/wr-base/templates/default/template.conf
require ${WRL_TOP_BUILD_DIR}/layers/wr-tools-debug/templates/default/template.conf

The layer.conf Files

Each layer has a layerDir/conf/layer.conf file that the BitBake build system uses to process the
layer on project configuration and build. This file is required to include the layer in the project
build.

The following example is taken from the layer.conf file in the projectDir/layers/local layer
directory (About the layers/local Directory on page 54) that is generated when you build a
platform project.

We have a conf and classes directory, add to BBPATH
BBPATH := "${LAYERDIR}:${BBPATH}"

We have a packages directory, add to BBFILES
BBFILES := "${BBFILES} ${LAYERDIR}/recipes-*/*/*.bb \
 ${LAYERDIR}/recipes-*/*/*.bbappend"

BBFILE_COLLECTIONS += "local"
BBFILE_PATTERN_local := "^${LAYERDIR}/"
BBFILE_PRIORITY_local = "10"

Add scripts to PATH
PATH := "${PATH}:${LAYERDIR}/scripts"

Add a directory to allow local changelist.xml changes
WRL_CHANGELIST_PATH += "${LAYERDIR}/conf/image_final"

Add a directory to allow local fs_final*.sh script changes
WRL_FS_FINAL_PATH += "${LAYERDIR}/conf/image_final"

We have a pre-populated downloads directory, add to PREMIRRORS
PREMIRRORS_append := "\
 git://.*/.* file://${LAYERDIR}/downloads/ \n \
 git://.*/.* git://${LAYERDIR}/git/BASENAME;protocol=file \n \
 svn://.*/.* file://${LAYERDIR}/downloads/ \n \
 ftp://.*/.* file://${LAYERDIR}/downloads/ \n \
 http://.*/.* file://${LAYERDIR}/downloads/ \n \
 https://.*/.* file://${LAYERDIR}/downloads/ \n"

In general there is no need to modify this file since it incorporates everything that is needed to
process your local application recipes. Of particular interest are the following variables:

BBFILES

This variable tells the build system to source recipe files (.bb and .bbappend files) from any
directory named recipes-* inside the layer. In the default layer structure this would be the
directory recipes-sample. As long as you place your application-specific recipes in a folder
that begins with recipes-, they will be included in the build as defined by this variable.

BBFILE_PRIORITY

Wind River Linux
User's Guide, 5.0.1

38

This variable sets the processing priority of the layer. If another layer depends on the
configuration of this layer, or on recipes contained in this layer, then the priority should be
higher that the dependant layer.

PREMIRRORS_append

This variable specifies places where the build process can source your upstream package
sources from before the recipe specified URL is searched. Wind River Linux comes with all
supported packages in a pre-mirror or local file path URL location so it is not necessary to
access the internet in order to build a project. In particular, the source files can be retrieved
automatically from a source code repository, either git or subversion as indicated.

The machine.conf Files

The machine.conf file, located in the layer at layerName/conf/machine/machineName.conf (see
Layer Structure by Layer Type on page 103), specifies the BSP configuration for your platform
project image.

Assigning Empty Values in BitBake Configuration Files

Learn how to assign an empty value to a variable in the Yocto Project BitBake build system.

Assigning an empty value in a platform project .conf file is different in BitBake than it is from
conventional syntax. With BitBake, you must enter a space between the declaration's double
quotes, while conventional syntax allows for double quotes with no spaces.

Assign Empty String

CONF_VALUE = " "

NOTE: Notice that the = " " declaration has a single space.

This assigns the empty string after BitBake strips the leading space. To retrieve this variable as
part of your code and prevent ndefined variable exceptions, use the following syntax:

pyvar = d.getVar("CONF_VALUE", True) or ""

Assign No Value

CONF_VALUE = ""

This assigns the empty string to the Python None value, and does not return an empty string
when you try to retrieve the variable's value.

Perform the following steps to insert an empty string and test that it returns an empty value.

Step 1 Assign an empty string to the projectDir/local.conf file.

Options Description

Command line Run the following command from the projectDir:

$ echo VIRTUAL-RUNTIME_dev_manager = \" \" >> local.conf

3 Development Environment
README Files in the Development Environment

39

Options Description

Edit local.conf file 1. Open the projectDir/local.conf file in an editor and add the
following line to it:

VIRTUAL-RUNTIME_dev_manager=" "

2. Save the file.

In this example, we use the VIRTUAL-RUNTIME_dev_manager variable. You may substitute this
for a variable that you wish to retrieve an empty string for.

Step 2 Rebuild the file system.

Run the following command from the projectDir.

$ make fs

Step 3 Retrieve the empty string.

Run the following command from the projectDir/bitbake_build directory.

$ bitbake -e | grep VIRTUAL-RUNTIME_dev_manager

If you used a different variable in the previous step, substitute VIRTUAL-
RUNTIME_dev_manager for the name of that variable.

The system should return an output that displays the empty string, for example:

$ VIRTUAL-RUNTIME_dev_manager=""

README Files in the Development Environment

Wind River Linux provides multiple ways to view the README files that are part of your
installation.

README files located in your installation, such as the one located in the installDir/layers/
example/lemon_layer directory, actually reside in a git repository, and are not directly available
to open to review. The following sections provide information on viewing README files.

Viewing a Specific README File in the Installation

Use git show to open the README file directly for viewing only.

The following procedure uses the README file located in the installDir/wrlinux-5/layers/
examples/lemon_layer directory as an example. To view another README file, locate the path
to it before you begin.

Step 1 Navigate to the location where the README file resides.

$ cd installDir/wrlinux-5/layers/examples/lemon_layer

Substitute the path as necessary to view other README files.

Wind River Linux
User's Guide, 5.0.1

40

Step 2 View the README file.

$ git show HEAD:README

Cloning a Layer to View Installation README Files

Use git clone to clone a layer in the installation to a temporary directory to view or edit the
README file.

The following procedure uses the README file located in the installDir/wrlinux-5/layers/
examples/lemon_layer directory as an example. To clone another README file, locate the path
to it before you begin.

Step 1 Navigate to a location on the host system to clone the layer to.

In this example, you will navigate to the /tmp directory.

$ cd /tmp

Substitute the path as necessary to place the layer in a different directory.

Step 2 Clone the layer.

$ git clone installDir/wrlinux-5/layers/examples/lemon_layer

Substitute the path as necessary to clone another layer to view a different README file.

Step 3 View the README file using the terminal, or open it in an editor.

Viewing All Installation README Files in a Web Browser

Use git instaweb to browse all layer installation files, including README files, in a web browser.

The following procedure uses a web browser to view the files located in git in the installDir/
layers directory.

NOTE: To use this option, you must install and run lighttpd or httpd on your development host
prior to performing the procedure.

Step 1 Navigate to the location of the layers.

$ cd installDir/wrlinux-5/layers

Step 2 Open the git web browser.

$ git instaweb

The web browser will open with the installDir/layers directory at the top-level.

Step 3 Navigate to the examples/layers/lemon_layer location and open the README file in the tree
view.

41

4
Build Environment

About the Project Directory 41

Creating a Project Directory 42

Directory Structure for Platform Projects 43

About README Files in the Build Environment 56

About the Project Directory

The project directory, located in your build environment, maintains all files specific to your
platform project development.

You should keep your build environment separate from the development environment. Wind
River recommends you create a separate work directory with a project subdirectory holding the
build environment. This concept is explained in the Wind River Linux Getting Started Guide: About
Developing Platform Projects.

The main reason for this is that it is possible to corrupt your development environment by
running the configure script from inside it (see About the Configure Script on page 63).

CAUTION: Running configure from the Wind River Linux install directory may corrupt your
installation. Always run configure from the directory where your project resides.

The following figure shows one example of this directory structure.

Wind River Linux
User's Guide, 5.0.1

42

Figure 2: qemux86-64 as the Project Directory Containing the Build Environment

In this example, the general work directory is named workspace. Within workspace is the
qemux86-64 project directory which will hold the build environment, in this case for a common
PC board. Directory names have been chosen for clarity; you can name them as you like. In this
document, the variable projectDir refers to your project directory, which is qemux86-64 in the
example in the figure.

NOTE: When using Workbench to create a platform project, by default Workbench creates the
$HOME/WindRiver/workspace/projectName directory containing the Workbench specific
project files, and an additional adjacent directory with a _prj suffix that contains a complete
Wind River Linux platform project. The Workbench project directory contains select file system
links to elements in the Linux platform project_prj project. For the example shown in the figure
above, the Workbench project directory would be in

/home/user/WindRiver/workspace/qemux86-64_prj

Creating a Project Directory

A project directory or folder is the file system location where you configure and build your target
software.

You can create a project directory in any location for which you have permission; for example, in
a subdirectory of your home directory.

• Create a new directory for your project.

Options Description

Command line Create a new project directory with the mkdir command, for
example:

$ mkdir -p $HOME/workspace/qemux86-64

4 Build Environment
Directory Structure for Platform Projects

43

Options Description

Workbench If you are using Workbench, the project directory is created for you
when you click Finish in the configuration wizard. It is created as
a folder in your workspace folder (by default, $HOME/WindRiver/
workspace/) with the name you assign and a _prj suffix, for example

my_qemux86-64_prj

Directory Structure for Platform Projects

Wind River Linux automatically creates the build environment directory structure when you
configure and build a platform project.

The following illustration depicts some of the subdirectories the configure script creates within a
project directory.

Figure 3: Partial Contents of the Project Directory

Selected directories and their contents are described in further detail below. Note that these
directories are not present until you configure and build the platform project:

bitbake_build

The Yocto build systems working directory, many of the other directories contain file links to
elements in this directory.

bitbake_build/conf

The directory where the local.conf build configuration file is located. A soft link to this file is
created in the working directory for your convenience.

Wind River Linux
User's Guide, 5.0.1

44

bitbake_build/conf/bblayers.conf

A file listing the layers used to build the target images.

build

A directory that hosts soft links to the build directories for each package. The directory also
hosts a Makefile used to build special targets associated with the packages. Use the command
make -C build help for more details.

export

A convenience directory that hosts soft links to important build files, and the target filesystem
once it is built using the make command. Note that the name of the files are generated after
the project's configuration options.

export/qemux86-64-glibc-std-standard-dist.tar.bz2

A compressed tar file of the root file system.

export/dist

A directory containing the target's root file system. It is used by default as an NFS mount
when booting the Linux kernel image using QEMU.

export/images/bzImage-qemux86-64.bin

The Linux kernel image.

export/images/modules-version-WR5.0.1.0_standard-r0-qemux86-64.tgz

A compressed tar file containing the Linux kernel modules.

host-cross

The build tool chain that you can use to (cross-) compile programs for your target. Note that
the directories inside host-cross are soft links to corresponding directories in

bitbake_build/tmp/sysroots

layers

A directory that contains the layers for the platform project, including:

layers/local

A folder created specifically for developers to hold their project-specific files. For example,
if you add a sample project to your platform project, the build system adds a directory
with the required files to the layers/local/recipes-sample directory. See About the layers/local
Directory on page 54.

layers/oe-core

A folder that contains the core Open Embedded metadata in specific BitBake layers used to
configure the project. The default layer directories include:

meta

Contains the git clone from the installDir/wrlinux-5/git directory in the installation
development environment. See Directory Structure on page 29 .

meta-demoapps

Contains recipe files for demo applications provided with the Yocto Project.

meta-hob

4 Build Environment
Directory Structure for Platform Projects

45

Contains configuration and recipe files for the HOB, a GUI-based tool for creating
custom BitBake images. See https://wiki.yoctoproject.org/wiki/BitBake/GUI/Hob for
additional information.

meta-skeleton

Contains configuration and recipes for the platform projects base structure.

scripts

Contains macros and scripts for the build system.

layers/oe-core-dl

Contains downloaded packages and configuration files that comprise the package
offerings from the Yocto Project. The conf/layer.conf file defines the mirror sites and order
of locations that packages are retrieved from.

layers/wr-base

Contains the recipes and other configuration files that comprise the Wind River Linux
base offering and make it possible to use the configure script to generate a platform project
image. See About the Configure Script on page 63.

Additionally, this layer contains templates for adding additional features to your platform
project image. See Feature Templates in the Project Directory on page 47 for additional
information.

This layer does not include bug fixes.

layers/wr-bsps

Contains the BSP support files of the BSP that your platform project is configured for.

layers/wr-kernel

Contains recipes and machine configuration information for Wind River-supplied kernels
and kernel features. Additionally, this layer contains templates for adding additional
features to your platform project image. See Kernel Configuration Fragments in the Project
Directory on page 51 for additional information.

layers/wrlcompat

In a typical Yocto Project build environment, the build output creates a specific directory
structure. This structure is different than the Wind River Linux structure from previous
releases. The wrlcompat layer ensures that build output is consistent with previous Wind
River Linux (4.x) releases.

layers/wrlinux

Contains the recipes, configuration information, and files that support Wind River Linux
tools and enhance development with the Yocto Project build system.

The files directory includes licensing information.

The scripts directory includes the following Wind River Linux scripts that simplify and
enhance platform project image creation and development:

layers/oe-core-dl

Contains downloaded packages and configuration files that comprise the package
offerings from the Yocto Project. The conf/layer.conf file defines the mirror sites and
order of locations that packages are retrieved from.

layers/wr-base

https://wiki.yoctoproject.org/wiki/BitBake/GUI/Hob

Wind River Linux
User's Guide, 5.0.1

46

Contains the recipes and other configuration files that comprise the Wind River Linux
base offering and make it possible to use the configure script to generate a platform
project image. See About the Configure Script on page 63. Additionally, this layer
contains templates for adding additional features to your platform project image. See
Feature Templates in the Project Directory on page 47.

layers/wr-bsps

Contains the BSP support files of the BSP that your platform project is configured for.

layers/wr-kernel

Contains recipes and machine configuration information for Wind River-supplied
kernels and kernel features. Additionally, this layer contains templates for adding
additional features to your platform project image. See Kernel Configuration Fragments in
the Project Directory on page 51.

layers/wrlcompat

In a typical Yocto Project build environment, the build output creates a specific
directory structure. This structure is different than the Wind River Linux structure from
previous releases. The wrlcompat layer ensures that build output is consistent with
previous Wind River Linux (4.x) releases.

layers/wrlinux

Contains the recipes, configuration information, and files that support Wind River
Linux tools and enhance development with the Yocto Project build system.

The files directory includes licensing information.

The scripts directory includes the following Wind River Linux scripts that simplify and
enhance platform project image creation and development:

config-target.pl

Configures the target platform project from configure scripts input.

create-usb.pl

Creates a platform project image file suitable for deployment on a USB drive.

fs_changelist.lua

Creates a flie system changelist file. See Lua Scripting in Spec Files on page 369.

rsim

Launches a QEMU session from the command-line with a single make start-target
command.

layers/wr-toolchain

Contains files, recipes, configuration information and documentation to support the GNU
toolchain supplied by Wind River for development.

layers/wr-toolchain-shim

Provides configuration glue to allow selection of an automatically integrated toolchain
layer, which in turn contains both rules for building the toolchain from source, and rules
for using the pre-built binaries. This layer also provides tuning files and configuration
overrides for those layers.

layers/wr-tools-debug

4 Build Environment
Feature Templates in the Project Directory

47

Contains configuration information and files to support debugging and ptrace with
Workbench and Wind River tools. Additionally, this layer contains templates for adding
additional features to your platform project image. See Feature Templates in the Project
Directory on page 47.

layers/wr-tools-profile

Contains configuration information and files to support Wind River Linux development
tools, including: analysis, boot time, code coverage, Valgrind, and lttng. You can add
these features to your platform project using templates. See Feature Templates in the Project
Directory on page 47.

packages

A soft link to bitbake_build/downloads, a directory where you can find tar files of all
packages used in the build. Note that the tar files are soft links to the actual files in the Wind
River Linux installation path that are bundled with the distribution.

READMES

Contains README files for the Wind River Linux layers included in your platform project
image configuration and build.

scripts

Contains macros and scripts for the build system.

Feature Templates in the Project Directory

Each feature template consists of configuration files that add the required system settings and
packages necessary to add the feature to your platform project.

These templates can also include kernel or general file system changes that the respective feature
may require.

In the development environment for the installation, templates are located in the projectDir/
layers directory, in the following subdirectories:

Table 1 Build Environment Template Sub-directories

projectDir/layers sub-
directory

Sub-directory contents

wr-base/templates/feature/ benchmark

Adds benchmark packages.

debug

Adds debug-specific functionality, including the following
tools: elfutils, ltrace, memstat, strace, and the Wind River
LTTng trace daemon.

demo

Adds general purpose functionality for testing small file
system (glibc_small) target platforms.

gdb

Adds the GNU debugger for command-line debugging.

Wind River Linux
User's Guide, 5.0.1

48

projectDir/layers sub-
directory

Sub-directory contents

test

Adds a collection of tests from the Linux Test Project (LTP)
package.

wr-features/templates/
feature/

ipv6

Configuration file for enabling ipv6.

LAMP

Appends the following images to the build: mysql5, modphp,
phpmyadmin, apache2, and xdebug

lsbtesting

Adds recipes, tasks, images, and missing packages, as
necessary, for running the Linux Standard Base (LSB) tests on
your target platform.

mysql

Adds the mysql5 package.

mysql-odbc

Adds packages necessary to use MySQL over ODBC.

wr-kernel/templates/
feature/

compat-wireless

Provides a mechanism to build a compat-wireless out-of-tree
kernel module then install it on the target.

edac

Configuration file for edac

initramfs

Configures the build to create an initramfs image.

initramfs-integrated

Configures the build to create an initramfs image that will be
integrated with the kernel image.

kdump

Configuration file to enable kdump

kernel-debug

Configuration file to enable kernel debugging

kernel-tune

Configuration file to add necessary user land tools

kexec

Configuration file to enable kernel execution of a new kernel
over the currently running kernel.

kvm

4 Build Environment
Directory Structure for Platform Projects

49

projectDir/layers sub-
directory

Sub-directory contents

Configuration file to enable kernel-based virtual machine
(KVM)

kvm-kmod

Provides a mechanism to build the out-of-tree KVM kernel
modules.

libhugetlbfs

Enables Huge TLB support in the kernel and adds the
libhugetlbfs package to the image.

lttng2

Configuration file to configure the kernel for lttng2 and
disable ltt.

msa

Enables the Microstate Accounting kernel feature.

nfsd

Provides a mechanism to build the NSFD kernel module for
NFS server capability on the target.

qemu-linaro

Makes the qemu-linaro.bb file available. In particular, the
qemu-linaro.bb file will be qemu-native once it is available.

qoriq-debug

Enables the qoriq-debug kernel in the root file system, which
allows access to the hardware Debug IP of the QorIQ P4080,
P3041, and P5020 devices from user-space applications.

wr-toolchain/templates/
feature

target-toolchain

Appends toolchain wrappers and symlinks to the Wind River
Linux build

wr-tools-debug/templates/
feature/

debug-wb

Adds required target agents to support command line and
Workbench debugging.

libwrsqtehelper

Adds a library of Qt object wrapper functions that can help
display Qt objects that are otherwise opaque when used with
Wind River Workbench.

wr-tools-profile/templates/
feature/

analysis

Adds support for Wind River Analysis tools, including
interfaces to Wind River Workbench for performance
profiling and memory analysis.

boottime

Wind River Linux
User's Guide, 5.0.1

50

projectDir/layers sub-
directory

Sub-directory contents

Adds boot time profiling tools.

code_coverage

Enables the Code Coverage agent for use with the Wind River
Code Coverage Analyzer development tool.

debug-python

Adds Wind River's python development solution to allow for
debugging of python scripts through the PyDev plugin.

footprint

Adds the fetch-footprint.sh footprint utility to the target file
system to enable analysis of file system footprint..

oprofile

Add support for oprofile system-wide profiling.

system-stats

Adds the system and process monitoring utilities.

valgrind

Adds the Valgrind instrumentation framework.

valgrind_small

Adds the small footprint Valgrind instrumentation
framework.

wr-profiling-kernel-overrides

Configuration files and .scc file to ensure profiling tools can
access the stack on CGL systems.

wrsv-ltt

Adds a Wind River Linux implementation of the Linux Trace
Toolkit (ltt).

wrlcompat/templates/
feature/

export-tar

Adds a step to recipe building that creates tarballs of SVN
and git repositories, and copies over tarballs to a common
directory (tmp/deploy/tar) to be used or copied over to other
directories.

ip-report

Adds an IP report to the BitBake parser environment.

package-report

Adds a package report to the BitBake parser environment

pseudo14

Sets the preferred pseudo version to 1.4.5

pseudo15

4 Build Environment
Kernel Configuration Fragments in the Project Directory

51

projectDir/layers sub-
directory

Sub-directory contents

Sets the preferred pseudo version to 1.5

pseudo151

Sets the preferred pseudo version to 1.5.1

Kernel Configuration Fragments in the Project Directory

Each kernel configuration fragment includes a list of kernel feature descriptions that encapsulate
a change to the kernel tree, depending on the fragment's application.

Kernel tree changes consist of patches, or configuration fragments, that are applied to the branch,
or board/target-specific system kernel being built.

Currently, Wind River Linux 5.0.1 offers the following kernel configuration fragments:

Table 2 Wind River Linux Kernel Configuration Fragments

Configuration Fragment Name Description

cfg/l2tp.scc Layer 2 tunneling protocol support

cfg/8250.scc Enable 8250 serial support

cfg/boot-live.scc Live boot support

cfg/cpu-hotplug.scc Enable CPU hotplug support

cfg/dmaengine.scc Enable DMA engine core functionality

cfg/dmm.scc Device mapper multipath support

cfg/dpaa.scc Enable DPAA support

cfg/drbd.scc DRDB block device support

cfg/efi-ext.scc Enable extended EFI support

cfg/efi.scc Core EFI support

cfg/fs/btrfs.scc Enable brtfs filesystem support

cfg/fs/debugfs.scc Enable debugfs support

cfg/fs/devtmpfs.scc Enable devtmpfs for tmpfs/ramfs support at early
bootup

cfg/fs/ext2.scc Enable the Extended 2 (ext2) filesystem

cfg/fs/ext3.scc Enable the Extended 3 (ext3) filesystem

cfg/fs/ext4.scc Enable the Extended 4 (ext4) filesystem

cfg/fs/flash_fs.scc Enable flash filesystem support (yaffs, jffs2, cramfs,
mtd, etc.)

cfg/fs/ocfs2.scc OCFS2 file system support

Wind River Linux
User's Guide, 5.0.1

52

Configuration Fragment Name Description

cfg/fs/vfat.scc Enable VFAT support

cfg/iscsi.scc iSCSI initiator over TCP/IP

cfg/macvlan.scc MAC-VLAN support

cfg/net/bridge.scc Enable Bridge Netfilter options

cfg/net/ip6_nf.scc Enable Netfilter (IPv6) options

cfg/net/ip_nf.scc Enable Netfilter (IPv4) options

cfg/net/ipsec.scc Enable IPsec options

cfg/net/ipsec6.scc Enable IPv6 IPsec options

cfg/net/ipv6.scc Enable IPv6 options

cfg/paravirt_kvm.scc Paravirtualized KVM guest support

cfg/ptp-gianfar.scc Enable PTP 1588 using Gianfar support

cfg/qemu-devices.scc Enable QEMU-supported devices

cfg/rt-mutex-tester.scc Scriptable tester for rt mutexes

cfg/smp.scc Enable SMP

cfg/sound.scc OSS sound support

cfg/timer/hpet.scc HPET timer support

cfg/timer/hz_100.scc Enable 100Hz timer frequency

cfg/timer/hz_250.scc Enable 250Hz timer frequency

cfg/timer/hz_1000.scc Enable 1000Hz timer frequency

cfg/timer/no_hz.scc Enable CONFIG_NO_HZ

cfg/usb-mass-storage.scc Enable options required for USB mass storage
devices

cfg/vesafb.scc VESA framebuffer support

cfg/virtio.scc virtio support (core, pci, balloon, ring, net, blk,
mmio)

cfg/x32.scc x86 x32 support

features/aoe/aoe-enable.scc Enable ATA Over Ethernet (AOE)

features/blktrace/blktrace.scc Enable blktrace

features/cgroups/cgroups.scc Enable cgroups and selected controllers / namespaces
and associated functionality

features/dca/dca.scc Enable DCA for IOATDMA-capable devices

features/edac/edac.scc Enable core EDAC functionality

4 Build Environment
Directory Structure for Platform Projects

53

Configuration Fragment Name Description

features/ftrace/ftrace.scc Enable Function Tracer

features/fuse/fuse.scc Enable core FUSE functionality

features/hrt/hrt.scc Enable high res timers and Generic Time

features/hugetlb/hugetlb.scc Enable Huge TLB support

features/i915/i915.scc Enable i915 driver

features/igb/igb.scc Intel gigabit functionality

features/intel-amt/mei/mei.scc Enable options for the Intel Management Engine
interface

features/intel-dpdk/intel-dpdk.scc Enable prerequisites for Intel DPDK

features/intel-e1xxxx/intel-e100.scc Enable Intel E100 and E1000 support

features/ipmi/ipmi.scc Enable core ipmi support

features/iwlagn/iwlagn.scc Enable iwlagn support

features/iwlwifi/iwlwifi.scc Enable iwlwifi support

features/kgdb/kgdb.scc Enable KGDB and KGDB access protocols

features/kmemcheck/kmemcheck-
enable.scc

Enable kmemcheck

features/kvm/qemu-kvm-enable.scc Enable KVM host support

features/latencytop/latencytop.scc Enable latencytop

features/lttng/lttng-enable.scc Enable Linux Trace Toolkit - next generation

features/lttng2/lttng2-enable.scc Enable LTTNG 2

features/mac80211/mac80211.scc Enable mac 80211 and WLAN support

features/msa/msa-enable.scc Enable Microstate Accounting (MSA)

features/namespaces/namespaces.scc Enable namespace support and experimental
namespaces

features/netfilter/netfilter.scc Enable netfilter and conn tracking

features/nfsd/nfsd-enable.scc Enable NFS server support

features/power/intel.scc Enable Intel Power Management options

features/powertop/powertop.scc Enable powertop and profiling

features/profiling/profiling.scc Enable profiling and timerstats

features/ramconsole/ramconsole.scc Android RAM buffer console

features/scsi/cdrom.scc Enable options for SCSI CD-ROM support

features/scsi/disk.scc Enable options for SCSI disk support

Wind River Linux
User's Guide, 5.0.1

54

Configuration Fragment Name Description

features/scsi/scsi.scc Enable options for SCSI support

features/serial/8250.scc Enable 8250 serial support

features/systemtap/systemtap.scc Enable options required for systemtap support

features/taskstats/taskstats.scc Enable taskstats

features/uio/uio.scc Enable UIO as a module

features/uprobe/uprobe-enable.scc Enable options required for uprobes support

features/usb-net/usb-net.scc Enable all options required for USB networking

features/usb-base.scc Enable core options for USB support

features/usb/ehci-hcd.scc Enable options for ehci (USB 2.0)

features/usb/ohci-hcd.scc Enable options for ohci (USB 1.x)

features/usb/uhci-hcd.scc Enable options for uhci (USB 1.x)

features/usb/xhci-hcd.scc Enable options for xhci (USB 3.0)

features/userstack/userstack.scc Enable User Space Stack Dump support

features/wrnote/wrnote.scc wrnote for advanced debugging

Viewing Template Descriptions

To view a list of available template descriptions, use the Workbench Platform Project wizard.

See About Templates on page 115 for information on adding templates to your platform project
image.

Step 1 Start Workbench.

Step 2 Create a new project.

In Project Explorer, right-click and select New > Wind River Linux Platform Project.

Step 3 Give the project a name.

Enter a project name, then click Next.

Step 4 Apply a template.

Click Add to the right of the Templates field. A list of available templates will display. Select a
template in the list to view its description.

About the layers/local Directory

When you configure a platform project image, Wind River Linux automatically creates a sample
local layer for use as a location to contain your application projects.

The local layer lives in the layers/local directory and is created with the following structure:

4 Build Environment
Directory Structure for Platform Projects

55

Figure 4: Local Layer Directory Structure with Sample Hello World Application

The layers/local also contains the final recipe processed by the build system layers/local/recipes-
img/images/wrlinux-image-filesystem.bb. A link to this file called default-image.bb appears
in the root directory of the project. This file and the your local.conf file form the basis of your
project wide configuration.

In this example, the projectDir/layers/local directory also includes the recipes-sample/
hello subdirectory, which is added to the local directory when you add the sample Hello World
application project to your platform project image. See the Wind River Linux Getting Started Guide:
Developing an Application Project Using the Command Line.

When you add a sample application, the contents are automatically added to the layers/local/
recipes-sample directory.

When you import an application package using the import-package feature, the contents are
added to the layers/local/recipes-local directory. See About the Package Importer Tool (import-
package) on page 144.

The local layer is enabled by default. You can verify this by looking at the contents of the
projectDir/bitbake_build/conf/bblayers.conf file. The main components of the layer are the
layer configuration file (projectDir/layers/local/conf/layer.conf), and the application-specific
source code and associated metadata located in the recipes-sample/hello folder. Layers and layer
requirements are described in the following sections:

Wind River Linux
User's Guide, 5.0.1

56

• Directory Structure on page 29
• About Layers on page 99
• Creating a New Layer on page 106

In this example, the sample hello application provides a guideline for adding your own
applications to an existing platform project image. To be included in a platform project, each
application requires:

• It be placed in a directory that includes a BitBake recipe file (hello_1.0.bb) and the application
source (hello.c). Creating a Recipe File on page 112.

• The directory (above) be placed in the projectDir/layers/local directory. It is possible to use
a directory that you create, but if you want to include the application in subsequent project
builds, that directory must set up as a layer. Creating a New Layer on page 106.

• It be built and added to the platform project image. See the Wind River Linux Getting Started
Guide: Developing an Application Project Using the Command Line and About Application
Development on page 127

You can setup your local layer in any manner that best suits your development needs.

See also:

Directory Structure for Platform Projects on page 43

Directory Structure on page 29

About README Files in the Build Environment

Wind River Linux provides two options to view the README files that are part of your platform
project build.

README files located in your installation, such as the one located in the installDir/layers/
example/lemon_layer directory, actually reside in a git repository, and are not directly available
to open to review, even when you configure and build a platform project.

Adding a Layer to a Platform Project to View README Files

Use the --with-layer= configure option to add a layer to a platform project to make a README
file available for viewing or editing.

The following procedure uses the README file located in the installDir/wrlinux-5/layers/
examples/lemon_layer directory as an example. To use another README file from a different
layer, locate the layer path before you begin.

Step 1 Configure a platform project to include the layer with the README file.

In this example, you will use the --with-layer=examples/lemon_layer configure option to add the
layer.

$ configDir/configure \
--enable-board=qemux86-64 \
--enable-kernel=standard \
--enable-rootfs=glibc_std \
--with-layer=examples/lemon_layer

Substitute the --with-layer= path as necessary to add a different layer to view a different
README file.

4 Build Environment
Adding All Layers to a Platform Project to View All README Files

57

Step 2 View the README file.

Once the configure script completes, the README file is available in two locations for viewing
or editing:

• The projectDir/READMES directory
• The projectDir/layers/examples/lemon_layer directory

Adding All Layers to a Platform Project to View All README Files

Use the --enable-checkout-all-layers=yes configure option to add all layers to a platform project
to make all README files available for viewing or editing.

The following procedure checks out all project layers from the git repository and add them to the
projectDir/layers directory. Once you perform this procedure, the layer README files are
accessible and do not require a git command to view or edit.

Step 1 Configure a platform project.

In this example, you will use the --enable-checkout-all-layers=yes configure option to add all
layers.

$ configDir/configure \
--enable-board=qemux86-64 \
--enable-kernel=standard \
--enable-rootfs=glibc_std \
--enable-checkout-all-layers=yes

Step 2 View the README file.

Once the configure script completes, the README files are available in their respective layers,
for example:

projectDir/layers/examples/lemon_layer

Wind River Linux
User's Guide, 5.0.1

58

59

PA R T I I

Platform Project Image Development

Configuration and Build.. 61

Localization... 91

Portability.. 95

Layers.. 99

Recipes.. 109

Templates.. 115

Finalizing the File System Layout with changelist.xml..... 119

Wind River Linux
User's Guide, 5.0.1

60

61

5
Configuration and Build

Introduction 61

About Building Platform Project Images 72

Build-Time Optimizations 76

Examples of Configuring and Building 77

About Creating Custom Configurations Using rootfs.cfg 80

EGLIBC File Systems 85

Introduction

With Wind River Linux, you must configure and build a platform project image to develop it to
suit your needs.

For information on configuring and building platform projects in general, see the Wind River
Linux Getting Started Guide: Developing a Platform Project Image Using the Command-Line.

Before you begin, see:

• Directory Structure for Platform Projects on page 43
• Run-time Software Configuration and Deployment Workflow on page 27

Design Benefits

The design of the Yocto Project BitBake build system with Wind River Linux offers several
important benefits:

• If a pre-built kernel and file system are satisfactory for deployment, or current testing and
development, you can build a complete run-time file system in minutes using prebuilt kernel
and file system binaries.

• You can build specific parts from source files, saving time by building only the file system, or
only the kernel, or a specific package, whichever element is of current interest.

• Your builds cannot contaminate the original packages, layers, recipes, templates, and
configuration files, because the development environment is kept separate from the build

Wind River Linux
User's Guide, 5.0.1

62

environment. For additional information, see Directory Structure for Platform Projects on page
43 and Directory Structure for the Development Environment.

• You can include all of your project changes in the projectDir/layers/local directory to
simplify development. See About the layers/local Directory on page 54

• By using custom layers and templates (see About Layers on page 99 and About Templates
on page 115, you can add packages, modify file systems, and reconfigure kernels
for repeatable, consistent builds, yet still keep your changes confined for easy removal,
replacement, or duplication.

These last two features allow multiple builds, customized builds, and a strict version control
system, while keeping the development environment pristine and intact.

You create the build environment as a regular user with the configure script. For additional
information, see About the Configure Script on page 63. It is in this environment that you build
(make) Wind River Linux run-time system, either default or customized, using software copied
or linked from the development environment.

Although this information is oriented toward the command line, it will also give Workbench
users a better understanding of the process of creating a Wind River Linux platform project.

NOTE: The configure script checks for required host updates, and notes them in config.log, a
text file within your projectDir directory.

About Creating the Platform Project Build Directory

Before you configure and build a platform project image, you must first create the directory to
manage your build.

The platform project directory is a directory that you create in the build environment, as opposed
to the development environment. See Directory Structure for the Development Environment, for an
explanation of development environment in Wind River Linux.

You typically create a platform project within a work directory, called in this guide workdir.
Within workdir you create a subdirectory for the particular project, which will be referred to in
this guide as projectDir.

While you can name your projectDir anything you like, in this guide, we use examples that
indicate the system configuration and contents of the project, for example common_pc_small, to
indicate an x86 common pc target platform with a small file system. Another example is to use
the BSP name and file system, such as qemux86-64_small. This example indicates the project is
configured with the 64-bit QEMU x86 platform with a glibc_small file system.

After you create your project directory, you can define the shared state cache (sscache) and ccache
environment variables to significantly help speed up your build process. See the Wind River Linux
Getting Started Guide: Creating a Platform Project from the Command-Line, for information on setting
these variables.

For information on the project directory, see

• About the Project Directory on page 41
• Directory Structure for Platform Projects on page 43

About Configuring a Platform Project Image

Use the configure script with supplied options to configure a project.

5 Configuration and Build
Initializing the Wind River Linux Environment

63

Project configuration is the actual creation of the project files based on the using the configure
script with options to define the platform project.

Minimum configure options include the board support package (BSP), kernel, and rootfs (file
system). Additionally, you can use layers, profiles, and templates to add additional features to
your platform project, depending on your requirements.

The configure script accepts many optional arguments besides board, kernel, and root file
system. For example you can specify additional features, build optimizations, restrict it to kernel
builds, request different kinds of images from the build and more. See the configure command
help (-h or --help option), Configure Options Reference on page 66, and additional examples in
this guide for details.

When you have configured your project, you can build it, as described in About Building Platform
Project Images.

Initializing the Wind River Linux Environment

Learn how to initialize the development environment and create an environment variable to
simplify platform project configuration.

This procedure is optional, but can help save time when you configure platform projects.

Step 1 Navigate to the Wind River installation directory.

$ cd installDir

Step 2 Set the environment variable.

$./wrenv.sh -p wrlinux-5

You will then have an environment variable for the Wind River configure script, named
WIND_LINUX_CONFIGURE.

Step 3 Use the environment variable to configure a platform project.

$ $WIND_LINUX_CONFIGURE options…

About the Configure Script

The configure script is the most important of several key configuration files—it initiates the entire
configuration process.

It creates a subdirectory structure within the project directory and populates it with the script
framework, configuration files and tools necessary to build the run-time system. It processes
board templates and initial package files, and copies basic run-time file system configuration files
(for the etc and root directories), from the development environment.

The script is always run with options. Which options you supply depend on which kernel and file
system you wish to build for your board, which features you want to include, and whether you
wish to build a complete run-time system, or only a kernel or only a file system.

The configure script produces a plain text log file, config.log, within the project directory, in this
case, workspace/qemux86-64. This is a very useful file, recording configure options, automatic
checking of host RPM updates, and so on. Workbench saves a similar log file, creation.log which
contains the screen output of the configure command.

Wind River Linux
User's Guide, 5.0.1

64

The configure script is located in installDir/wrlinux-5/wrlinux/, where installDir is the
path to your Wind River software installation. Throughout this manual, this location is referred to
as configDir.

NOTE: Do not run configure, builds (make target), or Workbench as root because this may
interfere with the operations of the build system.

The examples in this documentation show running the configure script relative to an
installDir of /opt/WindRiver/wrlinux-5/wrlinux, for example:

$ configDir/configure options…

If your installation is in a different location, replace configDir with the location of your
installation. If you are using Workbench, you run the configure script by clicking Finish in the
new project wizard.

To help simply using the configure script, you may wish to create an environment variable for it.

NOTE: You should not alias configure to be the full path to the configure script, or add the
path to configure in your PATH, because this could cause problems. If, for example, you install
or update a local host package that requires running the host operating system's configure
command, the Wind River Linux configure script could be called instead. You could, however,
alias a different name, for example wrconfig, to be the full path to the Wind River Linux
configure script.

See Examples of Configuring and Building on page 77 for instructions on configuring and
building various project types, kernels and packages.

A Common Configure Command Error

The configure script fails with an error if you have “.” in your PATH environment variable. In
addition to being a security issue, having a “.” in your PATH can cause problems with the build.
Remove “.” from your PATH (for example, by editing the PATH setting in your .bashrc, .cshrc, or
other startup file and then reinitializing it) before running the configure script.

Specifying a Standard Configuration

As a minimum, you must specify at least a board, kernel, and root file system to the configure
script.

To configure a platform project image, you must first create a project directory in the build
environment. For additional information, see About Creating the Platform Project Build Directory on
page 62.

Step 1 Navigate to the platform project directory (projectDir).

$ cd projectDir

Step 2 Run the configure script with options..

For example, to configure a project for a common PC platform with a standard Wind River Linux
kernel and file system, use the following command:

$ configDir/configure \
--enable-board=qemux86-64 \

5 Configuration and Build
About Configure Options

65

--enable-kernel=standard \
--enable-rootfs=glibc_std

NOTE: The board parameter, qemux86-64 in this case, is also referred to as the board support
package, or BSP.

While this configuration does not include any build time optimizations, Wind River recommends
using them to speed up platform project builds. For additional information, see Build-Time
Optimizations on page 76.

Step 3 Press ENTER to configure the project build directory.

Platform project configuration typically takes between one to two minutes.

Once a project is configured, you can build it. Refer to About Building Platform Project Images for
examples of building projects with the make command.

About Configure Options

Use configure script options to tailor your platform project to your specific development needs.

The configure script requires that you specify a board (BSP), kernel type, and rootfs. These
options provide the information necessary for the build system to create a complete runtime
system.

To configure a build of a complete run-time system, the necessary options are:

--enable-board=bspName

--enable-kernel=kernelType

--enable-rootfs=rootfsType

After the project configures successfully, use the make command to build everything. See About
Building Platform Project Images.

NOTE: With the exception of the glibc_small file system, the configure script creates file systems
that by default contain debugging functionality. See Examples of Configuring and Building on
page 77 for details on adding debugging capabilities to small file systems. The glibc_small
+debug feature template adds additional debug support to small file systems.

Do not repeat arguments to the configure script, because only the last one will be used. For
example, if you specify:

--enable-build=production --enable-build=profiling

The configure script sets the version to profiling. If you want to specify multiple non-exclusive
features, use comma-separated lists, for example:

--with-template=template1,template2

or add features to the root file system with the “+” shorthand such as”

--enable-rootfs=glibc_small+feature1+feature2+feature3.

Wind River Linux
User's Guide, 5.0.1

66

Configure Options Reference

The configure script can be run with a large number of options, as explained in this section.

You can display a complete list with the following command:

$ configDir/configure --help

This section describes some of the more commonly used configure options.

Required Configure Options

The following table summarizes basic configuration options.

Table 3 Required Configure Options

Option Description

---enable-board=boardname Specifies the target board. The list of
board support packages that are currently
installed is given in the --help output.
A full list of supported boards can be
found at Wind River Online Support. A
board specification implicitly includes
cpu and arch because the board template
includes defaults through include files. This
option is equivalent to specifying --with-
template=board/boardname.

--enable-kernel=kernel Specifies the kernel. This option is equivalent
to specifying --with-template=kernel/kernel
option.

--enable-rootfs=rootfs Specifies the file system. This option
is equivalent to specifying --with-
template=rootfs/rootfs option.

Additional Configure Options

With configure options that use [yes|no], the default is no, which is the equivalent of not using
the option at all.

Table 4 Additional Configure Options

Option Description

--enable-bootimage=option Specifies the creation of a boot image using a
comma-separated list containing one or more
of the following image types: ext3, ext4, hdd,
iso, jffs2, tar.gz, tar.bz2, ubifs, and -tar.bz2.
tar.bz2 is the default image type. To disable
this, you must select -tar.bz2, or use tar.gz
to set it as the default. Note that after the
build completes, you must run the make
boot-image command to actually build the

5 Configuration and Build
Introduction

67

Option Description

image. Once complete, the image resides in
the projectDir/export/ directory. See About
Configuring and Building Bootable Targets on
page 265.

--enable-build=[debug | production |
productiondebug | profiling]

When building or rebuilding a platform project
(make), use the following options to specify
your build optimization:

debug

Use to compile and install binaries and
libraries with debugging information (-
g). Can be used for on-target debug or
cross debug with Workbench. Performance
optimizations that interfere with debug-
ability are disabled with the following
additional options:

-O0 -fno-omit-frame-pointer

The platform build produces a single file
system image that includes feature/dbg
template packages.

The debug items are installed into a .debug
subdirectory. For example, the /bin/bash
debug file is located in /bin/.debug/bash,
with corresponding sources in

/usr/src/debug/bash

production

This is the default build optimization. Use
to optimize and strip installed libraries
and binaries. The default package compile
options are used, which typically results
in the best performance optimization. A
size and performance optimized file system
image is produced.

Subsequently building the make fs-
debug target will produce an additional
file system image with debuginfo in
the filename, containing only debug
information and source, in the same .debug
subdirectory format as the debug build.
This debug information can be used as a
reference file system for cross-debug with
Workbench or gdbremote, or overlaid on
the default file system image and deployed
for on-target debug. But since the compile
options are performance optimized,
redundant code and some automatic
variables will be optimized out, program

Wind River Linux
User's Guide, 5.0.1

68

Option Description

flow may be reordered, and only limited
stack tracing information is available.

productiondebug

Use to include production optimizations,
but also install all symbols and debug
info packages on the target system image.
This option does enable on-target debug
packages. This is the equivalent of building
the production filesystem image and
then the production fs-debug image and
combining them.

profiling

Use profiling to compile programs and
binaries with stack frames to enable use of
profiling tools. The binaries are production
optimized, but are not stripped (the debug
information is in the binary, not a .debug
directory).The on-target debug packages
are also included. The following profiling
optimizations are added to package
compilation:

• -fno-omit-frame-pointer
• -fvisbility=default

--enable-build-tools=[auto | yes] auto or default

By default, the build system performs
a sanity check to determine whether
standalone build tools will be installed
for your platform project configuration.
Omitting this configure option is the same
as specifying auto.

yes

Use this option to skip the sanity check and
force a build tools installation.

--enable-ccache=[yes | no] Specifies whether to use ccache to speedup
project builds. While optional and not required
to configure and build platform project images,
ccache will help speed up the build process
for repeated build and/or delete cycles in the
project directory.
To use ccache, Wind River recommends that
the ccache and the platform project directories
reside on the same physical volume and file
system to limit potential negative effects on
the cache speed. In particular, it is suggested
not to install the ccache directory on a NFS-
mounted system, since this is not a fully tested

5 Configuration and Build
Introduction

69

Option Description

scenario. Your development workstation must
have ccache installed.
For additional information on using ccache,
see the Wind River Linux Getting Started Guide:
Configuring a Platform Project

--enable-checkout-all-layers=[yes |
no]option

Use to checkout all product layers in the
installation and add them to the projectDir/
layers directory. By default, the build system
only adds layers that are part of your platform
project configuration.

--enable-doc-pages=target Use this option to include the documentation
man/info pages in the file system of the target.

NOTE: This option only applies to the
glibc_std file system.

--enable-internet-download=[yes | no] If used in your configure script, and a package
is not found in the local installation, the build
system will attempt to download it from the
Internet.

--enable-jobs=number Specifies the maximum number of parallel
jobs that make should perform. This should
be set to the number of CPUs your system has
available.

--enable-ldconfig=[yes | no]number This option places a post-installation script
in RPMs to update the ldconfig cache during
installation, and also generates the etc/
ld.so.conf and etc/ld.so.conf.d files on the
image at the system level.
For additional information, see About ldconfig
on page 259.

--enable-parallel-pkgbuilds=number Sets the number of packages that can be built
in parallel to speed up the build process. As
a rule of thumb, set this number equal to the
number of CPUs available in your workstation.
Using the configure option above sets

--enable-prelink=[yes | no] Pre-links target binaries and libraries. If
unused, defaults to yes.

--enable-reconfig Enables the configure script to run with
different or added options on a previously
configured platform project.

--enable-rm-oldimgs=[yes | no] Removes old root file system files located in
the projectDir/bitbake_build/tmp/deploy/
images directory, and retains only the latest
image.

Wind River Linux
User's Guide, 5.0.1

70

Option Description

Each time you run make fs to build a platform
project file system, by default the build system
retains a copy of the root file system created
at the time the command is run. As a result,
this can use up a lot of disk space for each
successive build. Use this option to ensure only
the latest *.bz2 system image is retained.

--enable-rm-work=[yes | no] Incrementally removes objects from your build
area after the build successfully completes.
This option adds the following line to the
projectDir/local.conf file:

INHERIT += "rm_work"

This line erases the staging area used to
compile a package when the package is
successfully built. This can also save a
significant amount of disk space when you
consider a few packages in the glibc-std build
take between 200MB to 300MB each to compile.

--enable-scalable=mklibs Specifies whether target binaries are to
be optimized by removing some unused
functions.

--enable-sdkimage-staticlibs=[yes | no] Use to install static libraries in your SDK
images. By default, static libraries are not
installed.

--enable-stand-alone-project=[yes | no] Creates a platform project that is completely
stand-alone, and not dependant on the Wind
River Linux installation (installDir) for
project build and development.
When you configure a platform project with
this option, the project does not require the
Wind River Linux installation to build and
develop it, however, there are additional steps
required to copy or move the project. For
additional information, see About Platform
Project Portability on page 95.

--enable-target-installer=[yes | no] Enables the target installer feature, which
adds the necessary files to the platform project
to create an installable Wind River Linux
distribution. May be used with the --with-
installer-target-build= option to specify
another project's *.ext3 root file system..

NOTE: Wind River Linux only supports
*.ext3 root file system files for the target
installer feature.

5 Configuration and Build
Introduction

71

Option Description

If you do not specify a project directory with
the --with-installer-target-build option, the
project itself will be used to create the target
file system.

--enable-test=[yes | no] Includes the standard suite of test packages for
the file system and kernel.

--help Prints an option summary similar to this table
and exits without creating a project.

--with-installer-target-
build=full_path_to_target_system_*.ext3_file

When used with the --enable-target-
installer=yes option, this option specifies
the location of a built platform project's
projectDir/export/images/*.ext3 root file
system image file that will be used to create an
installable Wind River Linux distribution.

--with-license-flags-
blacklist=licenseType1, licenseType2,
licenseType3...licenseTypeN

Use this option to set a comma-separated list
of license types that are excluded from the
platform project image. If you specify a license
type, for example, GPLv3, to be blacklisted,
any package specified to use that license type
will not be included in the platform project
image once built.
If you include a configure option that adds
packages that require a specific license to
function, and that license type is blacklisted,
the full contents specified by the option will
not install. This may create an unsupported
configuration.

--with-license-flags-
whitelist=licenseType1, licenseType2,
licenseType3...licenseTypeN

Use this option to set a comma-separated list
of license types that are included automatically
in the platform project image. Note that some
software license types have legal requirements.
As a result, you should consult your company's
legal department's software policy regarding
any license type you want to include.

--with-rcpl-version=000x Once you have updated the product, new
platform projects default to the latest installed
RCPL release when you run configure script
commands.
Use this option to specify an earlier patch
release, where 000x is the RCPL version, for
example, 0006. This allows you to reproduce
a previous environment, such as one used to
release a product.

--with-
template=template1,template2,template3…

Appends the specified templates to the usual
template list created by the configure options.

Wind River Linux
User's Guide, 5.0.1

72

Option Description

--without-
template=template1,template2,template3…

Specifies the default templates to exclude
from the project and omit from the generated
local.conf file.

--with-layer=layer1,layer2,layer3… Specifies custom layers. The system will
process any template of the same name found
within a layer instead of the regular template
within the development environment. (The
regular template may, however, be included by
the template in the custom layer.)

--without-layer=layer1,layer2,layer3… Specifies the layers to exclude from the
generated bblayer.conf file.

About Building Platform Project Images

About the make Command

The make command builds platform projects, application source, and packages.

Platform Projects

After you have configured a project as described in About Configuring a Platform Project Image on
page 62, you can build it using the make command. The build produces the target software
such as the kernel and file system for a particular board, depending on how you configured it.

When you run make, make fs, or make all, it builds (or rebuilds) the platform project using
the specified options. If source changes are detected, the binary packages associated with those
changes are automatically rebuilt. Like many Wind River Linux make targets, this is a wrapper to
an equivalent of Yocto build command, in this case: bitbake wrlinux-image-filesytem-type; for a
cross reference see Yocto Project Equivalent make Commands on page 73.

NOTE: Build times will differ depending on the particular configuration you are building, the
amount of data that can be retrieved from sstate-cache, and on your development host resources.

When you build the platform project, this generates and extracts the root file system for the
platform project initially. If you run one of the make commands again, it will only regenerate and
extract the file system if something has changed.

To force a file system generation, simply touch the image *.tar file before running the make
command. For example, from the projectDir:

$ touch export/*.tar*

In many cases you can reduce the amount of time required for project builds by specifying
various caching and parallelizing options to configure or make. In addition, there are
environment variables you can set if you want to always use these options, or only selectively not
use them. Refer to Build-Time Optimizations on page 76 for more information on improving
project build times.

5 Configuration and Build
Yocto Project Equivalent make Commands

73

In addition to the basic make commands that build the platform project and generate the root file
system and kernel images, Wind River Linux provides commands to help simplify development
tasks, such as generating the software development kit (SDK) for application development,
and launching simulated QEMU or Simics target platforms. For a list of make commands, see
Common make Command Target Reference on page 351.

Applications and Packages

Wind River Linux and the Yocto Project BitBake build system use the make command to
perform various development actions on applications and packages. These actions include basic
development tasks such as building, rebuilding, compiling, cleaning, installing and patching
packages. For a list of make commands, see Common make Command Target Reference on page
351.

Packages and their dependencies are built by specifying the recipe associated with the package,
for example:

make -C build recipeName

In this example, recipeName can refer to the package name without the *.bb suffix, or the git or
version number associated with the recipe. For example, to build the hello.bb, hello_git.bb, or
hello_1.2.0.bb package, you would use the following command:

make -C build hello

When the recipe builds, it will include any dependant recipes and their associated packages in
the build process.

Yocto Project Equivalent make Commands

Wind River Linux is compatible with the Yocto project. Learn about the Yocto BitBake equivalents
for common make commands.

Common make Command Equivalents

For a list of make commands, see Common make Command Target Reference on page 351.

Wind River Linux make command Yocto Project BitBake equivalent

make bbs

Sets up the BitBake environment, such as the
variables required, before you can run BitBake
commands.

This command executes a new shell
environment and configures the environment
settings, including the working directory and
PATH.

To return to the previous environment, simply
type exit to close the shell.

Source layers/oe-core/oe-init-buildenv
bitbake_build

https://www.yoctoproject.org/docs/1.5/ref-manual/ref-manual.html#structure-core-script

Wind River Linux
User's Guide, 5.0.1

74

Wind River Linux make command Yocto Project BitBake equivalent

make fs bitbake imageName

For example, bitbake wrlinux-image-glibc-
std. To determine the correct imageName, you
can either:

• Refer to your original configure line,
where the option --enable-rootfs=glibc-std
translates to wrlinux-image-glibc-std in the
example above.

• Refer to bitbake_build/conf/local.conf
and find the value assigned to
DEFAULT_IMAGE. For the example above,
this line will look like:

DEFAULT_IMAGE = "wrlinux-image-glibc-
std"

NOTE: make fs also extracts the image
and makes it ready for make start-
target.

It may be possible to build for other
images, but only the configured
image will have templates and other
configurations applied. Other images
may not work.

make -C build recipeName

Build the package's recipe recipeName

bitbake recipeName

make -C build recipeName.rebuild bitbake -c rebuild recipeName

make -C build linux-windriver.build

Build the Wind River Linux kernel's recipe.

bitbake linux-windriver

make -C build linux-windriver.rebuild

Rebuild the Wind River Linux kernel's recope.

bitbake -c rebuild linux-windriver

Wind River Linux 4.3 Compatibility

Some specific tasks are translated to better assist customers migrating from Wind River Linux 4.3.
In the following table, you may substitute the packageName variable for recipeName, except
where specified.

Wind River Linux make command Yocto equivalent

make -C build packageName.distclean bitbake -c cleansstate recipeName

5 Configuration and Build
About Build Logs

75

Wind River Linux make command Yocto equivalent

make -C build packageName.config bitbake -c configure recipeName

make -C build packageName.download bitbake -c fetch recipeName

make -C build packageName.rebuild

and

make -C build packageName.rebuild_nodep

bitbake -c compile recipeName

NOTE: Notice that the bitbake flag in
this case is -C rather than -c.

make -C build packageName.quilt

and

make -C build packageName.quiltprep

bitbake -c quiltprep recipeName

NOTE: quiltprep is not a community
step. It is a Wind River addition.

make -C build packageName.addpkg

NOTE: You must specify the package
name for this command option.

Edit layers/local/image.bb and add the
following line:

IMAGE_INSTALL += "packageName"

make -C build packageName.rmpkg

NOTE: You must specify the package
name for this command option.

Edit layers/local/image.bb and remove or
comment out the following line:

IMAGE_INSTALL += "packageName"

make -C build packageName.env bitbake -e recipeName

About Build Logs

When you build package recipes, the build system creates symlinks to separate build output logs
for each package in projectDir/build/packageName/temp/.

Generally speaking, the BitBake build system generates one log per task, and a typical package
build runs four or more tasks. For example, the logs created for the hello package are located in
projectDir/build/hello-1.0-r1/temp directory, and include:

• log.do_compile
• log.do_package_write_rpm
• log.do_configure
• log.do_patch
• log.do_fetch
• log.do_populate_sysroot
• log.do_install
• log.task_order
• log.do_package

Wind River Linux
User's Guide, 5.0.1

76

See also the online output of the make help command (not make -help) in your project build
directory after you have configured a project.

Build-Time Optimizations

There are several options you can use that can reduce your total build time and save build
environment disk space.

You can do this with environment variables so that you can “set it and forget it”, or you can
add command line options to your configure script or make command to perform the same
optimizations. Using the command-line options will override your environment variable settings.

Use the examples in this section to implement the available configure and build optimization
options. Note that you can control these settings through Workbench as well, as described in
Wind River Workbench by Example, Linux 5 Version.

Configure and Build Optimization Option Combinations

You can combine configure and build optimization options in various ways. For example, you
could have both of the following options on your configure line:

$ configDir/configure \
--enable-board=qemux86-64 \
--enable-kernel=standard \
--enable-rootfs=glibc_std \
--enable-jobs=5 \
--enable-parallel-pkgbuilds=5

To allow multiple instances of gcc when a package is building, use the --enable-jobs option.

To allow multiple packages to build simultaneously, specify --enable-parallel-pkgbuilds.

In this example, the build system will build up to five packages at once with up to five instances
of gcc per package, resulting in a maximum of up to 25 parallel operations occurring.

NOTE: In practice, that is very atypical since most packages cannot support nearly that level
of parallelism and only the build stage can typically be parallelized at all. Because of that, the
parallelism provided by building separate packages in parallel generally offers a much larger
performance improvement than building individual packages in parallel.

In addition, the actual parallelism achieved depends on the dependency lists of the packages.
For example, if you are building glibc and all of your other packages depend on glibc, those
other packages must wait for glibc to be completed before they can be built.

The numbers shown in the example are not unreasonable for, for example, a dual-core
workstation. For more powerful configurations, a rule of n+1 operations might be a reasonable
configuration. For example, on an eight-core machine, you could set the two values to 9 for a
maximum total of 81 concurrent build operations. Note that these are just suggestions, and you
should find optimal settings for your specific environment.

Optimizing Toolchain and glibc Builds

To get the best performance on toolchain and glibc builds, use a smaller number of parallel
packages (one is plenty), and a larger --enable-jobs value.

5 Configuration and Build
Examples of Configuring and Building

77

Minimizing Build Environment Disk Space

The following configure script options will help minimize your build environment disk space.

--enable-rm-oldimgs=yes

Each time you run the make or make fs command in the platform project directory, the build
system creates a copy of the root file system at build time in the projectDir/bitbake_build/
tmp/deploy/images/ directory. Each build creates files that can consume up to 10MB or more,
depending on your platform project configuration.

After a few builds, this can consume a lot of disk space. You can ensure that only the latest
version of the root file system file(s) is maintained using the --enable-rm-oldimgs configure
script option. When you use this option as part of your platform project configuration, only
the latest version of the root file system file(s) will reside in the directory.

--enable-rm-work=yes

Incrementally removes objects from your build area after the build successfully completes.

This option adds the following line to the projectDir/local.conf file:

INHERIT += "rm_work"

This line erases the staging area used to compile a package when the package is successfully
built. This can also save a significant amount of disk space when you consider a few packages
in the glibc-std build take between 200MB to 300MB each to compile.

Examples of Configuring and Building

Follow examples to learn various strategies for configuring and building platform projects and
packages using Wind River Linux.

All configure script examples assume you are in a project directory that you have created as an
ordinary user (not root). Running the following command in your build directory would create a
project directory and navigate to it:

$ mkdir -p projectDir && cd projectDir

Where projectDir is the name you choose, for example, qemux86-64-glibc-small.

Configuring and Building a Complete Run-time

Use this configure script example as a basis to create your platform-project image.

The following example procedure assumes you are in a project directory that you have created as
an ordinary user (not root).

A full project configuration requires you to specify a board (BSP), a kernel type, and a root file
system type at a minimum. The options may be entered in any order, but the basic syntax is:

$ configDir/configure \
--enable-board=BSP \
--enable-kernel=kernel_type \
--enable-rootfs=rootfs_type

Step 1 Specify the configuration for your run-time system with the configure command.

Wind River Linux
User's Guide, 5.0.1

78

The following example configures the complete target software for a qemux86-64 BSP with a
standard kernel and a small glibc-based file system:

$ configDir/configure \
--enable-board=qemux86-64 \
--enable-kernel=standard \
--enable-rootfs=glibc_small

The configure script usually take a minute or two to complete.

Step 2 Build the project.

$ make

NOTE: In this example, no debug or demo templates have been added to the small file system
configuration, which makes for a smaller run time, but it is one that does not have debug tools,
such as the usermode-agent, built in. See Configuring and Building Complete Debug-Capable Run-
time. for an example in which debug capabilities are added. By default, Workbench builds small
file systems with debug and demo tools included.

Commands for Building a Kernel Only

Use these example make commands as a basis to configure and build a kernel.

Table 5 Common kernel build commands

To achieve this Do this

Build the kernel You can build the kernel by specifying the linux target:

$ make -C build linux-windriver

Configure the kernel To configure Wind River Linux kernel options, you can use
standard Linux tools such as xconfig or menuconfig, for
example:

$ make -C build linux-windriver.menuconfig

See About Kernel Configuration and Patching on page 177 for
examples of kernel configuration.

Rebuild the kernel If you have made changes to your project such as changing the
kernel configuration, rebuild the kernel with this command:

$ make -C build linux-windriver.rebuild

Configuring and Building a Flash-capable Run-time

Use the following example configure script to create your flash-capable platform-project image.

You can configure a complete run-time system (kernel and file system) with subsequent creation
of a flash file system enabled, using the --enable-bootimage= configure option.

5 Configuration and Build
Configuring and Building a Debug-capable Run-time

79

Step 1 Configure a platform project to specify the flash boot image.

In this example, the --enable-bootimage= configure option defines a JFFS2 (journalling flash file
system version 2) boot image.

$ configDir/configure \
--enable-board=bsp \
--enable-kernel=standard \
--enable-rootfs=glibc_small \
--enable-bootimage=jffs2

While this configuration does not include any build time optimizations, Wind River recommends
using them to speed up platform project builds. For additional information, see Build-Time
Optimizations on page 76.

Step 2 Build the project.

$ make

For additional supported images, see About Configuring and Building Bootable Targets on page
265.

Configuring and Building a Debug-capable Run-time

Use the following configure script examples to create a debug-capable platform-project image.

Use this example procedure to configure a complete run-time system (kernel and file system)
with subsequent debugging enabled.

Step 1 Configure a platform project with debug features enabled.

$ configDir/configure \
--enable-board=qemux86-64 \
--enable-kernel=standard \
--enable-rootfs=glibc_small+debug \
--enable-build=debug

This configure example uses two options to provide debug capability to the platform project:

--enable-build=debug

Adds application debugging features to the file system. See Configure Options Reference on
page 66.

--enable-rootfs=glibc_small+debug

Adds the feature/debug template, which adds debug-specific functionality to the target file
system, including the following tools: elfutils, ltrace, memstat, strace, and the Wind River
LTTng trace daemon.

NOTE: This example provides a shorthand method for adding a template using the configure
command. The standard method is to use the --with-template= configure option, which in this
example would be --with-template=feature/debug.

Step 2 Optionally add basic graphics capability to your runtime.

Wind River Linux
User's Guide, 5.0.1

80

Similarly, to add demo capability (basic graphics capabilities) to a glibc_small file system, you
could either include the --with-template=feature/demo option to the configure command, or just
specify the file system as --enable-rootfs=glibc_small+demo as follows:

$ configDir/configure \
--enable-board=qemux86-64 \
--enable-kernel=standard \
--enable-rootfs=glibc_small+demo

Step 3 Build the project.

$ make

For more information on the features provided by the debug and demo templates, see the
installDir/wrlinux-5/layers/wr-base/templates/feature/demo and *debug directories.

Building a Target Package

After you have configured a platform project, you can build a particular target package, for
example after making changes to its source code.

Use the following procedure to build a target package.

Step 1 Extract and patch the package source.

$ make -C build recipeName.patch

This extracts and patches the package source and places it under build/package-version/
directory.

Step 2 Build the package source.

$ make -C build recipeName.rebuild

The package, and any packages that are dependant on it, will be rebuilt.

About Creating Custom Configurations Using rootfs.cfg

You can use the projectDir/layers/wr-base/templates/rootfs.cfg file as a reference to define
your own rootfs.cfg, which creates one or more custom file system types to reduce the number of
arguments that you pass to the configure script.

You can use a custom rootfs.cfg to automatically set the kernel type, and include specific layers
and templates. This differs from the standard workflow where you use separate configure
script options to define the root file system, kernel, layers, and templates. For example, a basic
configure script command using the standard workflow may include the following options:

$ configDir/configure \
--enable-board=qemux86-64 \
--enable-kernel=standard \
--enable-rootfs=glibc_small \
--with-template=feature/debug,feature/analysis \
--with-layer=meta-selinux,wr-intel-support

5 Configuration and Build
About Creating Custom Configurations Using rootfs.cfg

81

In this example, even while using simplified --with-layer and --with-template options to specify
additional layers and templates on the same line, the overall configuration requires five different
command options.

By creating a new, custom projectDir/myLayer/templates/rootfs.cfg file based on
projectDir/layers/wr-base/templates/rootfs.cfg, you can automatically include the options
above. The result is a simplified configure script command that requires only three options, for
example:

$ configDir/configure \
--with-layer=path_to_myLayer \
--enable-board=qemux86-64 \
--enable-rootfs=glibc-custom

If you frequently use the same templates or layers as part of your platform development, or
need to specify a different or custom kernel type, you can create a rootfs.cfg file, and define a
new root file system, with other options, in the file, such as the glibc-custom rootfs option in the
example above. Once created, the new file is available for use by the configure script as long as
you specify the file's location using the --with-layer=path_to_myLayer in the configure script
command.

New Custom rootfs Configuration Workflow

The workflow for creating a custom rootfs includes the following:

1. Configure and build, or have a previously configured platform project available.
2. Copy the projectDir/layers/local directory from the platform project above to a location on

your development system, and rename the layer.

For example, you could copy and name it to

/home/user/myLayer
3. Create a new /home/user/myLayer/templates/rootfs.cfg file, and populate it with the features

that you want to include. For example:

[rootfs]
 glibc-custom = image

[glibc-custom "image"]
 default-ktype = standard
 compat = wrlinux-*
 default = wrlinux-image-glibc-core
 allow-bsp-pkgs = 0

[glibc-custom "distro"]
 default = wrlinux
 compat = wrlinux

[glibc-custom "vars"]
 layers = meta-selinux,wr-intel-support
 templates = feature/debug,feature/analysis

Depending on your project requirements, you can define a custom rootfs name, the kernel
type, and add the layers and templates that you require.

NOTE: The kernel types, layers, and templates you include in this file must be part of your Wind
River Linux installation. Missing layers and templates, or misspelled kernel type, layer, and
template names, will return an error and halt the configure script.

4. Configure a new platform project, and:

Wind River Linux
User's Guide, 5.0.1

82

• Use the --with-layer= configure option to point to the new layer.
• Refer to the new name you gave your rootfs in the --enable=rootfs= configure option.

For example:

$ configDir/configure \
--with-layer=/home/user/myLayer \
--enable-board=qemux86-64 \
--enable-rootfs=glibc-custom

5. Build the platform project, and verify that the options, such as layers, templates, and kernel
types, are included in the build.

As long as you specify the location of the layer that contains the rootfs.cfg file, you can reuse the
new custom rootfs in any platform project configuration.

About the rootfs.cfg File

The projectDir/layers/wr-base/templates/rootfs.cfg file defines the available root file system
options for configuring a platform project. The --enable-rootfs= option that you specify in the
configure script command must have a valid entry in the rootfs.cfg file. The default file is as
follows:

[rootfs]
 glibc-core = image
 glibc-small = image
 glibc-std = image
 glibc-std-sato = image
[ktypes]
 standard = ktype
 preempt-rt = ktype
[glibc-small "image"]
 default-ktype = standard
 compat = wrlinux-*
 default = wrlinux-image-glibc-small
 allow-bsp-pkgs = 0
[glibc-small "distro"]
 compat = wrlinux
 default = wrlinux
[glibc-core "image"]
 default-ktype = standard
 compat = wrlinux-*
 default = wrlinux-image-glibc-core
 allow-bsp-pkgs = 0
[glibc-core "distro"]
 default = wrlinux
 compat = wrlinux
[glibc-std-5.0 "image"]
 default-ktype = standard
 compat = wrlinux-*
 default = wrlinux-image-glibc-std-5.0
[glibc-std "image"]
 default-ktype = standard
 compat = wrlinux-*
 default = wrlinux-image-glibc-std
[glibc-std "distro"]
 default = wrlinux
 compat = wrlinux
[glibc-std-sato "image"]
 default-ktype = standard
 compat = wrlinux-*
 default = wrlinux-image-glibc-std-sato
[glibc-std-sato "distro"]
 default = wrlinux
 compat = wrlinux

5 Configuration and Build
About Creating Custom Configurations Using rootfs.cfg

83

This example includes entries for the root file system and kernel options described in Kernel and
File System Components on page 16, and includes the following:

[rootfs]

This section lists the names of the available root file systems. Each entry in this section
requires its own separate image and distro entry in the file.

To create a new custom rootfs configuration, enter a name for it in this section on a separate
line.

NOTE: Do not use underscores (_) in your [rootfs] entries. These are not recognized by the build
system and can cause the build to fail.

[ktypes]

This section includes the available kernel types. Once defined, you can specify the kernel type
in the image section if you want it to be used automatically when you specify the rootfs. If you
have a custom kernel type, and want to make it available for platform project configuration,
you would enter it here.

[rootfsName "image"]

The image entry lets you specify the following options:

default-ktype

This entry is optional, and is used to automatically include a specific kernel type when you
use the rootfs name in your configure command. It must be a valid name defined in the
[ktypes] section of the rootfs.cfg file.

compat

Specifies compatibility with Wind River Linux recipe file names that begin with wrlinux.

default

Specifies the recipe *.bb file name used to create the image. If you create a custom rootfs
entry, you can use an existing recipe name, or create a new recipe. the name used must
match an existing recipe file, located in a layer that's included in the projectDir/
bitbake_build/conf/bblayers.conf file.

allow-bsp-pkgs=0

This optional entry prevents the addition of additional packages being added to the root
file system that originate from the BSP. Exclude this entry to accept the default and allow
BSP packages. In the example above, this entry is only added to the [glibc-small "image"]
entry, to keep the footprint small.

[rootfsName "distro"]

The distro entry specifies the following options as wrlinux only. Currently, there is nothing
you can change in these entries.

compat

The default entry is wrlinux.

default

The default entry is wrlinux.

[rootfsName "vars"]

Wind River Linux
User's Guide, 5.0.1

84

The optional vars entry, not shown in the example above, lets you specify layers and templates
to be automatically included when you specify the rootfs during project configuration. Valid
entries include:

layers

Enter each layer name, separated by a comma. Only the layer name is required, you do not
have to specify the path. For example:

[rootfsName "vars"]
 layers = meta-selinux,wr-intel-support

templates

Enter each template name as you would in the configure script command, for example:

[rootfsName "vars"]
 templates = feature/debug,feature/analysis

About New Custom rootfs Configuration

The workflow for creating a custom rootfs includes the following:

1. Configure and build, or have a previously configured platform project available.
2. Copy the projectDir/layers/local directory from the platform project above to a location on

your development system, and rename the layer.

For example, you could copy and name it to

/home/user/myLayer
3. Create a new /home/user/myLayer/templates/rootfs.cfg file, and populate it with the features

that you want to include. For example:

[rootfs]
 glibc-custom = image

[glibc-custom "image"]
 default-ktype = standard
 compat = wrlinux-*
 default = wrlinux-image-glibc-core
 allow-bsp-pkgs = 0

[glibc-custom "distro"]
 default = wrlinux
 compat = wrlinux

[glibc-custom "vars"]
 layers = meta-selinux,wr-intel-support
 templates = feature/debug,feature/analysis

Depending on your project requirements, you can define a custom rootfs name, the kernel
type, and add the layers and templates that you require.

NOTE: The kernel types, layers, and templates you include in this file must be part of your Wind
River Linux installation. Missing layers and templates, or misspelled kernel type, layer, and
template names, will return an error and halt the configure script.

4. Configure a new platform project, and:

• Use the --with-layer= configure option to point to the new layer.

5 Configuration and Build
EGLIBC File Systems

85

• Refer to the new name you gave your rootfs in the --enable=rootfs= configure option.

For example:

$ configDir/configure \
--with-layer=/home/user/myLayer \
--enable-board=qemux86-64 \
--enable-rootfs=glibc-custom

5. Build the platform project, and verify that the options, such as layers, templates, and kernel
types, are included in the build.

As long as you specify the location of the layer that contains the rootfs.cfg file, you can reuse the
new custom rootfs in any platform project configuration.

EGLIBC File Systems

Embedded GLIBC (EGLIBC) is a variant of GLIBC which is designed with embedded systems in
mind.

EGLIBC strives to be source and binary compatible with GLIBC with as few changes as possible.
The goals of EGLIBC include reduced footprint, configurable components, and better support for
cross-compilation.

See http://www.eglibc.org for details on the project.

The GLIBC package used in the Wind River Linux build system is, in fact, EGLIBC (eglibc 2.15).

EGLIBC can be configured to provide the smallest functional configuration of EGLIBC, while
being comparable to the feature set and footprint uCLibc project (http://www.uclibc.org), while
being more compatible with GLIBC. By default, the supported version of ELIBC is a pre-built
version that comes with the pre-built toolchain, and is Linux Standard Base (LSB)- and GLIBC-
compatible.

About the EGLIBC Default Platform Project Configuration

Before you can build and deploy an EGLIBC-based file system, you must configure your platform
project to enable EGLIBC features, once configuration is complete. With EGLIBC platform
projects, there are two relevant variables located in the projectDir/local.conf file:

• The DISTRO = variable selects which distribution configuration file to use, which determines
the default EGLIBC configuration. By default, the selection is set to "wrlinux", which refers to
the projectDir/layers/wrlinux/conf/distro/wrlinux.conf file.

To create your own custom EGLIBC configuration, you want to replace the DISTRO=
"wrlinux" with a custom configuration file. Wind River Linux provides the projectDir/
layers/wrlcompat/scripts/custom-distro.conf file for you to use for this purpose. To use this
file, you have two options:

Automated

Configure a new platform project using the --with-custom-distro=distroName option.

Manual

Copy it to your projectDir/layers/wrlinux/conf/distro/ directory, rename it, and set your
platform project to use this file.

http://www.eglibc.org
http://www.uclibc.org

Wind River Linux
User's Guide, 5.0.1

86

For instructions on creating an EGLIBC platform project image, see Creating and Customizing
EGLIBC Platform Project Images on page 86.

NOTE: While it is possible to modify and use the wrlinux.conf file for this purpose, it is not
recommended. The wrlinux.conf file is used as a basis for all project configuration in Wind
River Linux, and modifying it in this manner could cause your builds to fail and your platform
projects to become corrupt.

• The WRL_GLIBC_MODE = variable, when used with the standard configuration, should be set
to its default value of "wrl-glibc-prebuilt". If you wish to change the EGLIBC configuration,
it should be set instead to "wrl-glibc-rebuild"; this is set automatically by the custom-
distro.conf file.

Creating and Customizing EGLIBC Platform Project Images

You can create an EGLIBC image at configure time or from an existing platform project image,
and customize it using the information in this section.

To create and customize an EGLIBC platform project image:

Step 1 Select one of the following options for creating an EGLIBC platform project image:

Options Description

New platform project Configure the platform project using the --with-custom-
distro=distroName option. For example, a minimal configure
command might be:

$ configDir/configure \
--enable-board=qemux86-64 \
--enable-kernel=standard \
--enable-rootfs=glibc_std \
--with-custom-distro=distroName

Once the configure command completes, a custom distro configuration
file with the name you specified as distroName.conf is created in the
projectDir/layers/local/conf/distro directory.

Existing platform
project

1. Copy the projectDir/wrlcompat/scripts/custom-distro.conf file to
the projectDir/layers/local/conf/distro directory and rename the
file. In this example, we will change the name to

my-eglibc.conf
2. Edit and save the projectDir/bitbake_build/conf//local.conf file

to enable a custom EGLIBC build by changing the DISTRO variable
to match the name of the projectDir/wrlcompat/scripts/custom-
distro.conf from the previous step. For example, if you named the
file my-eglibc.conf, edit the variable as follows:

DISTRO = "my-eglibc"

Notice that you do not need to specify the exact file location, or even
use the .conf filename extension.

5 Configuration and Build
EGLIBC File Systems

87

Performing either of these actions enables the customization features for EGLIBC platform project
images, and creates an alternate EGLIBC distro configuration file in your projectDir/layers/
conf/distro directory for you to use to set your EGLIBC features.

Step 2 Optionally, choose the features to add to, or remove from, your EGLIBC distribution, by editing
the projectDir/layers/local/conf/distro/distroName file's EGLIBC DISTRO_FEATURES_LIBC
variables. Once you open the file, the default configuration includes the following options:

#
These available eglibc features may be conditionally disabled simply
by commenting out the lines below. Note that some packages may fail
to build or fail to work correctly at runtime without required libc
functionality.
#
Note that there are dependencies between features that are not
captured at this level. Needed features may be re-enabled even if
they are commented out here. See
layers/oe-core/meta/recipes-core/eglibc/eglibc-options.inc (and
libc/option-groups.def in the eglibc source) for details.
#
The selections below correspond to the features needed to build and
boot the WRLinux "glibc-core" rootfs.
#
DISTRO_FEATURES_LIBC = ""
#DISTRO_FEATURES_LIBC += "ipv6"
#DISTRO_FEATURES_LIBC += "libc-backtrace"
#DISTRO_FEATURES_LIBC += "libc-big-macros"
DISTRO_FEATURES_LIBC += "libc-bsd"
#DISTRO_FEATURES_LIBC += "libc-cxx-tests"
#DISTRO_FEATURES_LIBC += "libc-catgets"
#DISTRO_FEATURES_LIBC += "libc-charsets"
DISTRO_FEATURES_LIBC += "libc-crypt"
DISTRO_FEATURES_LIBC += "libc-crypt-ufc"
#DISTRO_FEATURES_LIBC += "libc-db-aliases"
#DISTRO_FEATURES_LIBC += "libc-envz"
DISTRO_FEATURES_LIBC += "libc-fcvt"
#DISTRO_FEATURES_LIBC += "libc-fmtmsg"
#DISTRO_FEATURES_LIBC += "libc-fstab"
DISTRO_FEATURES_LIBC += "libc-ftraverse"
DISTRO_FEATURES_LIBC += "libc-getlogin"
#DISTRO_FEATURES_LIBC += "libc-idn"
DISTRO_FEATURES_LIBC += "ipv4"
#DISTRO_FEATURES_LIBC += "libc-inet-anl"
DISTRO_FEATURES_LIBC += "libc-libm"
DISTRO_FEATURES_LIBC += "libc-libm-big"
#DISTRO_FEATURES_LIBC += "libc-locales"
DISTRO_FEATURES_LIBC += "libc-locale-code"
#DISTRO_FEATURES_LIBC += "libc-memusage"
DISTRO_FEATURES_LIBC += "libc-nis"
#DISTRO_FEATURES_LIBC += "libc-nsswitch"
DISTRO_FEATURES_LIBC += "libc-rcmd"
DISTRO_FEATURES_LIBC += "libc-rtld-debug"
DISTRO_FEATURES_LIBC += "libc-spawn"
#DISTRO_FEATURES_LIBC += "libc-streams"
DISTRO_FEATURES_LIBC += "libc-sunrpc"
DISTRO_FEATURES_LIBC += "libc-utmp"
DISTRO_FEATURES_LIBC += "libc-utmpx"
#DISTRO_FEATURES_LIBC += "libc-wordexp"
DISTRO_FEATURES_LIBC += "libc-posix-clang-wchar"
DISTRO_FEATURES_LIBC += "libc-posix-regexp"
DISTRO_FEATURES_LIBC += "libc-posix-regexp-glibc"
DISTRO_FEATURES_LIBC += "libc-posix-wchar-io"

Wind River Linux
User's Guide, 5.0.1

88

Using a text editor, uncomment and tailor the features include in your distribution. To specify
individual items, refer to the mapping table at: EGLIBC Option Mapping Reference on page 88.

NOTE: This list of options has been tested to create a reasonably small footprint platform project
file system. Not all option combinations are tested or supported. It is possible to uncomment
features and create a platform project file system that does not function as a result. You may
need to test feature option combinations as a result.

Step 3 Save the file if you made changes to it.

Step 4 Rebuild the platform project file system.

$ make

Once the build completes, the platform's system images and kernel will be located in the
projectDir/export directory.

For information on testing your platform image on a target system, see QEMU Targets on page
241.

EGLIBC Option Mapping Reference

Use this reference to map components in the option-groups.def file to facilitate component
selection for an EGLIBC build.

Feature to Map Option to Map to

ipv4 OPTION_EGLIBC_INET

ipv6 OPTION_EGLIBC_ADVANCED_INET6

libc-big-macros OPTION_EGLIBC_BIG_MACROS

libc-bsd OPTION_EGLIBC_BS

libc-tests OPTION_EGLIBC_CXX_TESTS

libc-catgets OPTION_EGLIBC_CATGETS

libc-charsets OPTION_EGLIBC_CHARSETS

libc-crypt OPTION_EGLIBC_CRYPT

libc-crypt-ufc OPTION_EGLIBC_CRYPT_UFC

libc-db-aliases OPTION_EGLIBC_DB_ALIASES

libc-envz OPTION_EGLIBC_ENVZ

libc-fcvt OPTION_EGLIBC_FCVT

libc-fmtmsg OPTION_EGLIBC_FMTMSG

libc-fstab OPTION_EGLIBC_FSTAB

libc-straverse OPTION_EGLIBC_FTRAVERSE

5 Configuration and Build
EGLIBC File Systems

89

Feature to Map Option to Map to

libc-getlogin OPTION_EGLIBC_GETLOGIN

libc-idn OPTION_EGLIBC_IDN

libc-inet-anl OPTION_EGLIBC_INET_ANL

libc-libm OPTION_EGLIBC_LIBM

libc-libm-big OPTION_EGLIBC_LIBM_BIG

libc-locales OPTION_EGLIBC_LOCALES

libc-locale-code OPTION_EGLIBC_LOCALE_CODE

libc-memusage OPTION_EGLIBC_MEMUSAGE

libc-nis OPTION_EGLIBC_NIS

libc-nsswitch OPTION_EGLIBC_NSSWITCH

libc-rcmd OPTION_EGLIBC_RCMD

libc-rtld-debug OPTION_EGLIBC_RTLD_DEBUG

libc-spawn OPTION_EGLIBC_SPAWN

libc-streams OPTION_EGLIBC_STREAMS

libc-sunrpc OPTION_EGLIBC_SUNRPC

libc-utmp OPTION_EGLIBC_UTMP

libc-utmpx OPTION_EGLIBC_UTMPX

libc-wordexp OPTION_EGLIBC_WORDEXP

libc-posix-clang-wchar OPTION_POSIX_C_LANG_WIDE_CHAR

libc-posix-regexp OPTION_POSIX_REGEXP

libc-posix-regexp-glibc OPTION_POSIX_REGEXP_GLIBC

libc-posix-wchar-io OPTION_POSIX_WIDE_CHAR_DEVICE_IO

Wind River Linux
User's Guide, 5.0.1

90

91

6
Localization

About Localization 91

About Localization

Localization support allows you to develop projects for speakers of different languages.

Locales make geographic and language specific settings available to software users via its user
interface. These include character set, number format, date and time formats, currency, collation
rules, paper size, phone number format and others.

Wind River Linux provides varying levels of support for locales depending on the file system
selected for your build. You can use the locale command to view details about the current locale.

See Also:

• http://en.wikipedia.org/wiki/Locale

for a general discussion of locales.
• http://www.loc.gov/standards/iso639-2/php/English_list.php

for a list of language codes.
• http://www.iso.org/iso/country_codes/iso_3166_code_lists/country_names_and_code_elements.htm

for a list of 2-digit country codes.

Determining which Locales are Available

Different file system options offer varying support for language locales. Knowing which are
available allows you to plan internationalization support for your project.

A list of locales supported by your file system is provided in your project.

Step 1 View the list of supported locales in the file installDir/build/eglibc/eglibc-2.18/libc/
localedata/SUPPORTED

http://en.wikipedia.org/wiki/Locale
http://www.loc.gov/standards/iso639-2/php/English_list.php
http://www.iso.org/iso/country_codes/iso_3166_code_lists/country_names_and_code_elements.htm

Wind River Linux
User's Guide, 5.0.1

92

For example:

$ more installDir/build/eglibc/eglibc-2.18/libc/localedata/SUPPORTED

Output will look similar to the following:

This file names the currently supported and somewhat tested locales.
If you have any additions please file a glibc bug report.
SUPPORTED-LOCALES=\
aa_DJ.UTF-8/UTF-8 \
aa_DJ/ISO-8859-1 \
aa_ER/UTF-8 \
aa_ER@saaho/UTF-8 \
aa_ET/UTF-8 \
af_ZA.UTF-8/UTF-8 \
af_ZA/ISO-8859-1 \
am_ET/UTF-8 \
an_ES.UTF-8/UTF-8 \
an_ES/ISO-8859-15 \
ar_AE.UTF-8/UTF-8 \
ar_AE/ISO-8859-6 \
...
en_US.UTF-8/UTF-8 \
en_US/ISO-8859-1 \
en_ZA.UTF-8/UTF-8 \
en_ZA/ISO-8859-1 \
en_ZM/UTF-8 \
en_ZW.UTF-8/UTF-8 \
en_ZW/ISO-8859-1 \
es_AR.UTF-8/UTF-8 \
es_AR/ISO-8859-1 \

Step 2 Locate the locale code you want to support.

The typical format of a locale is xx_XX, where the first two characters represent the language
and the second two represent the country. For example, af_ZA represents South African (ZA)
Afrikaans (af). In a few cases language codes are three characters long.

Encoding is also indicated for each locale. For example, the entry:

es_AR.UTF-8/UTF-8 \

indicates 8 bit Universal Transformation Format (UTF) support for Argentinian Spanish.

es_AR/ISO-8859-1 \

indicates International Standards Organization 8859-1 support for Argentinian Spanish.

See the following for code look-up resources:

• http://www.loc.gov/standards/iso639-2/php/English_list.php

for a list of language codes.
• http://www.iso.org/iso/country_codes/iso_3166_code_lists/country_names_and_code_elements.htm

for a list of 2-digit country codes.
• http://lh.2xlibre.net/locales/

provides additional information about locales such as paper sizes, currencies, numeric
formats, etc.

http://www.loc.gov/standards/iso639-2/php/English_list.php
http://www.iso.org/iso/country_codes/iso_3166_code_lists/country_names_and_code_elements.htm
http://lh.2xlibre.net/locales/

6 Localization
Setting Localization

93

Setting Localization

Adding a locale to your project provides internationalization support for speakers of different
languages.

Step 1 Add support for the locale to your projectDir/local.conf file.

For example, to add UTF-8 British English support, add:

GLIBC_GENERATE_LOCALES += "en_GB.utf8"
IMAGE_LINGUAS = "en-gb.utf8"

NOTE: Observe the differences in case and use of underscore versus dash to construct the values
for GLIBC_GENERATE_LOCALES and IMAGE_LINGUAS.

The += operator in the example above keeps us from preventing any default locales from
being generated for glibc. To include additional locales in the image, use the += operator when
assigning to IMAGE_LINGUAS as well.

Step 2 Rebuild the file system.

$ make fs

Support for the locale has been added when the build completes successfully.

Wind River Linux
User's Guide, 5.0.1

94

95

7
Portability

About Platform Project Portability 95

Copying or Moving a Platform Project 96

Updating a Platform Project to a New Wind River Linux Installation
Location 96

About Platform Project Portability

It is possible to move a platform project for comparison or development, or configure it for stand-
alone portability.

Basic Portability

In this context, basic portability refers to the functionality included for moving or copying
platform projects by default, with no special configure script options.

When you configure and build a platform project, the project's contents reside in the project
directory (projectDir). Aside from the content in the projectDir/layers/local directory,
much of the project contents are actually symbolic links to relevant git repositories located in
the development environment. This creates a requirement for the development environment to
know the location of the projectDir, so that it can populate the directories in alignment with
the project configuration options.

Wind River Linux uses the ${WRL_TOP_BUILD_DIR} variable to define the platform project's
location, and make it possible to copy or move a platform project on the same build host to
another location to meet your development needs. This variable is defined in the projectDir/
bitbake_build/conf/bblayers.conf file. For additional information, see Configuration Files and
Platform Projects on page 33.

Wind River Linux
User's Guide, 5.0.1

96

NOTE: If you relocate the product install directory you must reconfigure any platform projects
created using the original installation location. For additional information, see Updating a
Platform Project to a New Wind River Linux Installation Location on page 96.

If you move a platform project, you must clear up all temporary files that comprise absolute
paths. For additional information, see Copying or Moving a Platform Project on page 96.

Stand-alone Portability

In this context, stand-alone portability refers to a platform project that is not dependant on the
Wind River Linux installation, or development environment, for project build and development.

To create a stand-alone platform project, add the --enable-stand-alone-project=yes configure
script option when you configure your project.

When you configure a platform project with this option, the symbolic links between the
development environment and projectDir are replaced with copies of the directories and files
from the git repositories. This can consume a significant amount of disk space.

Copying or Moving a Platform Project

Learn how to copy or move a platform project.

The following procedure requires a previously configured platform project, or a project
configured as a stand-alone project using the --enable-stand-alone-project=yes configure script
option.

Step 1 Copy or move the top-level projectDir to a new location.

Step 2 Remove the projectDir/bitbake_build/tmp directory.

Run the following command from the new projectDir location:

$ rm -rf bitbake_build/tmp

This is required because the OE-core performs a sanity check to verify the physical location of
the projectDir/bitbake_build/tmp directory. If it fails, the build process will halt, and you will
receive an error message. Removing the directory causes the build system to update the path to
the new location.

Step 3 Build the file system.

$ make

Updating a Platform Project to a New Wind River Linux Installation Location

Learn how to update a platform project when the Wind River Linux installation (installDir)
changes.

The following procedure requires a previously configured platform project, and a new or
changed installDir.

Step 1 Obtain the configure script command used to create the project.

7 Portability
Updating a Platform Project to a New Wind River Linux Installation Location

97

This information is located in the projectDir/config.log file. For example:

configDir/configure --enable-board=qemux86-64 --enable-rootfs=glibc_small --enable-
kernel=standard
--enable-bootimage=iso

NOTE: In this example, configDir refers to the path to your Wind River Linux configure
script, for example, /home/user/WindRiver/wrlinux-5/wrlinux/.

Step 2 Enable reconfiguration and rerun the configure script.
a) Open a terminal window and navigate to the projectDir.
b) Copy the configure script command from Step 1 into the terminal.

$ configDir/configure \
--enable-board=qemux86-64 \
--enable-rootfs=glibc_small \
--enable-kernel=standard \
--enable-bootimage=iso

c) Modify the path to the configure script to match the new Wind River Linux installation
(configDir) location.

d) Add the --enable-reconfig=yes option to the script command, and rerun it.

$ new_configDir/configure \
--enable-board=qemux86-64 \
--enable-rootfs=glibc_small \
--enable-kernel=standard \
--enable-bootimage=iso \
--enable-reconfig=yes

The configure script will reconfigure the platform project to use the new installation location.

Step 3 Build the file system.

$ make

Once complete, the platform project will be symbolically linked to the new installation's location.

Step 4 Optionally, verify that the platform project is symbolically linked to the new installation location.

If the build from the previous step fails, or you want to verify the location of the git repositories
that your platform project point to, perform this step.

Run the following command from the platform project directory:

$ ls -l git

The system should return:

$ lrwxrwxrwx 1 user user 40 Aug 16 17:29 git ->
/home/user/new_installDir/wrlinux-5/git

where new_installDir represents the path to the new installation location.

Wind River Linux
User's Guide, 5.0.1

98

99

8
Layers

About Layers 99

Layers Included in a Standard Installation 100

Installed Layers vs. Custom Layers 102

Layer Structure by Layer Type 103

About Layer Processing and Configuration 105

About Layers

Layers provide a mechanism for separating functional components of the development
environment as described in this section.

Layers are multiple independent collections of recipes, templates, code, configuration files, and
packages, typically contained in a layer directory. Multiple layers may be included in a single
project, and each layer can provide any combination of features, ranging from kernel patches to
new user space packages.

A layer allows the addition of new files, such as the recipes that define a specific package or
packages, and machine configuration files that define a board for a new BSP, without modifying
the original development environment. You can create your own layers and organize the content
to better suit your development needs, and include or exclude the layers from the project
configure and build.

In Wind River Linux, layers reside in the installation (development) environment and the
build environment, in the platform project directory projectDir. When you configure and
build a platform project image, the layers in the installation provide configuration information
depending on you platform project configuration settings to configure your project.

Once the platform project configuration completes, a new set of layers specific to the platform
project are created in the projectDir/layers directory.

The list and order of the platform project layers are maintained in the projectDir/
bitbake_build/conf/bblayers.conf file. This file includes the list of layers used to create the target
platform image.

Wind River Linux
User's Guide, 5.0.1

100

Each layer has a layerDir/conf/layer.conf file that the BitBake build system uses to process the
layer on project configuration and build. See Configuration Files and Platform Projects on page 33 .

Layers Included in a Standard Installation

The Wind River Linux standard installation provides a subset of layers as described in this
section that are necessary for the build system and may also be used for development purposes.

See Directory Structure for Platform Projects on page 43 for a pictorial representation of the layer
structure. In a default installation, these layers reside in the projectDir/layers directory, and
include:

CAUTION: The following layers are part of the Wind River Linux installation and are required
by the build system. It is recommended that you do not modify these layers, as it may render
your installation and development environment unusable. For additional information, see
Installed Layers vs. Custom Layers on page 102.

CAUTION: Depending on your platform project configuration options, some of these layers may
not be present.

examples

Contains fully-working layer examples that provide functionality to a platform project image.
These layer examples include:

fs-final

Provides an example of how a template can impact on the generation process of the file
system.

hello-world

Adds the classic “Hello World” application to your platform project image.

kernel-config-example

Provides an example of how to use a template to change a global kernel parameter.

lemon_layer

Adds a simple multi-threaded web server called the lemon_server to your platform project
image. You can use the examples provided in the README file located in this directory to
use the lemon_server to analyze memory leaks and debug the lemon_server application.

To add the layer functionality described above to your platform project image, refer to the
README file located in the directory containing the layer. For information on viewing
README files, see README Files in the Development Environment on page 39 and About
README Files in the Build Environment on page 56.

meta-downloads/

Contains copies of components referenced from external layers. The items are provided in a
way to avoid having to download them from the network. An associated configuration file is
also provided to inform the build system to use this as a pre-mirror.

meta-networking/

Contains networking-related packages and configuration. It should be useful directly on top
of oe-core and compliments meta-openembedded.

8 Layers
Layers Included in a Standard Installation

101

meta-selinux/

Enables SELinux support when used with Poky. The majority of this layer's work is
accomplished in .bbappend files, used to enable SELinux support in existing Poky packages.

meta-webserver/

Provides support for building web servers, web-based applications, and related software.

git/oe-core/

Contains the core metadata for current versions of OpenEmbedded. It is distro-less (can
build a functional image with DISTRO = "") and contains only emulated machine support.
The Yocto Project has extensive documentation about OpenEmbedded included a reference
manual, which can be found at http://yoctoproject.org/community/documentation.

oe-core-dl/

Contains downloaded packages and configuration files that comprise the package offerings
from the Yocto Project. The conf/layer.conf file defines the mirror sites and order of locations
that packages are retrieved from.

python-rhel5/

Contains Python binaries and source required by BitBake and Poky for the build process.

wr-base/

Contains the recipes and other configuration files that comprise the Wind River Linux base
offering and make it possible to use the configure script to generate a platform project image.
See About the Configure Script on page 63.

wr-bsps/

Contains recipes and machine configuration information for Wind River-supplied BSPs. See
the Wind River Linux Release Notes for a list of available BSPs.

wr-features/

Provides many of the base components for Wind River Linux. It is required by most other
layers that Wind River provides.

wr-fixes/

Provides bug fixes for other layers in the system. This layer requires oe-core.

wr-freescale_qoriq_dpaa/

Contains recipes and configuration information for using the Freescale User Space Datapath
Acceleration architecture.

wr-installer/

Contains a target-based installed for Wind River Linux. This layer requires most of the layers
that Wind River Linux provides.

wr-intel-support/

Contains software support in Wind River Linux for Intel technologies such as Intel
QuickAssist, DPDH, and AMT.

wr-kernel/

Contains recipes and machine configuration information for Wind River-supplied kernels
and kernel features. This includes a git repository for the Wind River Linux kernel and kernel
tools.

http://yoctoproject.org/community/documentation

Wind River Linux
User's Guide, 5.0.1

102

wr-kvm-binary-guest-images/

Contains configuration information and directories for guest images.

wr-kvm-compile-guest-kernels/

Contains configuration information and directories for guest kernels.

wrlcompat/

In a typical Yocto Project build environment, the build output creates a specific directory
structure. This structure is different than the Wind River Linux structure from previous
releases. The wrlcompat layer ensures that build output is consistent with previous Wind
River Linux (4.x) releases.

wrlinux/

Contains the recipes, configuration information, and files that support Wind River Linux tools
and enhance development with the Yocto Project build system.

wr-simics/

Contains configuration information for using the Wind River Linux Simics system simulator.

wr-prebuilts/

Contains configuration information and files to support using pre-built binaries to create
platform project images.

wr-toolchain/

Contains files, recipes, configuration information and documentation to support the GNU
toolchain supplied by Wind River for development.

wr-toolchain-shim/

Provides configuration glue to allow selection of an automatically-integrated toolchain
layer, which in turn contains both rules for building the toolchain from source, and rules
for using the prebuilt binaries. This layer also contains tuning files and configuration
overrides for those layers.

wr-tools-debug/

Contains configuration information and files to support debugging and ptrace with
Workbench and Wind River tools.

wr-tools-profile/

Contains configuration information and files to support Wind River Linux development tools,
including: analysis, boot time, code coverage, Valgrind, and lttng.

See Templates in the Development Environment. for additional information.

Installed Layers vs. Custom Layers

When the installed layers do not meet your development needs, you can customize them or
create new layers.

Layers Included in a Standard Installation on page 100 provides a description of the installed
layers that comprise your Wind River Linux build system. These layers include support for
creating and developing platform project images and applications with Wind River Linux, and
also include support for add-on products, such as Wind River Simics.

8 Layers
Layer Structure by Layer Type

103

It is possible to modify these layers, but is not recommended. If you discover that the supplied
layers do not meet your development needs, you can create a custom layer that does. One
example might be to add support for new hardware that is not included in the wr-bsps layer.

Custom layers let you add additional functionality and extend the capabilities of your
development environment, as well as your build environment and the platform target you are
developing for. The Wind River Linux build system makes it possible to do the following:

• Create a new, custom layer and include it by default with all new platform project image
creation, or specify it for a single project.

See Creating a New Layer on page 106 for additional information.
• Extend the capabilities of an existing layer with append files (.bbappend) and save those

extensions as a new layer.

See About Recipes on page 109 for additional information.
• Include or exclude layers as necessary to meet your development needs.

See Enabling a Layer on page 107 and Disabling a Layer on page 108 for additional
information.

Layer Structure by Layer Type

Layers all have a similar structure, but include additional directories in their structure depending
on their intended usage.

Layers can include any combination of recipes, templates, code, configuration files, and packages.
In the Wind River Linux development environment, there are three specific layer types:

basic, or application-specific

This is used to manage applications and packages required by your project. For each
newly configured and built platform project, Wind River Linux automatically creates a
projectDir/layers/local layer for managing project-specific changes. See About the layers/
local Directory on page 54 for additional information.

machine-specific

This is used to maintain BSP and kernel-related modifications and/or requirements.

distribution-specific

This is used to maintain policies related to your platform project distribution (distro).

Layers make the development and build environments highly configurable. Layers are
replaceable—if you have a different kernel layer, for example, you could specify it as an option to
the configure script and override the default kernel layer.

Application-specific Layers

The following figure provides an example of a minimum layer requirements for an application-
specific layer:

Wind River Linux
User's Guide, 5.0.1

104

In this example, the layer includes a conf/ directory with the layer.conf file, and a
recipes-appName folder with a recipe file (.bb), application source (.c), and an append file
(.bbappend) that extends the capability of an existing recipe file.

Note that the only minimum requirements for an application-specific layer are the conf/
layer.conf file and a recipe file (.bb). You can organize the information and content in any manner
you need to meet your development requirements.

Machine-specific Layers

The following figure provides an example of a minimum layer requirements for a machine-
specific layer:

A machine-specific layer requires the same layerDir/conf/layer.conf file as all layers do, but
also includes the layerDir/conf/machine/machineName.conf file to differentiate this as a
machine (BSP) layer type.

Distro-specific Layers

The following figure provides an example of a minimum layer requirements for a distro-specific
layer:

8 Layers
About Layer Processing and Configuration

105

A distribution-specific layer requires the same conf/layer.conf file as all layers do, but also
includes the conf/distro/distroName.conf file to differentiate this as a distribution (distro) layer
type.

• Creating a New Layer on page 106
• Creating a Recipe File on page 112

About Layer Processing and Configuration

Wind River Linux includes layers, and some optional products from Wind River are
implemented as layers. In addition, you can create your own custom layers, and include layers
created by others. This section describes how the build system configures layers in a hierarchical
relationship.

When you create a project with the configure script, you do so using the available templates
and layers. The configuration process creates a list of available layers, and then searches them to
obtain any required templates. If a required template is not found, it is an error.

Layers provide templates and packages, while templates provide configuration. For example,
a new package becomes available to the build system when you add it to a layer, but it only
becomes part of a given project when you configure in the template that selects it. The template
does not contain the package, it merely marks the package for inclusion.

The terms “higher” and “lower” are used to describe the priority layers or templates have.
A higher-level template (or layer) takes precedence over a lower-level one, and is thus more
specific, rather than less specific. When configure searches for components, it selects higher-
level components first. When configure applies multiple components, it applies lower-
level components first; this design allows higher-level components to override lower-level
components.

For example, a kernel configuration fragment for a given BSP is at a higher level than the generic
“standard” kernel configuration. The BSP-specific kernel configuration settings can then override
more generic kernel configuration settings.

Combine layers with the configuration of templates, and the addition of the fs_final*.sh script,
and the changelist.xml file located in the projectDir/layers/local/conf/image_final directory
to build a complete run-time system that you provide the configuration details for.

About Processing a Project Configuration

Learn how a project configuration is processed when you run the configure and make
commands.

Wind River Linux
User's Guide, 5.0.1

106

In Wind River Linux, processing your project configuration occurs in the following manner:

1. You run the configure script to specify your target platform options. See Introduction on page
61. This script automatically includes certain default layers in your project configuration,
along with any configure options that you specify.

2. You run the make command to build your project. This process takes into account all the
metadata of your platform project, including default and specified layers, templates, and the
recipes and .conf files that are associated with the metadata. For additional information, see:

• About Layers on page 99
• Metadata on page 32
• Configuration Files and Platform Projects on page 33

Part of the build process is processing the bblayers.conf file (see The bblayers.conf File). Layers
are processed from top to bottom in this file. Additionally, the layers.conf file has a variable
called BBFILE_PRIORITY, which sets the processing priority of the layer, so that a developer
can specify a higher priority to layers that other layers depend on.

3. After all of the layers and metadata are processed, and just before the actual file system
image for the platform project is created, the build system processes the fs_final*.xml and the
changelist.xml files. These files specify additional features or actions to be done on the target.
See Introduction to Managing Target Platforms.

Creating a New Layer

Learn how to create a layer for your platform project image.

Step 1 Create a new layer directory.

The Yocto Project uses the meta- prefix (meta-layerName) for all layers, while Wind River uses
the wr- prefix (wr-bsps, for example) to denote Wind River Linux-supplied layers.

Step 2 Create a conf/layer.conf file in your layer directory.

You can simply copy an existing one (see Configuration Files and Platform Projects on page 33) and
update it to reflect the new layer content, and also set the priority as appropriate.

Step 3 Add layer-specific content, depending on the layer type.

For additional information, see Layer Structure by Layer Type on page 103.

Options Description

Machine support If the layer is adding support for a machine, add the machine
configuration in

conf/machine/

Distro policy If the layer is adding distro policy, add the distro configuration in

conf/distro/

New recipes If the layer introduces new recipes, put the recipes you need in recipes-
* subdirectories of the layer directory.

8 Layers
Enabling a Layer

107

Enabling a Layer

To enable a layer, add your layer's path to the BBLAYERS variable in your bblayers.conf file .

Step 1 Open the projectDir/bitbake_build/conf/bblayers.conf file in an editor.

For additional information, see Directory Structure for Platform Projects on page 43.

Step 2 Add your layer's name to the BBLAYERS variable.

In this example, a new layer is added to the end of the list:

LCONF_VERSION = "5"

BBPATH = "${TOPDIR}"
BBFILES ?= ""
WRL_TOP_BUILD_DIR ?= "${TOPDIR}/.."
resolve WRL_TOP_BUILD_DIR immediately with a canonical path
to satisfy the bitbake logger
WRL_TOP_BUILD_DIR := "${@os.path.realpath(d.getVar('WRL_TOP_BUILD_DIR', True))}"

BBLAYERS = " \
 ${WRL_TOP_BUILD_DIR}/layers/wrlinux \
 ${WRL_TOP_BUILD_DIR}/layers/wrlcompat \
 ${WRL_TOP_BUILD_DIR}/layers/wr-toolchain \
 ${WRL_TOP_BUILD_DIR}/layers/oe-core/meta \
 ${WRL_TOP_BUILD_DIR}/layers/oe-core-dl \
 ${WRL_TOP_BUILD_DIR}/layers/meta-downloads \
 ${WRL_TOP_BUILD_DIR}/layers/wr-kernel \
 ${WRL_TOP_BUILD_DIR}/layers/wr-bsps/qemux86-64 \
 ${WRL_TOP_BUILD_DIR}/layers/wr-base \
 ${WRL_TOP_BUILD_DIR}/layers/wr-features \
 ${WRL_TOP_BUILD_DIR}/layers/wr-tools-profile \
 ${WRL_TOP_BUILD_DIR}/layers/wr-tools-debug \
 ${WRL_TOP_BUILD_DIR}/layers/meta-networking \
 ${WRL_TOP_BUILD_DIR}/layers/meta-webserver \
 ${WRL_TOP_BUILD_DIR}/layers/wr-prebuilts \
 ${WRL_TOP_BUILD_DIR}/layers/local \
${WRL_TOP_BUILD_DIR}/layers/myLayer

Step 3 Save the file.

Step 4 Reconfigure the platform project.

Run the following command from the platform project directory:

$ make reconfig

This command reconfigures your platform project to include the new layer changes. The build
system parses each conf/layer.conf file as specified in the BBLAYERS variable. During the
processing of each conf/layer.conf file located in the path of the layer, the build system adds the
recipes, classes and configurations contained within the particular layer to your platform project
image (see Directory Structure for Platform Projects on page 43). Once the command completes, the
newly-updated target file system located in the projectDir/export/dist directory will include
the newly added layer

Step 5 Rebuild the target file system.

$ make

After the command completes, the newly-updated target file system located in the projectDir/
export/dist directory will include the newly added layer.

Wind River Linux
User's Guide, 5.0.1

108

Disabling a Layer

To disable a layer, remove the associated path from the bblayers.conf file

Step 1 Open the projectDir/bitbake_build/conf/bblayers.conf file in an editor.

For additional information, see Directory Structure for Platform Projects on page 43.

Step 2 Comment out or remove the code line with the layer's name.

Step 3 Save the file.

Step 4 Reconfigure the platform project.

Run the following command from the platform project directory:

$ make reconfig

Step 5 Rebuild the target file system.

$ make

109

9
Recipes

About Recipes 109

Creating a Recipe File 112

Identifying the LIC_FILES_CHKSUM Value 113

About Recipes

The Wind River Linux installation and build environments include recipes for use in specifying
build instructions, similar to a Makefile.

A recipe file provides instructions for building required packages. It describes:

• library dependencies
• where to get source code
• what patches to apply
• dependencies on other recipes
• configuration and compilation options
• the logical sequence of execution events
• what software and/or images to build

Recipes use the .bb file extension, and are typically located in an a recipes-appName directory:

Wind River Linux
User's Guide, 5.0.1

110

If you want to include your application or package in your platform project build, you must have
a recipe file associated with it. You can copy and modify an existing recipe file, or create one from
scratch.

See also:

• Creating a Recipe File on page 112
• Metadata on page 32
• The Yocto Project Development Manual: Using .bbappend Files

http://www.yoctoproject.org/docs/current/dev-manual/dev-manual.html#using-bbappend-files
• The Yocto Project Wiki Recipe and Patch Style Guide

https://wiki.yoctoproject.org/wiki/Recipe_%26_Patch_Style_Guide
• Creating a Recipe File on page 112
• Metadata on page 32

A Sample Application Recipe File

Learn how recipes work by examining a sample file.

In the Wind River Linux Getting Started Guide, the procedure for adding the Hello World (hello.c)
sample application is explained. Once the application has been added to your platform project,
the following recipe file is created automatically for you. See About the layers/local Directory on
page 54 for the recipe file location in the platform project build environment.

DESCRIPTION = "This package contains the simple Hello World program."
PD = Public Domain license
LICENSE = "PD" LIC_FILES_CHKSUM =
"file://hello.c;beginline=1;endline=3;md5=0227db6a40baae2f3f41750645be145b"

SECTION = "sample"

PR = "r2"

SRC_URI = "file://hello.c"

S = "${WORKDIR}" do_compile() {
 ${CC} ${CFLAGS} -o hello hello.c
}
do_install() {
 install -d ${D}${bindir}

http://www.yoctoproject.org/docs/current/dev-manual/dev-manual.html#using-bbappend-files
https://wiki.yoctoproject.org/wiki/Recipe_%26_Patch_Style_Guide

9 Recipes
About Recipe Files and Kernel Modules

111

 install -m 0755 hello ${D}${bindir}
}

Note that the SRC_URI = element defines the location of the application's source file. You
would need to modify this location to match your own applications source, in relation to the
location of the recipe file.

See Creating a Recipe File on page 112 for details on required recipe elements and licensing
information.

About Recipe Files and Kernel Modules

When a recipe produces a kernel-module, it is necessary to configure the recipe to prefix the
name of the generated packages with kernel-module-. The easiest way to do this is by specifying:

PKG_name = "kernel-module-name"

The following works in most cases, where only one module is generated in a package that has the
same name as the recipe:

PKG_name = "kernel-module-${PN}"

In this example, name is the package name being generated by the recipe. If the package name
already begins with kernel-module-, then no further changes are required.

Extending Recipes with .bbappend Files

You can extend, rather than replace, recipes using .bbappend files

It is not always necessary to recreate entire recipe files from scratch. Instead, you , providing that
the original information (recipe, or .bb file) resides in an existing layer.

NOTE: .bbappend files do not just relate to recipes, they also relate to layers, and existing conf/
layer.conf, conf/machine/machineName.conf, and conf/distro/distroName.conf files.

For an example of using a .bbappend file to extend kernel features, see Configuring Kernel Modules
With Fragments

Step 1 Create .bbappend files to supplement an existing recipe file with new information.

For .bbappend files to work successfully, they must have the same name as the original recipe
file. See Layer Structure by Layer Type on page 103 for an example of a recipe (.bb) filename and an
append (.bbappend) filename for the same application.

Step 2 Configure the project.

Step 3 Build the project.

The build system compiles a list of conf/local.conf files, recipe files (.bb), and append
(.bbappend) files, analyzes them, and creates the complete “picture” of your intended platform
project image.

Wind River Linux
User's Guide, 5.0.1

112

Creating a Recipe File

Learn how to create a recipe file for an application package in your platform project.

Recipe files are necessary if you want your application package to be included in your platform
project image each time the project is configured, reconfigured, or built. See About Recipes on page
109.

After a new package is added to a layer in your platform project, it requires a recipe file to match
the new package contents.

Step 1 Copy an existing recipe file into the same layer and directory where your package resides.

Step 2 Change the name of the recipe file to match the package name for the application.

For example, if your application is named my-app.1.0, name the recipe file to match it,my-
app_1.0.bb for example.

NOTE: If you use the Package Importer tool to add a package to your platform project, it
generates a recipe automatically for you. See About the Package Importer Tool (import-package) on
page 144.

See About Recipes on page 109 for the required minimum recipe file contents.

Step 3 Open the recipe file in an editor.

$ vi layers/local/recipes-local/my-app/my-app_1.0.bb

Step 4 Update the md5 checksum to match your packages
a) Locate the following code line:

LIC_FILES_CHKSUM = "file://LICENCE.TXT;md5="

b) Update the md5 checksum to match your packages.

LIC_FILES_CHKSUM = "file://LICENSE;md5=f27defe1e96c2e1ecd4e0c9be8967949"

NOTE: If you do not know your packages md5 checksum value, see Identifying the
LIC_FILES_CHKSUM Value on page 113.

Step 5 Change my_bin to match the name of the application.
a) Locate the following code line:

install -m 0755 ${S}/my_bin ${D}${bindir}

b) Change my_bin to match the name of the application, my-app.

Step 6 Save the file.

Step 7 Add your package to the platform project build.

$ make -C build my-app.addpkg

9 Recipes
Identifying the LIC_FILES_CHKSUM Value

113

Step 8 Build the package.

$ make -C build my-app

The shell will display the build output. If you receive build errors for incorrect license checksum,
see Identifying the LIC_FILES_CHKSUM Value on page 113.

In this case, you may need to perform steps 2 through 4 to update the LIC_FILES_CHECKSUM
value.

Identifying the LIC_FILES_CHKSUM Value

Each time you add a new package to your platform project image either using the Package
Importer tool or manually, you must update the package's recipe file LIC_FILES_CHKSUM to
match the value of the package.

The syntax for the LIC_FILES_CHKSUM value is follows:

LIC_FILES_CHKSUM = "file://license_info_location;md5=md5_value"

license_info_location

This is the name of the file that contains your license information. This could be a separate
license file, the application's Makefile, or even the application's source file itself, for example,
my-app.c.

md5_value

The numerical checksum value of the file called out in license_info_location.

When you add an application package to the system, or build a platform project that includes
applications with recipe files, this value is checked, and returns a build failure if the md5
checksum value does not match the value that the build system expects.

If you do not know this value, or your build fails with the following warning, you must obtain
the correct checksum value, and update the recipe's LIC_FILES_CHKSUM variable with it.

ERROR: Licensing Error: LIC_FILES_CHKSUM

• Choose an option to determine the LIC_FILES_CHKSUM value.

In this procedure, the examples reference a license file named LICENSE located in the my-app
directory.

Options Description

Use the md5sum
command

1. Run the md5sum command on the license file.

$ md5sum layers/local/recipes-local/my-app/LICENSE

The system returns the checksum value, for example:

2ebc7fac6e1e0a70c894cc14f4736a89 LICENSE

2. Enter the numerical value only in the md5= section. For example:

LIC_FILES_CHKSUM = "file://
LICENSE;md5=f27defe1e96c2e1ecd4e0c9be8967949"

Wind River Linux
User's Guide, 5.0.1

114

Options Description

Use the build system 1. Run the make command to build the package recipe.

$ make -C build recipeName

The build will fail. This is expected.
2. Scan the build output for the license checksum value.

For example:

ERROR: my-app: md5 data is not matching for file://
LICENSE;md5=8e7a4f4b63d12edc5f72e3020a3ffae8
ERROR: my-app: The new md5 checksum is
 2ebc7fac6e1e0a70c894cc14f4736a89

- The first line states that the md5 checksum from the package's
recipe file is incorrect.

- The second line provides the correct md5 checksum value. Use
this value to update the LIC_FILES_CHKSUM md5= value.

115

10
Templates

About Templates 115

Adding Feature Templates 116

Adding Kernel Configuration Fragments 117

About Templates

The Wind River Linux installation and build environments include templates for specifying
system-wide configuration values.

Templates are Wind River extension to the Yocto build system. The template feature is
implemented in a bitbake compatible way, using Yocto compatible syntax, but you will not find
templates in other Yocto based distributions.

By enabling one or more settings, templates can do the following:

• define the supporting files and/or packages required by a specific architecture
• add new functionality, such as a web server or debugging tools to your platform project image
• add or modify hardware support to the kernel or BSP
• many more, depending on your end-system requirements

At its most basic form, a template is simply a directory containing a collection of text
configuration files. Templates can include other templates, be included in a layer, and also
supplement an existing template or layer.

Wind River Linux provides feature and kernel templates to simplify development. Once you
configure a platform project, templates are added to your platform project directories. See Feature
Templates in the Project Directory on page 47 and Kernel Configuration Fragments in the Project
Directory on page 51

A template may contain any of the following types of configuration files:

recipe (.bb) files

See About Recipes on page 109

class (.bbclass) file

Wind River Linux
User's Guide, 5.0.1

116

A file that defines the inheritance of build logic as denoted by the class type, and packaging
requirements.

configuration (.conf) files

See Configuration Files and Platform Projects on page 33

extension (.bbappend) files

See About Recipes on page 109.

In addition, the directory for template configuration files may contain:

• packages required by the template
• git repository
• source and binaries
• other files required by the feature

Adding Feature Templates

Use feature templates to add additional functionality to your platform project.

Use this example procedure to add feature templates when you initially configure a platform
project using the --with-template= configure option.

Step 1 Configure the project to add the template.

In this example, the platform project will be configured and built with the feature/debug
template.

$ configDir/configure \
--enable-board=qemux86-64 \
--enable-kernel=standard \
--enable-rootfs=glibc_small \
--enable-parallel-pkgbuilds=4 \
--enable-jobs=4 \
--with-template=feature/debug

To add multiple templates, append the additional template names:

--with-template=feature/templateName1, templateName2

The resulting configure command would look like:

$ configDir/configure \
 --enable-board=qemux86-64 \
 --enable-kernel=standard \
 --enable-rootfs=glibc_small \
 --enable-parallel-pkgbuilds=4 \
 --enable-jobs=4 \
 --with-template=feature/debug,feature/analysis

For additional information, see Configure Options Reference on page 66.

Step 2 Optionally, rebuild the platform project image.

$ make

For additional information on the available kernel configuration fragments, see Feature Templates
in the Project Directory on page 47.

10 Templates
Adding Kernel Configuration Fragments

117

Adding Kernel Configuration Fragments

Use kernel configuration fragments, (similar to templates) to add additional functionality to your
platform project.

You can add kernel configuration fragments when you initially configure a platform project using
the --enable-kernel=kernelType+type/templateName.scc configure option.

The type in this example refers to the kernel option, either cfg, features, or small.

Step 1 Configure the platform project to include the kernel option.

In this example, the platform project will be configured and built with the features/debugfs/
debugfs-config.scc template.

$ configDir/configure \
--enable-board=qemux86-64 \
--enable-rootfs=glibc_small \
--enable-parallel-pkgbuilds=4 \
--enable-jobs=4 \
--enable-kernel=standard+features/debugfs/debugfs-config.scc

For additional information, see Configure Options Reference on page 66

Step 2 Optionally, rebuild the platform project image.

$ make

For additional information on the available kernel configuration fragments, see Kernel
Configuration Fragments in the Project Directory on page 51.

Wind River Linux
User's Guide, 5.0.1

118

119

11
Finalizing the File System Layout

with changelist.xml

About File System Layout XML Files 119

About File and Directory Management with XML 119

Device Options Reference 120

Directory Options Reference 121

File Options Reference 122

Pipe Options Reference 123

Symlink Options Reference 123

The Touched/Accessed touch.xml Database File 124

About File System Layout XML Files

The file system layout feature has been designed to allow you to view the contents of the target
file system in Workbench as it will be generated by the platform project build system.

You can add custom files to a file system. These files are then placed in the resulting filesystem
RPM. See Wind River Workbench by Example (Linux Version) for using the File System Configuration
Layout tool in Workbench to do the following:

• Examine file meta properties
• Add files and directories to the file system
• View parent packages and remove packages
• Add devices to /dev and change their ownership
• View files and directories that have been “touched” or accessed on the target

About File and Directory Management with XML

You can manage your file system with the changelist.xml file.

Wind River Linux
User's Guide, 5.0.1

120

Managing Files and Directories with XML

The projectDir/layers/local/conf/image_final/changelist.xml file is an XML file that is
managed by Workbench but can be edited or processed by command line tools. Opening the
User Space Configuration tool in Workbench and making modifications creates the optional
changelist.xml file. You can also create this file manually in the same location.

The script projectDir/layers/wrlinux/scripts/fs_changelist.lua processes this file immediately
before the optional finalization script fs_final.sh as part of the image-fs_finalize.bbclass recipe
(see Options for Adding an Application to a Platform Project Image on page 138). The file system
finalization is recorded in the log found at projectDir/bitbake_build/tmp/work/bsp-wrs-
linux/wrlinux-image-filesystem-version/temp/do_rootfs/log.do_rootfs.timeStamp. Any
additions to the file system using fs_final*.sh and changelist.xml can be seen in projectDir/
export/dist once the platform project image is built.

The changelist.xml file is processed in the pseudo environment, so the only named account and
group that is valid is root. You should use numeric entries for alternate users and groups, and
then subsequently create the accounts and groups in fs_final.sh with the numbers you used in
the changelist.xml file, or with the EXTRA_USERS_PARAMS.

Device Options Reference

Any device added in changelist.xml in the default filesystem will be ignored. By default, Linux
devices are now created in a dynamic file system, devtmpfs, mounted at runtime on /dev. As a
result, any device nodes created statically are ignored.

The following tables show required and optional fields for adding a device to the system using
the filesystem/changelist.xml file.

NOTE: Adding a device in this manner currently does not work.

Required Fields

Field and Value Description

action=addbdev or

action=addcdev

Use the addbdev action to add a block device.
umode does not work with this action.

Use the addcdev action to add a char device.
umode does not work with this action.

name=deviceName Name of the device directory added to the
target file system

umode=permissions The user/group/other permissions of the target
symlink, in octal.

major=majorNumber The major number for this device

minor=minorNumber The minor number for this device

11 Finalizing the File System Layout with changelist.xml
Directory Options Reference

121

Optional Fields

Field and Value Description

uid=username The user name, in text or in numeric form (as
with the chown command).

gid=groupname The group name, in text or in numeric form (as
with the chgrp command).

Examples

<cl action="addbdev" name="/usr/share/f_bdev1" major="3" minor="4" />
<cl action="addbdev" name="/usr/share/f_bdev2" major="3" minor="4" />
<cl action="addbdev" name="/usr/share/f_bdev3" major="3" minor="4" size="10" />
<cl action="addbdev" name="/usr/share/f_bdev4" major="3" minor="4" uid="user4"
 gid="group4"/>
<cl action="addcdev" name="/usr/share/f_cdev1" major="1" minor="2" />
<cl action="addcdev" name="/usr/share/f_cdev2" major="1" minor="2" />
<cl action="addcdev" name="/usr/share/f_cdev3" major="1" minor="2" size="10" />
<cl action="addcdev" name="/usr/share/f_cdev4" major="1" minor="2" uid="user4"
 gid="group4"/>

Directory Options Reference

Required and optional fields for adding a directory to the file system using the filesystem/
changelist.xml file.

Required Fields

Field and Value Description

action=adddir Use the adddir action to add a directory to the
file system

name=dirname Name of the directory added to the target file
system

Optional Fields

Field and Value Description

umode=permissions The user/group/other permissions of the
directory, in octal, if the source= field is not
present, to modify or override the permissions
of an existing directory.

uid=username The user name, in text or in numeric form (as
with the chown command).

gid=groupname The group name, in text or in numeric form (as
with the chgrp command).

Wind River Linux
User's Guide, 5.0.1

122

Examples

<cl action="adddir" name="/usr/share/f_dir1" />
<cl action="adddir" name="/usr/share/f_dir2" umode="777" />
<cl action="adddir" name="/usr/share/f_dir3" size="10" />
<cl action="adddir" name="/usr/share/f_dir4" uid="1001" gid="1001" />

About The source= Field

If the source= field is not present, then a new empty directory is created on the target file system.

If the source= field is present, then the source directory name and attributes are copied from that
source location. This command will not copy the contents of the source directory. Each file or sub-
directory is expected to be iterated explicitly with the respective file or directory add directive.

File Options Reference

Required and optional fields for adding a file to the file system using the filesystem/
changelist.xml file.

Required Fields

Field and Value Description

action=addfile Use the addfile action to add a file to the file
system

name=filename Name of the file added to the target file system

source=fullPath The name and path of the file on the host
file system. If present, the source file is to be
copied into the target file system with the
supplied permissions. If not present, then this
entry is used to modify the permissions of an
existing file.

Optional Fields

Field and Value Description

umode=permissions The permissions of the target file, in octal (as
with the chmod command).

size=size Where size is the pre-calculated size of the
file used if the source= field is present, saving
a size lookup by the tools that process this file
(Workbench or command line tools).

uid=username The user name, in text or in numeric form (as
with the chown command).

11 Finalizing the File System Layout with changelist.xml
Pipe Options Reference

123

Field and Value Description

gid=groupname The group name, in text or in numeric form (as
with the chgrp command).

Examples

<cl action="addfile" name="/usr/share/f_foo1" source="/tmp/layout/f_foo1" />
<cl action="addfile" name="/usr/share/f_foo2" source="/tmp/layout/f_foo1" umode="777" /
>
<cl action="addfile" name="/usr/share/f_foo3" source="/tmp/layout/f_foo1" size="10" />
<cl action="addfile" name="/usr/share/f_foo4" source="/tmp/layout/f_foo1" uid="1001"
 gid="1001" />

Pipe Options Reference

Required and optional fields for adding a pipe to the file system using the filesystem/
changelist.xml file.

Required Fields

Field and Value Description

action=addpipe Use the addpipe action to add a pipe to the file
system

name=pipeName Name of the directory added to the target file
system

Optional Fields

Field and Value Description

uid=username The user name, in text or in numeric form (as
with the chown command).

gid=groupname The group name, in text or in numeric form (as
with the chgrp command).

Examples

<cl action="addpipe" name="/dev/f_pipe1" />
<cl action="addpipe" name="/dev/f_pipe2" />
<cl action="addpipe" name="/dev/f_pipe3" size="10" />
<cl action="addpipe" name="/dev/f_pipe4" uid="user4" gid="group4"/>

Symlink Options Reference

Required and optional fields for adding a symlink to the file system using the filesystem/
changelist.xml file.

Wind River Linux
User's Guide, 5.0.1

124

Required Fields

Field and Value Description

action=addsymlink Use the addsymlink action to add a symlink to
the file system

name=symlinkName Name of the symlink added to the target file
system

target=targetName Name of the target within the target file
system.

Examples

<cl action="addsymlink" name="/usr/share/f_sym1" target="/usr/share/f_foo1" />
<cl action="addsymlink" name="/usr/share/f_sym2" target="/usr/share/f_foo1" />
<cl action="addsymlink" name="/usr/share/f_sym3" target="/usr/share/f_foo1" size="10" /
>
<cl action="addsymlink" name="/usr/share/f_sym4" target="/usr/share/f_foo1" uid="user3"
 gid="group3" />

The Touched/Accessed touch.xml Database File

This section provides information on the XML for the file system layout touched.xml file. You can
custom-generate and import such a formatted file using any name.

There is only one entry definition and one action (action="touched"). If a file name is in this list,
then that file was directly or indirectly touched or accessed on the target. This file is generated by
a script that runs on the target, and by default populated with all files touched since first boot.

<?xml version="1.0" encoding="UTF-8"?>
<layout_change_list version="1">
 <change_list>
 <cl action="touched" name="/bin"/>
 <cl action="touched" name="/bin/busybox"/>
 <cl action="touched" name="/fetch-footprint.sh"/>
 <cl action="touched" name="/lib"/>
 <cl action="touched" name="/lib/libnss_files-2.8.so"/>
 <cl action="touched" name="/lib/libc-2.8.so"/>
 <cl action="touched" name="/lib/ld-2.8.so"/>
 <cl action="touched" name="/etc"/>
 <cl action="touched" name="/etc/fstab"/>
 <cl action="touched" name="/etc/init.d/rcS"/>
 <cl action="touched" name="/etc/profile"/>
 <cl action="touched" name="/etc/passwd"/>
 <cl action="touched" name="/etc/inittab"/>
 <cl action="touched" name="/etc/nsswitch.conf"/>
 <cl action="touched" name="/touched.xml"/>
 </change_list>
</layout_change_list>

See and the Wind River Linux Workbench by Example, Linux Version for more information on the use
of this tool.

125

PA R T I I I

Userspace Development

Developing Userspace Applications.................................. 127

Understanding the User Space and Kernel Patch Model. 153

Patching Userspace Packages... 159

Modifying Package Lists... 167

Wind River Linux
User's Guide, 5.0.1

126

127

12
Developing Userspace Applications

Introduction 127

Creating a Sample Application 132

Exporting the SDK 136

Adding Applications to a Platform Project Image 138

Importing Packages 144

Listing Package Interdependencies 151

Introduction

About Application Development

You can use the Wind River Linux SDK to develop applications and cross-compile them for the
intended target.

The Wind River Linux SDK is a development environment which provides all the necessary tools
to cross-compile and deploy your application in the intended target. The SDK is generated from
a working Wind River Linux Platform project and is therefore associated with the particular
architecture and build options of the project.

In a typical scenario you cross-compile your application and run it on an emulator such us
QEMU first to verify its core functionality. As your development process proceeds, it is likely
that you will need to cross-compile and deploy the application binaries to a NFS root file system,
which is mounted by the real target, to proceed with further testing. Finally you integrate your
application binaries with the build system so that they are automatically deployed on the target's
image.

Wind River Linux
User's Guide, 5.0.1

128

NOTE: Creating a build environment on the target does install some GPLv3 software. If you
want to produce a GPLv2 target with the new applications you developed, you could build your
applications on the target, and then add the binaries to subsequent builds that do not include the
build tools.

Also note that while Wind River does support the target compiler for product development, it
does not support the compiler on shipped products.

See also:

• Wind River Workbench by Example, Linux Version

Cross Development Tools and Toolchain

Use the GNU toolchain to cross-compile applications for your target system.

Wind River Linux 5 is based on the Yocto Project (http://www.yoctoproject.org) implementation
of the OpenEmbedded Core (OE-Core) metadata project. The Yocto Project uses build recipes
and configuration files to define the core platform project image, as well as the applications and
functionality it provides.

This build system uses metadata contained in the recipes and configuration files to define and
create a Linux kernel and a root file system with all necessary configuration and initialization
files for a deployed Linux platform. You can add or remove source RPM and traditional
tar archive packages for customized solutions. You can also add or remove RPM binary
packages from the target file system, automatically checking dependencies, flagging missing
libraries, components, or version mismatches. The build system provides a version-controllable
development environment, separate from the host file system which is protected from
inadvertent damage.

Cross-development is supported by the inclusion of the GNU cross-toolchain, and enhanced by
the addition of Wind River Workbench.

NOTE: The build toolchain required to cross-compile programs for your target system is located
in the projectDir/host-cross directory. See Directory Structure for Platform Projects on page 43.

Workbench supports kernel mode debugging through the Kernel GNU Debugger (KGDB), and
user mode debugging through the ptrace agent.

For detailed information on using Wind River Workbench, see the Wind River Workbench User’s
Guide, and the Wind River Workbench by Example, Linux Version.

About Sysroots and Multilibs

Application developers use sysroots provided by the platform developer to build applications.

Once the application is built, it can be incorporated into platform project images.

What are Sysroots?

Wind River Linux provides sysroots, which are a prototype target directory which contains the
necessary library, header, and other files as they would appear on the target. Sysroots also include
toolchain wrappers for each of the supported development hosts.

http://www.yoctoproject.org

12 Developing Userspace Applications
Enabling Multilib Support in Platform Projects

129

In general pre-built libraries and toolchain wrappers are not provided for application
development because they may not well reflect the actual platform prepared by the platform
developer. Instead, the platform developer generates and exports a sysroot for the configured
platform project.

Architecture-specific sysroots are generated with the make export-sdk command. See Exporting
the SDK on page 136. To use these sysroots, you must generate the SDK, uncompress it, and
source the sysroot file as described in that section.

Once sourced, these sysroots enable application developers to get started developing for the
platform target configuration.

About Exporting Sysroots

To produce an exported sysroot environment from a configured build directory, use the make
export-sdk command as described in Exporting the SDK on page 136.

What are Multilibs?

CPU and multilib templates encode information about a particular supported target, such as
compiler flags that are needed or desirable when building for that target. These templates exist
so that you should never have to manually specify any CPU-specific or architecture-specific
compiler flags to build software correctly for a BSP.

A CPU template defines specific performance tuning flags for a given CPU. A multilib template
defines the flags which control ABI compatibility. It is possible to have several CPU templates
which share one multilib template.

Multilib Targets

Wind River supports multiple libraries on certain targets. With these multilib targets, it is
possible, for example, to compile an application against both 32- and 64-bit libraries, and not just
one or the other.

In cases where a board supports multilibs, a reasonable default library has been chosen, but
you may need a different library. For example, qemux86-64 targets may include the x86_64 or
x86_32 CPU types, with x86_64 being the default. If you want to provide for development with
the x86_32 CPU type on a qemux86-64 target, you need to take additional action to be sure the
appropriate packages are included in the sysroot you export.

Enabling Multilib Support in Platform Projects

Learn how to enable multilib support for your platform project.

Multilibs are enabled by adding the MULTILIB= declaration to your project's local.conf file (see
Configuration Files and Platform Projects on page 33).

The potential multilibs are listed in the AVAILTUNES declaration. For qemu86-64 BSP, that value
equals the following.

AVAILTUNES=" x86 x86-64 x86-64-x32"

In this example, x86 (32-bit), x86-64 (64-it), and x86-64-x32, a combination of both, are available
tuning options for multilib support.

Wind River Linux
User's Guide, 5.0.1

130

NOTE: Not all available tunings are necessarily supported in projects, for example x86-64-x32.

To perform this procedure, you must have a previously configured platform project.

Step 1 Open the projectDir/local.conf file in an editor.

Step 2 Add the MULTILIBS variable to enable 32-bit support.

The value that you enter must be listed in the AVAILTUNES declaration. For example, for the
qemux86-64 BSP you would add:

MULTILIBS = "multilib:lib32"
DEFAULTTUNE_virtclass-multilib-lib32 = "x86"

Step 3 Save the file.

The platform project now supports the addition of 32-bit packages.

Step 4 Optionally add packages to the file system.

For additional information, see Adding Multilib Packages on page 130.

Step 5 Build the platform project image.

$ make

Adding Multilib Packages

Once you have enabled multilib support in a platform project, you can add multilib packages.

This procedure requires that you have previously configured a platform project that has been
enabled to support multilib packages. For additional information, see Enabling Multilib Support in
Platform Projects on page 129.

Step 1 Navigate to the projectDir.

$ cd projectDir

Step 2 Add the package.

$ make -C build lib32-zlib.addpkg

Step 3 Build the package.

$ make -C build lib32-zlib.build

The build system will automatically add the multilib variants of the dependencies for this
package, for example the lib32-glibc and other libraries, and include them in the final file system
image. All packages for all default and alternate multilibs will have links in the project's build
directory, using the naming convention to distinguish the variants.

Step 4 Optionally verify the architecture (32- or 64-bit) of the package.

Perform this step to view the flags for the package that determine the architecture.

$ make -C build lib32-zlib.env | grep "^TARGET_CC_ARCH="

12 Developing Userspace Applications
Adding Multilib Support for All Libraries to the SDK

131

The system provides the following output:

TARGET_CC_ARCH="-m32"
$

In this example, the TARGET_CC_ARCH="-m32" flag indicates a 32-bit package.

Adding Multilib Support for All Libraries to the SDK

Use this procedure to add multilib support to a SDK.

Multilib libraries are not installed to the SDK by default when you build a platform project and
generate the SDK. This is because the target file system does not typically require any multilib
images, and adding additional libraries that increase the memory footprint, but cannot run on the
target file system, is not considered a good use of resources. However, it may be necessary to add
multilib support for a specific development need, as described in the following procedure.

NOTE: Performing this procedure will only add support to the SDK for use on the development
host, and not to the target file system.

Step 1 Update the projectDir/local.conf file.

Add the following lines and save the file.

TOOLCHAIN_TARGET_TASK = "task-core-standalone-sdk-target task-core-standalone-sdk-
target-dbg"
TOOLCHAIN_TARGET_TASK += "${@' '.join([x + "-" + y for y in
 ((d.getVar("LIBC_DEPENDENCIES", True) or "") +
 ' libgcc libgcc-dev libstdc++ libstdc++-dev').split() for x in
 (d.getVar('MULTILIB_VARIANTS',
 True) or "").split()])}"

The first line is the default setting, and the second line adds the specific multilib libraries to the
image.

Step 2 Create the SDK.

$ make export-sdk

NOTE: For additional information on creating SDK images, see Exporting the SDK on page
136.

After the command finishes processing, it creates a shell script for extracting the SDK in the
projectDir/export/ directory. The exact name includes components of the project settings. Look
for a file name that ends with -sdk.sh, for example:

projectDir/export/wrlinux-5.0.1.0-glibc-x86_64-qemux86_64-wrlinux-image-glibc-small-
sdk.sh

Adding Static Library Support to the SDK

Use this procedure to add static library support to a SDK.

Wind River Linux
User's Guide, 5.0.1

132

When you build the file system and generate the SDK, the SDK does not include support for
static libraries. This is intentional in that most applications should be using the shared libraries
for linking. If you require specific static libraries for your development needs, you can add a
single static library, or all static libraries.

Step 1 Choose an option for adding static libraries.

Options Description

Single library Update the projectDir/local.conf file with the following information:

TOOLCHAIN_TARGET_TASK_append = " lib_recipeName"

NOTE: The leading space prior to lib_recipeName is
required by the build system.

In this example, lib_recipeName refers to the recipe name for the
specific static library.

All static libraries Update the projectDir/local.conf file with the following information:

SDKIMAGE_FEATURES = "staticdev-pkgs dev-pkgs dbg-pkgs"

Step 2 Save and close the file.

Step 3 Generate the SDK.

NOTE: For additional information on creating SDK images, see Exporting the SDK on page
136.

$ make export-sdk

After the command finishes processing, it creates a shell script for extracting the SDK in the
projectDir/export/ directory. The exact name includes components of the project settings. Look
for a file name that ends with -sdk.sh, for example:

projectDir/export/wrlinux-5.0.1.0-glibc-x86_64-qemux86_64-wrlinux-image-glibc-small-
sdk.sh

Creating a Sample Application

Learn to develop a sample C application that calculates a specified number of terms in the
Fibonacci series.

The Fibonacci series takes the number of terms as a command-line parameter.

This application provides a good example of a typical C application, and includes the following:

• Two source files
• A header file
• A Make file to provide guidance for building the final binary and clean up the working

directory
• A license file for association with the platform project

12 Developing Userspace Applications
Creating a Sample Application

133

This example shows how to work with applications that are not part of your existing platform
project image, and do not automatically build when you run the make command in the platform
project directory. You can use this procedure for any stand-alone application that you want to
develop and test apart from your platform project image.

If you wish to add an application project to your platform project image that builds automatically
with each subsequent project build, you can use the Package Importer tool. See About the Package
Importer Tool (import-package) on page 144.

To develop and compile an application to match your platform project’s architecture, you must
first export the SDK and source the sysroot. See Exporting the SDK on page 136.

NOTE: If you have previously exported the SDK, you can simply source the associated env.sh
file located in the sysroot directory.

Step 1 Create a working directory for your application project.

You can create a working directory anywhere on your host workstation. There are no restrictions
for location or directory name. In this example, you will create a directory in your platform
project’s directory. For example:

$ mkdir ~/Builds/qemux86-64_small/Fibonacci
$ cd ~/Builds/qemux86-64_small/Fibonacci

Step 2 Set up the main.c file.
a) Create the main.c file with vi.

$ vi main.c

b) Enter or copy the following text.

/*
 * Copyright 2012 Wind River Systems, Inc.
 */

#include <stdio.h>
#include "math.h"

int main(int argc, char *argv[])
{
 int i, count=0;

 if (argc >= 2)
 count = atoi(argv[1]);

 for (i=0; i < count; i++) {
 printf("%d\n", fibonacci(i));
 }

 return 0;
}

c) Save the file.

Step 3 Set up the math.c file.
a) Create the math.c file with vi.

$ vi math.c

b) Enter or copy the following text.

/*
 * This is public domain software

Wind River Linux
User's Guide, 5.0.1

134

 */

int fibonacci(int n)
{
 if (n <= 0)
 return 0;
 else if (n == 1)
 return 1;
 else
 return (fibonacci(n-1) + fibonacci(n-2));
}

c) Save the file.

Step 4 Create the math.h file.
a) Create the header math.h file with vi.

$ vi math.h

b) Enter or copy the following text.

/*
 * This is public domain software
 */

int fibonacci(int n);

c) Save the file.

Step 5 Create the makefile file.
a) Create the header math.h file with vi.

$ vi makefile

b) Enter or copy the following text.

#
Copyright 2012 Wind River Systems, Inc.
#
VERSION := 1.0
DEPS := math.h
SRC := main.c math.c
OBJ := $(SRC:.c=.o)

all: fibonacci

archive: fibonacci.tar.bz2

fibonacci: $(OBJ)
 $(CC) -o $@ $^ $(LIBS)

%.o: %.c $(DEPS)
 $(CC) -c -o $@ $<

fibonacci.tar.bz2: $(SRC) $(DEPS) Makefile LICENSE
 tar --transform 's,^,fibonacci-$(VERSION)/,' -cjf $@ $^

.PHONY: clean

clean:
 @rm -f fibonacci *.o *~

c) Save the file.

Step 6 Create the LICENSE file.
a) Create the LICENSE file with vi.

$ vi LICENSE

12 Developing Userspace Applications
Creating a Sample Application

135

b) Enter or copy the following text.

The Fibonacci application is licensed under the GPL v3.
For the purposes of this example we keep these statements in this file
but you should include the full text of the license here instead.

c) Save the file.

Step 7 Compile the program.

This step requires that you already created the SDK and sourced the development environment,
as detailed in Exporting the SDK on page 136.

a) Navigate to the project directory for the application.
b) Compile the application.

$ make

After the make command completes, it creates a fibonacci binary file in the working directory,
compiled to match the sourced development environment.

Step 8 Optionally, test the program on the host.

If your host workstation is compatible with the target architecture of your platform, you can run
the program with the following command:

$./fibonacci 5

The program should output:

0
1
1
2
3

If your host workstation is not compatible, go to the next step to test your application on the
target.

Step 9 Test the program on the target.
a) Copy the program binary to the platform project target file system usr/bin directory.

$ fibonacci ~/Builds/qemux86-64_small/export/dist/usr/bin

b) Navigate back to the platform project directory.

$ cd ..

c) Launch the platform project in an emulator.

$ make start-target

d) After the system finishes booting, log in.

Step 10 Optionally, add your application project to the platform project image

This step is recommended if you plan to include your application as part of your platform project
image. See Options for Adding an Application to a Platform Project Image on page 138.

Wind River Linux
User's Guide, 5.0.1

136

Exporting the SDK

Exporting the SDK

After you have successfully configured and built a platform project, you can export the SDK for
application development.

The following procedure requires that:

• You have a previously configured and built platform project—see Introduction on page 61
and the Wind River Linux Getting Started Guide: Developing a Platform Project Image Using the
Command-line.

• You have read/write privileges to the /opt directory on your host workstation.

NOTE: These privileges are necessary for the project toolchain to install and work properly.

Step 1 Generate the SDK.
a) Navigate to the platform project directory that you wish to create the SDK for.
b) Create the SDK.

$ make export-sdk

After the command finishes processing, it creates a shell script for extracting the SDK in the
projectDir/export/ directory. The exact name includes components of the project settings.
Look for a file name that ends with -sdk.sh, for example:

projectDir/export/wrlinux-5.0.1.0-glibc-x86_64-qemux86_64-wrlinux-image-glibc-small-
sdk.sh

This script will install the SDK with the toolchain for your project that you need for cross-
compiling applications. Note that the file is named after the architecture and file system
of your configured project. This example uses a qemux86-64 BSP and glibc_small root file
system.

Step 2 Run this script to install the SDK.

In this example, you first navigate to the export directory, and then install the SDK.

$ cd export
$./wrlinux-5.0.1.0-glibc-x86_64-qemux86_64-wrlinux-image-glibc-small-sdk.sh

Step 3 Enter the target directory path, or accept the default /opt/windriver/wrlinux/5.0-qemux86-64.

Step 4 When prompted, press Y and ENTER to install the SDK.

The SDK will extract and install to the directory specified in step 3 on page 136. Once
complete, the required environment variables for the target architecture are set up to allow you to
immediately begin application cross-compiling and development. Specifically, the environment
variables CC, CXX, and CFLAGS are set to cross-compile C and C++ programs using the
corresponding cross-compilers.

Step 5 Rebuild the file system to incorporate the SDK for development.

12 Developing Userspace Applications
Exporting the SDK for Windows Application Development

137

Run the following command from the projectDir:

$ make fs

Exporting the SDK for Windows Application Development

After you have successfully configured and built a platform project, you can export the SDK for
application development on a Windows host.

Use the following instructions create and extract a SDK suitable for developing applications on a
Microsoft Windows host.

Step 1 There are three possibilities for generating the SDK:

Option Description

Configure a new
project using the --
enable-sdk-winfs=yes
configure option.

1. Enter the following command from the projectDir to configure
the platform project:

$ configDirconfigure \
--enable-board=qemux86-64 \
--enable-kernel=standard \
--enable-rootfs=glibc_std \
--enable-win-sdk=yes \
--enable-parallel-pkgbuilds=4 \
--enable-jobs=4

2. Once the configuration completes, create the SDK.

$ make export-sdk

Override
EXPORT_SYSROOT_HOSTS
in the projectDir/
local.conf file. See
Configuration Files and
Platform Projects on
page 33

1. Edit the platform project's local.conf file.

With a previously configured platform project,
open the projectDir/local.conf file and edit the
EXPORT_SYSROOT_HOSTS option as follows, and save the file:

EXPORT_SYSROOT_HOSTS ?= "x86-linux2 x86-win32"

2. Once complete, create the SDK.

$ make export-sdk

Override
EXPORT_SYSROOT_HOSTS
on the command line.

With a previously configured platform project, enter the following
from the projectDir:

$ make export-sdk EXPORT_SYSROOT_HOSTS="x86-linux2 x86-win32"

After the command finishes processing, it creates an archive in the projectDir/export/ folder
containing the SDK. The exact name includes components of the project settings, such as the
architecture and file system. Look for a file name that ends with a .zip extension. For example:

projectDir/export/wrlinux-5.0.1.0-glibc-x86_64-qemux86_64-wrlinux-image-glibc-small-sdk-
win32.zip

This compressed file contains the toolchain for your project that you need for cross-compiling
applications.

Wind River Linux
User's Guide, 5.0.1

138

Step 2 Copy the .zip file containing the SDK to your Windows host.

Step 3 On the Windows host, extract the SDK *.zip file.

You can extract all of your SDKs into the same parent directory, as each core directory is unique
and named after the project architecture name and file system.

Step 4 Import the SDK in Workbench.

From the Workbench main menu, select File > Import > Wind River Linux > Import SDK, then
click Next.

The Import Wind River Linux SDK window opens.

Step 5 Navigate to the location of the SDK you extracted previously, and select the sysroots sub-
directory.

Once you have selected the directory, the SDK Information fields will populate with related
information.

Step 6 Click Finish to import the SDK.

Once the SDK import is complete, the build spec is made available in Workbench for application
development. See the Wind River Workbench by Example (Linux version) for additional information.

Adding Applications to a Platform Project Image

Options for Adding an Application to a Platform Project Image

There are several options available for you to add an application to an existing platform project
image.

The following options are available in Wind River Linux for adding an application to your
platform project image:

Use the make command

This option lets you specify the addition of a single package using the make command. For
example:

$ make -C build recipeName.addpkg

For information on using this command, see Adding New Application Packages to an Existing
Project on page 139.

Import the application tree as a package

This option imports the application tree as a package, and creates a recipe file for it, thereby
including it as part of the platform project image. See About the Package Importer Tool (import-
package) on page 144.

Use a fs_final*.sh script

This option automatically installs the application's binary to the root file system each time
the platform project is built. While the application is automatically built and installed in the
root file system, it is not linked to the platform project. See Adding an Application to a Root File
System with fs_final*.sh Scripts on page 141.

12 Developing Userspace Applications
Adding New Application Packages to an Existing Project

139

Use the changelist.xml file

This option automatically adds the application, but the changelist.xml file has many features
that might be useful, depending on your platform project requirements. See Adding an
Application to a Root File System Using changelist.xml on page 140 and About File System
Layout XML Files on page 119.

Use the configure command

This option adds the package to the platform project image when you configure, or
reconfigure the platform project image. See Configuring a New Project to Add Application
Packages on page 142.

Adding New Application Packages to an Existing Project

Learn how to add the gdb package to an existing, previously configured and built, platform
project.

The following procedure provides instructions to add gdb to an existing, previously configured
and built, platform project. This procedure uses the following example configure script
command to create the platform project that the gdb package will be added to:

$ configDir/configure \
--enable-board=qemux86-64 \
--enable-kernel=standard \
--enable-rootfs=glibc_small

This example assumes that you do not already have gdb included with your platform project.

For additional information, see: Introduction to Configuring and Building Platform Projects.

Step 1 Add the gdb package to the platform project build.
a) Navigate to the projectDir.

$ cd projectDir

b) Add the gdb package.

$ make -C build gdb.addpkg

The system will return the following output:

make: Entering directory `/Builds/qemux86-64_small/build'
==Checking ../layers/local/recipes-img/images/wrlinux-image-glibc-small.bb==
==Checking for valid package for gdb==
...
=== ADDED gdb to ../layers/local/recipes-img/images/wrlinux-image-glibc-small.bb ===

Package changes like this are added to the projectDir/layers/local/recipes-img/images/
wrlinux-image-file-system.bb recipe file, where file-system represents the name of the
root file system used to configure the platform project.

c) Verify that gdb was added successfully.

$ cat layers/local/recipes-img/images/wrlinux-image-glibc-small.bb

The system will return the following output, after the line that declares #### END Auto
Generated by configure ####:

END Auto Generated by configure

Wind River Linux
User's Guide, 5.0.1

140

IMAGE_INSTALL += "gdb"

This indicates that the package will be included in the build.

Step 2 Build the gdb package.

 $ make -C build gdb

Building the package takes a couple of minutes, during which you will see the progress on your
terminal.

Step 3 Rebuild the root file system.

$ make

Rebuilding the file system should take just a couple of minutes this time, because only the newly
added elements need to be built.

Step 4 Verify that the package was added successfully.

See Verifying the Project Includes the New Application Package on page 143.

Adding an Application to a Root File System Using changelist.xml

After you have created an application, you can use the changelist.xml file to add it to a platform
project image root file system.

If you place a file named changelist.xml in the projectDir/layers/local/conf/image_final
directory, then the contents of the file are executed after all the other root file system packages
have been processed, but before the final root file system’s tar file is created. Though this section
provides instructions for adding an application to a platform project root file system, there are
many more possibilities with the changelist.xml file. See Managing Files and Directories with XML.

The location of the script file is inside the projectDir/layers/local directory (see About the
layers/local Directory on page 54. This location is meant to simplify development by keeping your
project configuration changes and additions in one location.

This approach provides the option of running commands that impact the target file system only,
and not the platform project build.

In the following procedure, you will create a changelist.xml file to add the Fibonacci binary
created in Creating a Sample Application on page 132.

Step 1 Create the changelist.xml file.
a) Navigate to the platform project top-level directory.

$ cd ~Builds/qemux86-64_small

b) Create the changelist.xml file with vi.

$ layers/local/conf/image_final/changelist.xml

c) Enter or copy the following text.

<?xml version="1.0" encoding="UTF-8"?>
<layout_change_list version="1">
<change_list>
<cl action="addfile" name="/usr/bin/fibonacci"
source="/home/revo/Builds/quemx86-64_small/Fibonacci/fibonacci"/>
</change_list>

12 Developing Userspace Applications
Adding an Application to a Root File System with fs_final*.sh Scripts

141

</layout_change_list>

NOTE: In the example above, substitute /home/revo/Builds/qemux86-64_small for the location
of your platform project directory.

If your application project has more specific requirements, such as setting permissions, and so
on, you can add those requirements to your script file. See Managing Files and Directories with
XML for additional information.

d) Save the file.

Step 2 Rebuild the root file system.

Run the following command from the platform project directory:

$ make

After the project rebuilds, the changelist.xml file will run automatically to update the fibonacci
binary.

Step 3 Verify that the binary was added successfully.

Note that there are no provisions in the XML syntax to run arbitrary commands, such as can
be done with fs_final*.sh scripts (see Adding an Application to a Root File System with fs_final*.sh
Scripts on page 141). The result is that your binary — in this example, the fibonacci binary —
must exist prior to rebuilding the root file system.

$ ls export/dist/usr/bin/fibonacci

If the fibonacci binary exists, the system displays:

export/dist/usr/bin/fibonacci

Adding an Application to a Root File System with fs_final*.sh Scripts

After you have created an application, you have a number of options to add it to the root file
system of your platform project image.

When you place a script file named fs_final*.sh (fs_final_script_use.sh) in the projectDir/
layers/local/conf/image_final directory, the contents of the script are executed after all the other
root file system packages have been processed, but before the final root file system’s tar file is
created.

The location of the script file is inside the projectDir/layers/local directory (see About the
layers/local Directory on page 54). This location is meant to simplify development by keeping your
project configuration changes and additions in one location.

This approach provides the option of running script commands that impact the target file system
only, and not the platform project build.

In the following procedure, you will create a fs_final*.sh script for the fibonacci binary created
in Creating a Sample Application on page 132, to add the application to the target's root file
system.

Step 1 Create the fs_final*.sh script for the application.

Wind River Linux
User's Guide, 5.0.1

142

a) Navigate to the platform project top-level directory. For example:

$ ~Builds/qemux86-64_small

b) Create the fs_finalfibonacci.sh script with vi.

$ vi layers/local/conf/image_final/fs_final_fibonacci.sh

c) Enter or copy the following text.

#
Add the fibonacci binary to the root file system
#
make -C /home/revo/Builds/qemux86-64_small/Fibonacci
cp /home/revo/Builds/qemux86-64_small/Fibonacci/fibonacci usr/bin

NOTE: In the example above, substitute /home/revo/Builds/qemux86-64_small for the location
of your platform project directory.

Take a deeper look at what the script accomplishes:

• Line 1 (begins with make) builds the project
• Line 2 (begins with cp) copies the binary to the /usr/bin directory of the target system.

Note that this is a single line of code, and is only split in this example for display purposes.

If your application project has more specific requirements, such as setting permissions, and so
on, you can add those requirement to your script file.

d) Save the file.

Step 2 Rebuild the root file system.

Run the following command from the platform project directory:

$ make

After the project rebuilds, the fs_final_fibonacci.sh script will run automatically to update the
fibonacci binary.

Step 3 Verify that the binary was added successfully.
a) List the contents of the platform project root file system.

From the project directory, enter:

$ ls export/dist/usr/bin/fibonacci

The system should return the following output to confirm the fibonacci binary exists:

export/dist/usr/bin/fibonacci

Configuring a New Project to Add Application Packages

Learn how to add a package to a project at configure time.

The following procedure illustrates how to add the gdb (GNU Debugger) to a project.

12 Developing Userspace Applications
Verifying the Project Includes the New Application Package

143

NOTE: The functionality (the target-resident debugger) added in this example is currently only
supported on targets with the x86 architecture (32- and 64-bit), but the workflow for adding a
non-default layer and templates is the same with all architectures and BSPs.

Step 1 Configure the project.

To configure a glibc_small platform project that includes the gdb package, use the --with-
package=gdb configure option. For example:

$ configDir/configure \
--enable-board=qemux86-64 \
--enable-kernel=standard \
--enable-rootfs=glibc_small \
--enable-parallel-pkgbuilds=4 \
--enable-jobs=4 \
--with-package=gdb

NOTE: To add an application to a previously configured platform project, add the --enable-
reconfigure option to your configure command.

In addition to the standard configuration arguments of a board, kernel, and file system, this
configuration adds the gdb package.

When you configure a project with a specific package, that package is added to the platform
project, and available for use once the project is built and deployed to a target.

Step 2 Build the project

Enter the make command:

$ make

This will take from minutes to hours, depending on your development resources. When it is
finished, you will have a kernel and file system that includes gdb.

Step 3 Verify that the package was added successfully.

See Verifying the Project Includes the New Application Package on page 143

Verifying the Project Includes the New Application Package

Learn how to verify that a package was added successfully to the platform project.

The procedure in this section illustrates how to verify that a package was added successfully to
the platform project.

This procedure assumes you previously added the gdb package from Configuring a New Project to
Add Application Packages on page 142 or Adding New Application Packages to an Existing Project
on page 139.

Step 1 Verify that the gdb is available now by looking at the generated root file system.

From the project directory, enter:

$ ls export/dist/usr/bin/gdb

Wind River Linux
User's Guide, 5.0.1

144

The system should return the following output to confirm that the gdb executable exists:

export/dist/usr/bin/gdb

Step 2 Verify that the gdb command is available on the running target.
a) Deploy the platform project on a target.

For additional information, see Using QEMU from the Command Line.
b) Run the gdb command on the target:

gdb

The system should return the following and display the (gdb) prompt to confirm gdb is
working:

GNU gdb (Wind River Linux Sourcery CodeBench 4.6-60) 7.2.50.20100908-cvs
Copyright (C) 2010 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.
This GDB was configured as "x86_64-wrs-linux-gnu".
For bug reporting instructions, please see:
<support@windriver.com>.
(gdb)

c) Use the debugger or type quit to return to the command prompt.

Importing Packages

About the Package Importer Tool (import-package)

Use the Package Importer tool to add application packages in various forms to your platform
project image.

For concepts and information on the interface for the Package Importer tool, see the Wind River
Workbench by Example, Linux 5 version: About the Package Importer Tool (import-package).

There are three approaches to importing a package detailed in this guide:

• Importing an existing sample project
• Importing a source package from the web (wget)
• Importing a SRPM package from the web

Importing a Sample Application Project as a Package

Use this Package Importer Tool example procedure to learn how to import a Wind River sample
application package.

In this procedure, you will learn to import the mthread sample application.

This procedure requires a previously configured and built platform project. If you do not have an
existing platform project, this procedure was created using the following configure options:

$ configDir/configure \
--enable-board=qemux86-64 \

12 Developing Userspace Applications
Importing Packages

145

--enable-kernel=standard \
--enable-rootfs=glibc_small \
--enable-parallel-pkgbuilds=4 \
--enable-jobs=4

Step 1 Launch the Package Importer tool.

$ make import-package

The GUI of the tool displays and the Progress field displays the installDir and projectDir
locations in the host file system.

For additional information, see the Wind River Workbench by Example, Linux 5 version: About the
Package Importer Tool (import-package).

Step 2 Import the package contents.

The following sub-steps illustrate importing an application's source tree, or directory, to a
package in your platform project.

a) Set the Package Type selection to Application Source Tree.
b) Update the Package Location field.

In the Package Location field, enter:

$ installDir/wrlinux-5/samples/mthread

c) Click Update.

The Package Name, Package Version, and Progress fields automatically populate.
d) Click Import to import the package to your platform project.

The Progress field will indicate that the import is successful.
e) Click Close to close the Package Importer tool.

Step 3 Update the recipe file license checksum and build the package.

After a new package is imported into your platform project, you must update the recipe file to
match the new package contents.

a) Open the recipe file for the package.

In the project directory, open the recipe file located at: projectDir/layers/local/recipes-local/
mthread/mthread_1.0 in an editor. For example:

$ vi layers/local/recipes-local/mthread/mthread_1.0.bb

b) Locate the following code line:

LIC_FILES_CHKSUM = "file://LICENCE.TXT;md5="

This value is checked at build time, and will cause a build error if it is not correct. As a result,
you need to obtain it.

c) Update the LIC_FILES_CHKSUM value.

For purposes of this example, the mthread application does not include a Makefile, so this
example uses the application's name:

LIC_FILES_CHKSUM = "file://mthread.c;md5=numerical_checksum_value".

d) Change my_bin to match the name of the application.

Wind River Linux
User's Guide, 5.0.1

146

For example, change:

install -m 0755 ${S}/my_bin ${D}${bindir}

to:

install -m 0755 ${S}/mthread ${D}${bindir}

e) Update the compiler options.

This step is only required for applications that do not have a Makefile in the application tree.
Just before the line that reads # You must populate the install rule, enter the following lines
code in the recipe file:

do_compile() {
 ${CC} ${CFLAGS} -lpthread -o mthread mthread.c
}

The -lpthread option is required for multi-threaded packages, and must be placed prior to the
output (-o) option.

f) Save the file.
g) Build the package.

$ make -C build mthread

The shell displays the build output. If you receive a build error for an incorrect license
checksum, see Identifying the LIC_FILES_CHKSUM Value on page 113 to obtain the packages
md5 checksum value.

h) Update the md5 checksum value.

After you have the new md5 checksum value, perform 3.c on page 145, above, again, this
time entering the new md5 checksum in the LIC_FILES_CHECKSUM value. For example:

LIC_FILES_CHKSUM = "file://Makefile;md5=2ebc7fac6e1e0a70c894cc14f4736a89"

i) Save the file.
j) Rebuild the package.

$ make -C build mthread

With the correct md5 checksum, the package should build successfully.

Step 4 Verify that the package was added to the build.

$ ls build/mthread-1.0-r0/image/usr/bin/

If the package was added to the build, the list of files includes the mthread file.

Importing a Source Package from the Web (wget)

Use this Package Importer Tool example procedure to learn how to import a source application
package.

In this procedure, you will learn to import the bc application package. Note that the bc package
is used as an example only, and that you may use this procedure to import other source packages
required for your project.

12 Developing Userspace Applications
Importing Packages

147

This procedure requires a previously configured and built platform project. If you do not have an
existing platform project, this procedure was created using the following configure options:

$ configDir/configure \
--enable-board=qemux86-64 \
--enable-kernel=standard \
--enable-rootfs=glibc_small \
--enable-parallel-pkgbuilds=4 \
--enable-jobs=4

Step 1 Launch the Package Importer tool.

From the project directory, enter the following:

$ make import-package

The GUI of the tool displays and the Progress field displays the installDir and projectDir
locations in the host file system.

See the Wind River Workbench by Example, Linux 5 version: About the Package Importer Tool (import-
package), for additional information.

Step 2 Import the package contents.
a) Set the Package Type selection to Source Package.
b) Update the Package Location field.

In the Package Location field, enter http://autobuilder.yoctoproject.org/pub/sources/
bc-1.06.tar.gz, then click Update.

The update tool adds the values of the Package Name, Package Version, and Progress fields.
c) Click Import.

The Progress field displays the progress of the update.
d) Click Close to close the Package Importer tool.

Step 3 Update the recipe file and build the package.
a) Open the recipe file in an editor.

In the platform project directory, open the recipe file located at projectDir/layers/local/
recipes-local/bc/bc_1.06.bb in an editor. For example:

$ vi layers/local/recipes-local/bc/bc_1.06.bb

b) Locate the following code line:

LIC_FILES_CHKSUM = "file://LICENCE.TXT;md5="

This value is checked at build time, and will cause a build error if it is not correct. As a result,
you need to obtain it.

c) Modify the LIC-FILES_CHKSUM value.

From:

LIC_FILES_CHKSUM = "file://LICENCE.TXT;md5="

to:

LIC_FILES_CHKSUM = "file://COPYING;md5="

Wind River Linux
User's Guide, 5.0.1

148

For purposes of this example, the application was retrieved from the web, and does not
include a LICENSE.txt file. Instead, this application uses the COPYING file, which stores the
license information for all the source code files for the application. This is why you changed
the name from LICENSE.TXT to COPYING.

In addition, you are leaving the md5 checksum value empty. This will cause the build to fail
in the next step, but that is okay. When it does, the build system will provide the correct md5
checksum value to enter here.

d) Build the package.

$ make -C build bc

The shell displays the build output. Since we left the checksum value empty, you will receive
a build error for an incorrect license checksum. Scan the build output for the correct checksum
value. See Identifying the LIC_FILES_CHKSUM Value on page 113.

e) Update the LIC_FILES_CHKSUM value.

Enter the md5 value the build system provides in the previous step, for example:

LIC_FILES_CHKSUM = "file://COPYING;md5="94d55d512a9ba36caa9b7df079bae19f

f) Modify the #inherit code line:

Locate the line that reads:

#inherit autotools

and remove the comment character (#) so that the line reads:

inherit autotools

g) Change the install code line.

Locate the line that reads:

install -m 0755 ${S}/my_bin ${D}${bindir}

and change it to:

install -m 0755 ${S}/bc/bc ${D}${bindir}

h) Build the package.

$ make -C build bc

The shell displays the build output. With the correct md5 checksum, the package builds
successfully.

Step 4 Verify the package was added to the build.

$ ls build/bc-1.06-r0/image/usr/bin/

Importing a SRPM Package from the Web

Use this Package Importer Tool example procedure to learn how to import a source RPM (SRPM)
package.

12 Developing Userspace Applications
Importing Packages

149

If you have standardized on SRPM for your integration of applications into Wind River Linux,
this procedure provides a way to migrate that infrastructure into Wind River Linux. SRPMs were
the preferred package format in Wind River Linux 4.x. In Wind River Linux 5.0.1, we suggest that
you use whatever format the upstream source provides, which is typically not SRPM.

In this procedure, you will learn to import the dos2unix SRPM package and integrate it into your
platform project. Note that the dos2unix package is used as an example only, and that you may
use this procedure to import other SRPM packages required for your project.

This procedure requires a previously configured and built platform project. If you do not have an
existing platform project, this procedure was created using the following configure options:

$ configDir/configure \
--enable-board=qemux86-64 \
--enable-kernel=standard \
--enable-rootfs=glibc_small \
--enable-parallel-pkgbuilds=4 \
--enable-jobs=4

Step 1 Launch the Package Importer tool.

From the project directory, enter the following:

$ make import-package

Note that the GUI of the tool displays and the Progress field displays the installDir and
projectDir locations in the host file system.

See the Wind River Workbench by Example, Linux 5 version: About the Package Importer Tool (import-
package), for additional information.

Step 2 Import the package contents.
a) Set the Package Type selection to Source Package.
b) Update the Package Location field.

In the Package Location field, enter ftp://ftp.muug.mb.ca/mirror/fedora/linux/
development/20/source/SRPMS/d/dos2unix-6.0.3-3.fc20.src.rpm then click Update.

The update tool adds the values of the Package Name, Package Version, and Progress fields.
c) Click Import.

The Progress field displays the progress of the update.
d) Click Close to close the Package Importer tool.

Step 3 Update the recipe file and build the package.
a) Open the recipe file in an editor.

In the platform project directory, open the recipe file located at projectDir/layers/local/
recipes-local/dos2unix/dos2unix_6.0.3-2.fc19.bb in an editor. For example:

$ vi layers/local/recipes-local/dos2unix/dos2unix_6.0.3-2.fc19.bb

b) Append the SRC_URI line with the name of the embedded tar ball in the SRPM package.

From:

SRC_URI = http://www.your_company_here.com/downloads/
dos2unix-6.0.3-2.fc19.src.rpm;extract="

Wind River Linux
User's Guide, 5.0.1

150

to:

SRC_URI = http://www.your_company_here.com/downloads/
dos2unix-6.0.3-2.fc19.src.rpm;extract=${BPN}-6.0.3.tar.gz"

c) Confirm that the S= macro definition also matches the embedded tar ball.

In this example, the default is correct: and does not require updating.

S="${WORKDIR}/${BPN}-6.0.3"

d) Save the recipe file.
e) Build the package:

$ make -C build dos2unix

The shell displays the build output. Since we left the LIC_FILES_CHKSUM md5 checksum
value in the recipe file empty, you will receive a build error for an incorrect license checksum.
Scan the build output for the correct checksum value. See Identifying the LIC_FILES_CHKSUM
Value on page 113.

f) Update the LIC_FILES_CHKSUM value.

Enter the md5 value the build system provides in the previous step, for example:

LIC_FILES_CHKSUM = "file://Makefile;md5=1ba513be50142c911e7971a6f4d47e89"

g) Save the file.
h) Enter the following command to build the package:

$ make -C build dos2unix

The shell displays the build output. With the correct md5 checksum, the package builds
successfully.

Step 4 Verify the package was added to the build.

To view the packages source files, from the command line, enter:

$ ls build/dos2unix-6.0.3-2.fc19-r0/dos2unix-6.0.3

bcc.mak dos2unix.c mingw.mak test wccdos16.mak
BUGS.txt dos2unix.h NEWS.txt TODO.txt wccdos32.mak
Changelog.txt dos2unix.o po unix3dos wcc.mif
common.c emx.mak pod2htmd.tmp unix2dos.c wcc.mif
common.h INSTALL.txt pod2htmi.tmp unix2dos.h wccwin32.mak
common.o mac2unix qerycp.c unix2dos.o
...

Step 5 Optionally update the projectDir/layers/local/recipes-local/dos2unix/
dos2unix_6.0.3-2.fc19.bb recipe file.

This step ensures that other basic information about the package is correct.

For additional information, see the Wind River Linux Migration Guide: Updating a BitBake Recipe
from a SRPM *.spec File.

Step 6 Optionally relocate the package.

If you want to make the package available to other platform projects, you can move it from the
local layer at projectDir/layers/local/recipes-local/dos2unix to a custom layer directory. If you

12 Developing Userspace Applications
Listing Package Interdependencies

151

choose to move the package's directory, you must also relocate the projectDir/layers/local/
downloads/dos2unix/dos2unix-6.0.3-2.fc19.src.rpm source package that it processes.

Listing Package Interdependencies

The list-packageconfig-flags utility displays interdependencies between packages.

Many of the packages compiled by the bitbake build system have interdependencies. If one
package is present another is required, or is compiled differently. It can be difficult to find these
interdependencies, as the package recipes can be spread over several files in multiple layers.
In order to help you understand the interdependencies a script is available to list the package
configuration of the current project. It is not necessary to build the project to observe these
dependencies.

The script runs in the bitbake build environment, so in order to use it you must first enter the
bitbake shell.

Step 1 Start the bitbake shell.

In the base of your platform project enter:

$ make bbs

Step 2 Run the script.

$../layers/oe-core/scripts/contrib/list-packageconfig-flags.py -a -p | less

The command options in this example list preferred versions of all packages. Run list-
packageconfig-flags.py with the -h option for a full list of options:

Usage: list-packageconfig-flags.py [-f|-a] [-p]
 list available pkgs which have PACKAGECONFIG flags

OPTION:
 -h, --help display this help and exit
 -f, --flag list available PACKAGECONFIG flags and all affected pkgs
 -a, --all list all pkgs and PACKAGECONFIG information
 -p, --prefer list pkgs with preferred version

NOTE: Running the script with no arguments outputs basic package dependency information
similar to what can be obtained with make fs-expand for the IMAGE_INSTALL contents.

The script may take several minutes to parse the recipe information before giving any output.

From the output in this example we can observe that the cups-1.6.3 recipe is built differently
because the acl and avahi packages are present in the project.

Setting up packages link
Creating export directory
Creating project properties
Parsing recipes..done.
==
cups-1.6.3
/opt/Builds/glib_std/layers/oe-core/meta/recipes-extended/cups/cups_1.6.3.bb
PACKAGECONFIG None
PACKAGECONFIG[avahi] --enable-avahi,--disable-avahi,avahi
PACKAGECONFIG[acl] --enable-acl,--disable-acl,acl

lib32-quagga-0.99.21
virtual:multilib:lib32:/opt/Builds/glib_std/layers/meta-networking/recipes-protocols/
quagga/quagga_0.99.21.bb

Wind River Linux
User's Guide, 5.0.1

152

PACKAGECONFIG None
PACKAGECONFIG[cap] --enable-capabilities,--disable-capabilities,libcap

lib32-coreutils-8.21
virtual:multilib:lib32:/opt/Builds/glib_std/layers/oe-core/meta/recipes-core/coreutils/
coreutils_8.21.bb
PACKAGECONFIG None
PACKAGECONFIG[acl] --enable-acl,--disable-acl,acl,

gtk+3-3.8.2
/opt/Builds/glib_std/layers/oe-core/meta/recipes-gnome/gtk+/gtk+3_3.8.2.bb
:

153

13
Understanding the User Space and

Kernel Patch Model

Patch Principles and Workflow 153

Patching Principles 154

Kernel Patching with scc 155

Patch Principles and Workflow

Understanding the patch workflow will help you resolve patch-related issues if and when they
arise.

Understanding the patch principles and workflow used for development helps facilitate
changes to your project as they arise. This section discusses the workflow from a command line
perspective, using command line tools. For an example of how to use the Workbench patch
manager GUI, refer to Wind River Workbench by Example, Linux Version.

There are two main principles Wind River Linux uses in applying patches:

• Wind River Linux keeps its source code pristine. Patches are only applied to project code,
when building a project.

• Patch lists are rigorously maintained.

Patch workflow for Wind River developers follows this pattern:

1. Product designers first decide on where—which template or layer—to insert the patch.
2. The individual developer configures a project for the specific product, specifying the relevant

layer or template in the configure command.
3. The individual developer then works locally, developing new code and new patches to extend

existing code.
4. The developer then validates their local work with the central code base before folding back

changes and patches. The more general the layer in which the patch is placed, the greater the
scope of testing required to justify the acceptance of these changes. Automated test tools and
procedures for the individual contributor help in keeping the code base correct.

5. After successful validation, the developer checks in the changes.

Wind River Linux
User's Guide, 5.0.1

154

Patch Deployment

Kernel patches and package patches can be deployed in:

• custom layers
• custom templates
• the installed development environment.

Wind River suggests that custom patches be deployed within a custom template or layer, thereby
leaving the development environment intact. For more information and examples, see About
Kernel Configuration and Patching on page 177 and Introduction to Patching Userspace Packages on
page 159

Patching Principles

Learn about patching and patch troubleshooting principles.

Patch Application and Resolution

During patch development, apply patches within a project created for that purpose.

Simple Reject Resolutions

Simple reject resolutions include resolving path names, fuzz factor, whitespace, and patch reverse
situations.

Some hunk rejects can be resolved by simple adjustments, including:

Leading Path Names

The leading path directory names in the patch may not match the directory names of your
targets. By removing some or all of the patch's leading path names, you may then match the
local environment.

Fuzz Factor

Each hunk has a leading and following number of lines around changes to provide a
validating context for the hunk. If these leading or following lines do not exactly match the
target file, the so-called "fuzz factor" can be loosened from an exact match (0) to a looser match
(> 0).

White Space

Sometimes the only difference in the leading and following context lines is in the exact
whitespace. The patch apply can be adjusted to ignore white space differences when
attempting to apply the patch.

Patch Reversal

Sometimes the patch file was created backwards, meaning that it reflects the differences from
the new version to the original, instead of the normal direction of the original to the new
version. Reversing the patch will fix this and allow the patch to apply.

Preserving the Patch File, Fixing the Source

If a patch almost, but not quite applies, it can sometimes be fixed by adjusting the source target so
that the context matches what the patch is looking for.

If the patch file must be maintained exactly as it was received, this is the preferred method.

13 Understanding the User Space and Kernel Patch Model
Kernel Patching with scc

155

After rejects are resolved in this manner, you can always introduce an intermediate patch that
takes the source to this adjusted state, allowing the original source and the acquired patch to be
preserved, if that is required or desired.

Preserving the Source File, Fixing the Patch

Alternatively, you can adjust the patch file itself. This is more complicated because it involves
modifying the patch file using the patching syntax.

This method is preferred if the patch file is unlikely to be externally updated, and thus a localized
version is acceptable. It also removes the need for any intermediate patch, as described in the
previous section, or the undesirable situation of a patch to a patch.

Placing Unresolved Rejects into Files

Some rejects require study and so cannot be immediately resolved using the methods in this
section. You should be able to accept the patch hunks that apply cleanly, and preserve a copy of
the hunks that do not. These reject hunks can be saved to a file for analysis.

Placing Unresolved Rejects into the Source (Inline)

Alternatively, you may wish to place the rejected hunks directly in the target source file, so that
they can be seen within the context in which they do (or should) apply. This reduces the potential
clutter of multiple reject files (which might otherwise be lost or forgotten).

Kernel Patching with scc

Wind River Linux uses the scc script to patch the kernel.

The scc script is the logic that controls the selection of the kernel patches passed to the build
system during the kernel patching phase. The following describes basic scc functionality.

The patches are largely self documenting. The .scc files document the overall patch strategy for
the kernel or feature. The patches themselves have a header that describes the specifics of the
patch.

Normally all interactions with the scc script are handled by the build system and it should rarely
be invoked from the command line. The rich feature set of scc is primarily used in constructing
the git tree from the kernel cache. Typical end users will, at most, simply list some of their custom
add-on patches and configuration changes in a simple .scc file they create in their project or
custom template.

To patch a kernel with an .scc file, see Patching the Kernel With SCC Files on page 193.

Kernel Patching Design Philosophy

Unlike other packages in the build system, the kernel is not single purpose or targeted at a
particular piece of hardware. It must perform the same tasks and offer the same APIs across
many architectures and different pieces of hardware.

The key to managing a feature-based patching of the Linux kernel is to remove both the
distributed control of the patches (subdirectory-based patches.list files) and hand editing of the
patch files.

Replacing these two characteristics with script-based patch list generation and a method to
control and describe the desired patches with a top-down approach eases the management of

Wind River Linux
User's Guide, 5.0.1

156

kernel patching complexity. Additionally, a direct mapping between BSPs and profiles can be
easily made, increasing maintainability.

The scc script has been implemented to control the process of patch list generation and feature-
based patching.

In the most simple example, .scc files look very similar to the patches.list of earlier releases. One
notable difference is that the metadata concerning the license, source and reviewers of the patch
are contained inside the patch itself and not in the .scc file. This information can be in the .scc file,
but only as a secondary source of information.

About scc Facilities

scc provides the following facilities:

• Top down, feature-based control of patches. This approach allows a feature and profile-based
global view of functionality and compatibility to dictate which patches should be applied. It
also allows feature- and architecture-specific patch context modifications to be created by each
individual feature.

• Feature inheritance and shared patches means that each feature may explicitly include the
features and inherit their patches. Each feature can then modify the inherited patches list and
substitute slightly different patches to work in their context. This allows the sharing and reuse
of patches by only changing the minimum amount and context of existing feature patches.

• Allows upstream, feature-based patches to be logically grouped and used in many different
patch stacks. This allows isolation and combination testing of features and allows a single set
of patches to be used in multiple platforms.

Modifications to a feature patch set are contained in the modifying top level feature's
directory, leaving the original patch in it is pristine form. These are called patch context mods
and can be architecture-, platform-, or feature-based.

Patch context mods can be identified by the name of the original patch which they are based
plus a suffix of the feature name which required the modification of the original patch.

• Associates kernel configuration directly with the patches that comprise a kernel feature.

About .scc Files

An .scc file is a small, sourced shell script. Not all shell features should be used in these scripts,
and in particular no output should be generated, because the script is interpreted by the calling
framework. You can use conditionals and any other shell commands, but you should be careful to
use only basic, standard commands.

A feature script may denote where it should be located in the link order. This is only used by
scripts that are not being included by a parent or entry point script and that you wish to be
executed. The following declaration denotes the section names in a .scc file:

scc.section section_name

Any variable passed to scc with the -D=macro option is available in individual feature scripts. To
see what variables are available, locate the invocation of scc and search for defines.

The following built-in functions are available:

dir

Changes the current working patch directory, and subsequent calls to patch use this as their
base directory.

patch

13 Understanding the User Space and Kernel Patch Model
Kernel Patching with scc

157

Outputs a patch to be included in the feature's patch set. Only the name of the patch is
supplied, and the path is calculated from the currently set patch directory.

include

Indicates that a particular feature should be included and processed in order. There is an
optional parameter after feature_name to indicate that the order of processing should not
be used and a feature must be included after feature_name. Include paths are relative to the
root of the directories passed with -I.

Note that changing the default order of large feature stacks by forcing a different order with
after can result in a significant work effort in order to rebase the patches of the features, if they
are touching the same source files.

set_kernel_version

Takes a new kernel version as its argument. This allows a feature to change the effective
kernel version and allows other features to test this value with the KERNEL_VERSION
variable.

scc File Examples

The following presents an example on the use of the scc command. Note that you can get detailed
help with:

$ scc --help=scc

For an example of an scc file that specifies a normal node, refer to the following code example:
Configuration files and patches in a .scc file are specified as shown (with comments):

+---- name of file to read
v
kconf hardware common_pc.cfg
^ ^
| +-- 'type: hardware or non-hardware
|
+--- kernel config

patches
patch 0002-atl2-add-atl2-driver.patch
patch 0003-net-remove-LLTX-in-atl2-driver.patch
patch 0004-net-add-net-poll-support-for-atl2-driver.patch

Wind River Linux
User's Guide, 5.0.1

158

159

14
Patching Userspace Packages

Introduction to Patching Userspace Packages 159

Patching with Quilt 160

Create an Alias to exportPatches.tcl to save time 161

Preparing the Development Host for Patching 161

Patching and Exporting a Package to a Layer 162

Verifying an Exported Patch 164

Incorporating a Patch into a Platform Project Image 165

Introduction to Patching Userspace Packages

Learn about the requirements for patching userspace packages for your platform projects.

Patches for packages are delivered with the recipe in a directory with the same name as the
package. For example, for the busybox package, there are a few patches in projectDir/layers/
oe-core/meta/busybox/busybox-version, and couple of additional patches in another layer in

projectDir/layers/wr-base/recipes-core/busybox/busybox

This is just a convention; the recipe specifies the location of the patches, for example:

FILESEXTRAPATHS_prepend := "${THISDIR}/${PN}:"
SRC_URI += "file://umount-make-d-always-active-add-D-to-suppress-it.patch \

 file://move-ip-to-sbin-to-make-it-more-FHS-and-LSB.patch"

The build system identifies the files as patches by their .patch extension and applies them in the
patch build stage when you use the default do_patch build rule.

When multiple patches need to be applied; the order in which they are applied can be important,
to manage the order you will find in the package build directory a subdirectory called patches.
This contains all the patches gathered from all the layers in the project and file named series,
which lists the order in which they will be applied.

Wind River Linux
User's Guide, 5.0.1

160

For example, listing the contents of projectDir/build/busybox-1.19.4-r17/busybox-1.19.4/
patches/ would show patches in the BusyBox patches directory as follows:

B921600.patch
busybox-appletlib-dependency.patch
busybox-cross-menuconfig.patch
busybox-mkfs-minix-tests_bigendian.patch
busybox-udhcpc-no_deconfig.patch
fix-for-spurious-testsuite-failure.patch
get_header_tar.patch
move-ip-to-sbin-to-make-it-more-FHS-and-LSB.patch
move-ip-to-sbin-to-make-it-more-FHS-and-LSB.patch~
run-parts.in.usr-bin.patch
series
sys_resource.patch
umount-make-d-always-active-add-D-to-suppress-it.patch
watch.in.usr-bin.patch
wget_dl_dir_fix.patch

The tool that allows you to manage patches and add additional patches to a package is called
quilt. It is not required that you use quilt, but recommended. In Wind River Linux, quilt is
configured to use the package's projectDir/build/packageName-revision/packageName/
patches directory and series file, by the .pc/.quilt_patches and .pc/.quilt_series hidden build
director.

Create an Alias to exportPatches.tcl to save time

If you frequently work with patches, a common command you will run is exportPatches.tcl,
which is found in installDir/wrlinux-5/scripts/exportPatches.tcl. Rather than constantly
type out the full pathname to that Tcl script, you can set a command-line alias. Refer to your host
documentation for setting an alias.

Note that exportPatches.tcl sources the wish interpreter that is provided by Workbench. For
information on preparing your host for patching, see Preparing the Development Host for Patching
on page 161.

About Patching Toolchain-related Packages

With Wind River Linux, pre-built toolchain components cannot be modified, so long as you
are using the toolchain provided with your installation. This includes the following packages,
grouped by package name:

• eglibc-source-dbg
• gdb, gdbserver
• libgcc, libgcc-dev
• libgomp, libgomp-staticdev, libgomp-dev, libgomp-dbg
• libstdc++, libstdc++-dev, libstdc++-staticdev
• linux-libc-headers, virtual/linux-libc-headers

One exception is EGLIBC, which you can rebuild using the build-libc feature, or using the
custom-distro functionality described in EGLIBC File Systems on page 85.

Patching with Quilt

Quilt is a general-purpose patching mechanism that you can use whenever you are working with
patches—with packages as well as custom applications. The Wind River Linux build system uses
it for patching packages as described in this section.

14 Patching Userspace Packages
Create an Alias to exportPatches.tcl to save time

161

Quilt is especially useful for dealing with a series of patches and with patches that contain
multiple files. Open source packages typically contain the package source as well as multiple
patches to be applied to that source to produce the binary in a package. In addition, you may be
modifying the source to make your own changes.

The proper way to modify the source is to add one or more patches, rather than modifying
original source files or patches. This keeps your changes distinct and allows you to carry your
custom patches with you as you upgrade to newer versions of Wind River Linux.

Use of the quilt tool facilitates your work with patches. As detailed in this manual, you can patch
a package using quilt, and then export the patches from your project directory to a custom layer,
for use in other platform projects.

Create an Alias to exportPatches.tcl to save time

Setting an alias for the exportPatch command can save you time.

If you frequently work with patches, a common command you will run is exportPatches.tcl,
which is found in installDir/wrlinux-5/scripts/exportPatches.tcl.

• Set a command-line alias.

Refer to your host documentation for setting an alias.

NOTE: Note that exportPatches.tcl sources the wish interpreter that is provided by Workbench.
For information on preparing your host for patching, see Preparing the Development Host for
Patching on page 161.

Preparing the Development Host for Patching

Before you begin patching userspace packages, use this procedure to prepare your host.

Using the exportPatches.tcl script to patch packages requires that the wish interpreter, part of the
tk package, be installed and working properly on the development host.

Step 1 Prepare the host for patching packages with Workbench.

$ cd installDir
$ wrenv -p workbench

Step 2 Prepare the host for patching packages from the command line.

If your installation does not include Workbench, run one the following commands to install the tk
package, required to run the wish interpreter and exportPatches.tcl script:

Options Description

Ubuntu/Debian-
based host

$ sudo apt-get install tk

RedHat/RPM-based
host

$ sudo yum install tk

Wind River Linux
User's Guide, 5.0.1

162

Patching and Exporting a Package to a Layer

Use this procedure to understand the steps necessary to patch a package in your platform project
image.

The following steps use the which package to describe how to create and export a patch with
Wind River Linux.

If you do not already have a platform project, the following configure script command was used
to create the project in this procedure:

$ mkdir qemux86-64_quilt-prj && cd qemux86-64_quilt-prj
$ configDir/configure \
--enable-board=qemux86-64 \
--enable-rootfs=glibc_std \
--enable-kernel=standard \
--enable-build=production \
--enable-parallel-pkgbuilds=4 \
--enable-jobs=4

Step 1 Navigate to the top-level folder in the projectDir.

$ cd projectDir

Step 2 Build the which package.

Run the following command to create the which build directory and apply the current patches to
it:

$ make -C build which

Step 3 Add the toolchain to your path, and make quilt available to your platform project.

$ export PATH=$PATH:$PWD/bitbake_build/tmp/sysroots/x86_64-linux/usr/bin

In this example, x86_64 is specific to the qemux86-64 BSP used to create the platform project
image. This may change for your specific project, depending on your BSP and architecture.

Step 4 Navigate to the new build directory for the patch and display its contents.

$ cd build/which-2.20-r3/which-2.20
$ ls patches

remove-declaration.patch series

Step 5 Create a new patch:

$ quilt new example.patch

Patch patches/example.patch is now on top

Note that quilt provides a response for each command.

Step 6 Add a file to the patch.

$ quilt add which.c

File which.c added to patch patches/example.patch

Step 7 Modify the file's content to patch it.

14 Patching Userspace Packages
Patching and Exporting a Package to a Layer

163

Open the which.c file in a text editor, and change the following line:

fprintf(out, “Usage: %s ...);

to read:

fprintf(out, “USAGE: %s ...);

to essentially capitalize the word USAGE.

Step 8 Save the which.c file.

Step 9 Optionally examine your current local changes.

While optional, you can see the changes made to the original package source by running the
following command at any time:

$ quilt diff

Index: which-2.20/which.c
===
--- which-2.20.orig/which.c
+++ which-2.20/which.c
@@ -27,7 +27,7 @@ static const char *progname;

 static void print_usage(FILE *out)
 {
 - fprintf(out, "Usage: %s [options] [--] COMMAND [...]\n", progname);
 + fprintf(out, "USAGE: %s [options] [--] COMMAND [...]\n", progname);
 fprintf(out, "Write the full path of COMMAND(s) to standard output.\n\n");
 fprintf(out, " --version, -[vV] Print version and exit successfully.\n");
 fprintf(out, " --help, Print this help and exit successfully.\n");

Step 10 Refresh the patch and save all current changes to the patch file created in 5 on page 162.

$ quilt refresh

Refreshed patch patches/example.patch

Until you perform this refresh step, none of your changes are written to your patch file, so this
refresh step is normally your last step before finally writing your patch file to a custom layer for
later use.

Step 11 Export the patch.

After you have made all the changes you want, and have “refreshed” your patch with those
changes, you can now export your patch to a location of your choice for future inclusion in this or
other platform projects. Run the following command to export your patch:

$ installDir/wrlinux-5/scripts/exportPatches.tcl \
EXPORT_PATCH_PATCH=full_path_to_patch \
EXPORT_PATCH_LAYER=path_to_layer \
EXPORT_PATCH_DESCR=" text "

Where:

EXPORT_PATCH_PATCH

Represents the full path to your generated patch file:

projectDir/build/ package /wrlinux_quilt_patches/ patch_name.

EXPORT_PATCH_LAYER

Wind River Linux
User's Guide, 5.0.1

164

Represents the path to an existing or new layer directory. The layer infrastructure for the patch
and the patch itself will be created for you if it does not already exist.

EXPORT_PATCH_DESCR

Your description to be included in the patches.list file

For example, the following command:

$ ~/WindRiver/wrlinux-5/scripts/exportPatches.tcl \
EXPORT_PATCH_PATCH=$PWD/patches/example.patch \
EXPORT_PATCH_LAYER=~/layers/which-test-layer/ \
EXPORT_PATCH_DESCR="This is a test"

will create a new layer for your patch in the layers/which_test_layer, in your home directory.

The exportPatches.tcl script displays a confirmation dialog to indicate the export results:

Step 12 Rebuild the package with the new patches:

$ make -C build which

Verifying an Exported Patch

Once you have patched a package, use this procedure to verify the content and structure of the
patch.

Perform the following steps to verify the contents of your patch.

Step 1 Navigate to the file system location where you exported your patch to from Patching and
Exporting a Package to a Layer on page 162.

Step 2 View the content and structure of your patch layer.

$ tree

The output displays the relevant patch structure:

14 Patching Userspace Packages
Incorporating a Patch into a Platform Project Image

165

Step 3 Display the contents of the recipe information created to apply the patch.

$ cat ~/layers/which-test-layer/recipes-local/which/which_2.20.bbappend

which-2.20-r3: local patches
FILESEXTRAPATHS_prepend := "${THISDIR}/files:"

preserve this SRC_URI formatting to support patch update tools
SRC_URI += "\
 file://example.patch \
"

Note that this recipe append file includes the new example.patch file.

Step 4 View the contents of the patch itself:

$ cat ~/layers/which-test-layer/recipes-local/which/files/example.patch

Index: which-2.20/which.c
===
--- which-2.20.orig/which.c
+++ which-2.20/which.c
@@ -27,7 +27,7 @@ static const char *progname;

 static void print_usage(FILE *out)
 {
 - fprintf(out, "Usage: %s [options] [--] COMMAND [...]\n", progname);
 + fprintf(out, "USAGE: %s [options] [--] COMMAND [...]\n", progname);
 fprintf(out, "Write the full path of COMMAND(s) to standard output.\n\n");
 fprintf(out, " --version, -[vV] Print version and exit successfully.\n");
 fprintf(out, " --help, Print this help and exit successfully.\n");

Note that this is similar to the output of the quilt diff command, if you ran the command prior to
refreshing and exporting the patch.

Incorporating a Patch into a Platform Project Image

Once you create and export a patch to a layer, you can include the layer (and patch) in an existing
or new platform project.

The following procedure requires that you have previously created and exported a patch to a
layer as described in Patching and Exporting a Package to a Layer on page 162.

Step 1 Choose a platform project option to add the layer (and patch) to:

Wind River Linux
User's Guide, 5.0.1

166

Options Description

Existing platform
project

To add the layer to an existing project:

1. Navigate to the platform project directory:

$ cd projectDir

2. Run the following commands to enable project reconfiguration and
run that configuration to include the new patch layer:

$ echo `tail 1 config.log` -–enable-reconfig -–with-
layer=~path_to_layer > newconfig
$ chmod +x newconfig
$./newconfig

The project will configure itself to include the new layer.

New platform project To add the layer to a new platform project, include the --with-
layer=path_to_layer configure option when you create your project.
For example:

$ configDir/configure --enable-board=qemux86-64 \
--enable-rootfs=glibc_std \
--enable-kernel=standard \
--enable-build=production \
--enable-parallel-pkgbuilds=4 \
--with-layer=path_to_layer \
--enable-jobs=4

Step 2 Optionally, build the platform project:

$ make

167

15
Modifying Package Lists

About the Package Manager 167

About Modifying Package Lists 172

About the Package Manager

Use the Package Manager tool to manage the analysis and removal of packages in your platform
project image.

Overview

When you configure and build a platform project image, a number of packages are included
automatically, depending on your project configuration. Including additional layers and
templates in your configuration often adds additional packages and their dependencies to your
platform project image.

As you continue to develop your target system, you may want to remove packages to help
decrease your platform's file system footprint. The Package Manager helps simplify the process of
package removal with an interface that displays a package's state and any other dependencies the
package requires.

The package removal feature works by creating a modified package list and appending it to
the projectDir/default-image.bb file. The tool uses the build system's tools that identify the
dependent packages and generate the revised package list.

About Package States and Information

Packages that are built as part of building the platform project's file system provide full
dependency information. Before you use the Package Manager to display status and remove
packages, you should ensure your platform project image is built.

Packages that not yet built but are known to be required are presented in an preliminary state.
The Package manager can retrieve some package information, but it is not complete.

Packages that are available for the image, but are attempted only if they are needed, generally
provide no information about the package's dependencies.

Wind River Linux
User's Guide, 5.0.1

168

Launching the Package Manager

Use this procedure to start the Package Manager and obtain package information from your
platform project image.

WARNING: The content of this chapter must be considered to be preliminary.

Due to the iterative nature of feature development there may be some variation between the
documentation and latest delivered functionally.

This procedure requires a previously built platform project image.

NOTE: You may launch the Package Manager on a configured, but not built, platform project,
but doing so will provide limited package data, as this information is compiled by the build
system as it builds the platform project image.

• Launch the Package Manager.

Run the following command from the projectDir:

$ make package-manager

The Package Manager tool displays.

15 Modifying Package Lists
Removing Packages

169

When the tool initially displays, it will read the package state for the platform project and
update the Status, Mode, and Installed columns accordingly.

Removing Packages

Remove a package and its dependencies after launching the tool.

WARNING: The content of this chapter must be considered to be preliminary.

Due to the iterative nature of feature development there may be some variation between the
documentation and latest delivered functionally.

Once the Package Manager is running, you can select packages and remove them.

Step 1 Select a package in the Package column.

Wind River Linux
User's Guide, 5.0.1

170

Information for the package displays in the bottom field. In this example, the kernel-module-
floppy package depends on the kernel-base package.

Step 2 Click Toggle Exclude.

Notice that the Action column displays Exclude for the selected package.

15 Modifying Package Lists
About the Package Manager

171

Step 3 Click Apply, then click Yes to confirm package removal.

The Package Manager processes the removal and displays a confirmation when complete.

Wind River Linux
User's Guide, 5.0.1

172

If the package selected has a hard dependency from another package in the file system, you will
receive a warning in the bottom field. If this occurs, you will not be able to remove the package
with the Package Manager.

Step 4 Click Close to close the Package Manager.

Step 5 Rebuild the platform project image.

Run the following command from the projectDir:

$ make

Step 6 Optionally open the Package Manager to display the new package information.

See Launching the Package Manager on page 168 for additional information.

About Modifying Package Lists

You can modify the package list for a project.

This section describes scaling a platform project to add or remove functionality by adding and
removing packages. For a more fine-grain approach of modifying the contents of the file system

15 Modifying Package Lists
Adding a Package

173

see As described in Analyzing and Optimizing Runtime Footprint on page 307 and the section
Finalizing the File System Layout with changelist.xml.

The Wind River front-end or wrapper to the Yocto/bitbake build system implements the concept
of templates and individual packages that can be added (and some cases removed) from a
project. This is in addition to the packages specified in the bitbake recipes in the various layers
which make up the project. This section discusses the use of these features in customizing a
platform project configuration and as a result, scaling your file system to include the minimal set
of components for your application.

The glibc_small and glibc_core file systems are designed to contain a minimal amount of
packages, for a busybox and bash based file systems respectively. The suggested workflow is to
start with one of these file systems and add packages and templates as needed.

Removing packages specified by a layer is more problematic, as often there removal breaks some
basic functionality required to boot the board. There are many package dependencies within
the base filesystem layer, and while some packages may be removed, often it is necessary to
modify the configuration of other components in order to keep them functional. The tools to
visualize and understand the complete package dependencies are still under development, so the
procedure described later in this chapter is provided as an interim solution until the bitbake build
system evolves and richer set of tools is developed.

Adding a Package

Two methods are available for adding packages.

In this procedure, you will learn two methods for adding a package.

• Complete one of the following:

- Add the parameter –with-package= to the configure command at project creation time.
- Use the command make -C build packageName.addpkg any time after package creation.
- Edit the projectDir/layers/local/image.bb file and add the following line:

IMAGE_INSTALL += "packageName"

The recipe for the package is consulted and any dependent and optional packages listed there
are added as well.

About Adding Templates

Feature templates are a mechanism that appends the project recipe with additional packages or
other configuration options.

In many cases feature templates will add one or more packages to the project by defining an
include file which is a list of added packages in a text file with the file extension .inc. Thus, every
package mentioned in the template is included with all the dependent and optional packages in
its recipe.

Feature templates are added at project creation time using the --with-template argument to the
configure command. Layers, including BSP layers, may include a default template that adds
packages to your project as a side effect of including the layer.

Wind River Linux
User's Guide, 5.0.1

174

Removing a Package

Unneeded packages can be removed from a project.

Packages that have been added individually or by a feature template may be removed using the
project build command.

NOTE: If the package you wish to remove has been included as part of a layer, or is a package
that is included by package dependency specified in another package recipe, this procedure will
not work. Wind River Linux provides the Package Manager tool for removing these types of
packages. For additional information, see About the Package Manager on page 167.

• Use the following make command to remove a package:

$ make -C build packageName.rmpkg

All package dependencies are reviewed and revised by this command.

175

PA R T I V

Kernel Development

Patching and Configuring the Kernel................................ 177

Creating Alternate Kernels from kernel.org Source......... 199

Exporting Custom Kernel Headers.................................... 201

Using the preempt-rt Kernel Type...................................... 205

Wind River Linux
User's Guide, 5.0.1

176

177

16
Patching and Configuring the

Kernel

About Kernel Configuration and Patching 177

About Kernel Configuration and Patching

Use the procedures in this section to learn how to configure the Linux kernel to add or remove
options by applying patches directly to the source code.

Customizing the Linux kernel to better fit the particular details of a hardware implementation is
almost always a required step in an embedded software development cycle.

Kernel customization can take the form of simply enabling or disabling kernel configuration
options; this is typically done to enable specific drivers and to shrink the final kernel image and
run-time load by removing unneeded functionality. Customization can also come in the form or
patches applied to the source code, either in-house or third party patches, to modify specific areas
of kernel behavior.

You can reconfigure kernels in one of the following manners:

• Configuring the Linux Kernel with menuconfig on page 185
• Configuring Kernel Modules With Make Rules on page 183
• Kernel Module Configuration and Patching with Fragments on page 179

Alternatively, you can patch and/or extend kernel capabilities:

• Patching the Kernel on page 195
• Patching the Kernel With SCC Files on page 193

Example Platform Project Configure for the Examples in this Chapter

The examples in this chapter are based on the qemux86-64 target board, and assume you have a
platform project configured and built with no errors. The tasks in this chapter use the example
configure script command from Configuring and Building a Complete Run-time on page 77.

Note that the content should apply equally to other target boards.

Wind River Linux
User's Guide, 5.0.1

178

Kernel Source Locations in a Platform Project Directory

Inside your platform project directory the kernel sources will be located in:

build/linux-windriver-version-r0/linux

The configuration file of the kernel will be located in:

build/linux-windriver-version-r0/linux-qemux86-64-standard-build/.config, where version is
the current kernel revision, for example 3.4.

Configuration

Use kernel configuration options to add or remove features to your platform project.

Depending on end-user requirements for your platform project image, you may need to make
changes to the existing kernel configuration. Use the examples in this section to configure a
kernel module with fragments or make rules.

The Initial Creation of the Kernel Configuration File

In Wind River Linux, kernel configuration fragments determine a platform's features and
comprise the kernel configuration file.

Wind River aims to provide uniformity across BSPs of a given platform and across given
architectures. To do so, non-hardware specific kernel options (for example, supported file
systems) are generally chosen on a per-platform basis, and then the hardware specific options (for
example, device drivers) are chosen on a per-BSP basis.

To achieve this, fragments of kernel configuration files (called config files or config fragments)
are placed among the other files that determine the content of a particular platform, architecture,
feature, or BSP. These fragments contain just the relevant kernel settings that pertain to that area
where they are placed.

When you configure your project and make an initial selection of a platform and a BSP (board),
you implicitly choose a subset of the various layers and feature templates that are available
to be included in your build. Config files that are found in these layers and templates are
collected together, and this concatenation of fragments form the initial input to the Linux Kernel
Configurator (LKC).

The kernel configuration fragments are collected, starting from the generic and proceeding to the
specific, to assemble platform- and board-specific kernel configuration options into a format that
is suitable for the LKC.

NOTE: Specifying a particular setting in a configuration fragment does not automatically
guarantee that the option appears in the final .config file. Wind River still uses the built-in part
of the default kernel.org configuration (usually referred to as the LKC) to process the fragments
and produce the final .config , and the final dependency check may discard or add options as
required, for example, due to dependency reasons.

The configuration file that is used to generate a new kernel is projectDir/build/linux-
windriver-version-r0/linux-qemux86-64-standard-build/.config. It is created from default
kernel.org option settings, plus the options settings from all the kernel configuration files in the
distribution and build environments.

16 Patching and Configuring the Kernel
Kernel Module Configuration and Patching with Fragments

179

The path to the .config file is based on the selection of your BSP and kernel type when you
configure your platform project, and will change based on your selections.

Kernel Module Configuration and Patching with Fragments

Kernel configuration can be done conveniently using configuration fragments, which are small
files that contain kernel configuration options in the syntax of the original kernel's .config
configuration file.

Kernel fragments capture specific changes to the kernel's configuration file. They are enabled by
creating a basic infrastructure inside the local layer, or any other layer included in the platform
project.

Once the infrastructure is in place, the BitBake build system will incorporate the kernel fragments
into the kernel configuration process to build the corresponding kernel image and associated
kernel modules.

In this section, you will learn to reconfigure the Linux kernel to make some changes on the kernel
modules which are installed by default.

The changes you will make include:

• Removing the floppy and parport (parallel port) modules, assuming that they are not
necessary for the intended target.

• Turning the minix kernel module into a static kernel feature, so that its functionality is
provided by the kernel image itself.

• Add the pcspkr (PC speaker) module.

Once complete, you will rebuild the kernel and file system, reboot the emulated target, and verify
that your changes have been applied.

Populate the Local Layer with the Required Subdirectories
Populate the local layer as part of configuring the Linux kernel with fragments

To perform this procedure, you must have a previously configured and built platform project. For
additional information, see Configuring and Building a Complete Run-time on page 77.

• Populate the local layer with subdirectories.

From the platform project’s main directory, enter the following command to create the
required directories to maintain your kernel fragments:

$ mkdir -p layers/local/recipes-kernel/linux/linux-windriver

The basic directory structure necessary to support configuration fragments is dictated by the
content of the BBFILES variable inside the projectDir/layers/local/conf/layer.conf file. See
Directory Structure on page 29.

More specifically, the element ${LAYERDIR}/recipes-*/*/*.bbappend in this variable
determines where the .bbappend files will be searched for. The part of the command line
above that reads: recipes-kernel/linux complies with this pattern.

The linux-windriver subdirectory is used to further localize kernel configuration files for the
kernels provided by Wind River and it is named after the Linux kernel package itself.

Create the Kernel's BitBake Append (.bbappend) File
Create a BitBake append file as part of configuring the Linux kernel with fragments

Wind River Linux
User's Guide, 5.0.1

180

This procedure requires that you have populated the projectDir/layers/local directory with
the subdirectories required for patching the kernel as described in Populate the Local Layer with the
Required Subdirectories on page 179.

Step 1 Create the BitBake append (.bbappend) file of the kernel.

Run the following command to create the kernel’s .bbappend file:

$ vi layers/local/recipes-kernel/linux/linux-windriver_3.4.bbappend

Step 2 Add the following default lines of code:

FILESEXTRAPATHS_prepend := "${THISDIR}/${PN}:"
SRC_URI += "file://config_baseline.cfg"

The variable FILESEXTRAPATHS_prepend extends the search path of BitBake to include a
directory named after the package being processed, PN for package name under the current
directory, THISDIR. In this example, PN is linux-windriver and this explains why we originally
created a subdirectory with this name.

The name of the kernel fragment is added to the BitBake variable SRC-URI, which holds the list
of configuration files, of any kind, to be processed when building the project.

The syntax file://config_baseline.cfg is used to tell BitBake that the configuration fragment is
to be found as a regular text file inside the layer, and not for example, through a source version
control system somewhere else. This file is where you will add fragments that make changes to
the kernel.

Create the Kernel's Configuration Fragment
Create a kernel fragment as part of configuring the Linux kernel with fragments

This procedure requires that you have created a .bbappend file for patching the kernel as
described in Create the Kernel's BitBake Append (.bbappend) File on page 179.

Step 1 Create the configuration fragment for the kernel.

Create the kernel’s config_baseline.cfg file.

$ vi layers/local/recipes-kernel/linux/linux-windriver/config_baseline.cfg

Step 2 Configure kernel fragments for this example.

The following lines add fragment configuration:

CONFIG_BLK_DEV_FD is not set
CONFIG_PARPORT is not set
CONFIG_MINIX_FS=y
CONFIG_INPUT_MISC=y
CONFIG_INPUT_PCSPKR=m

The configuration fragment(s) in this example have the same syntax as the .config file for the
kernel. Note that we added the statement:

CONFIG_INPUT_MISC=y

which is a prerequisite for the option CONFIG_INPUT_PCSPKR to become available.

Also note that lines starting with the # character are not comments but indicate instead that a
particular kernel feature is to be disabled.

16 Patching and Configuring the Kernel
Clean up the Linux Kernel Package and Optionally Configure the Package

181

At this moment the layer structure to support kernel configuration fragments should look like
this:

layers/local/recipes-kernel/ |- linux |- linux-windriver |- config_baseline.cfg |-
 linux-windriver_3.4.bbappend

Clean up the Linux Kernel Package and Optionally Configure the Package
Clean up the Linux kernel package as part of configuring the Linux kernel with fragments

This procedure requires that you have previously created a kernel configuration fragment as
described in Create the Kernel's Configuration Fragment on page 180.

Step 1 Clean up the Linux kernel package.

$ make -C build linux-windriver.clean

Cleaning up the linux-windriver kernel package first is a necessary step to force the build system
to subsequently reload all associated configuration files. You should do this every time you make
changes to your kernel configuration fragments and prior to rebuilding the kernel package.

Step 2 Configure the Linux kernel package if necessary.

$ make -C build linux-windriver.configure

Configuring the Linux kernel package is an optional step in that configuration will happen
automatically when later on you get to rebuild the package. However, configuration is done
much faster than rebuilding. Therefore the advantage of doing the configuration step manually
is that you can verify very quickly that the changes specified in the configuration fragment are
correct by inspecting the generated configuration file of the kernel located at:

projectDir/build/linux-windriver-version/linux-qemux86-64-standard-build/.config

Rebuild the Linux Kernel Package and File System
Rebuild the kernel and file system as part of configuring the Linux kernel with fragments

Once the kernel configuration fragment has been created, and the linux-windriver kernel
package has been cleaned and configured as described in Clean up the Linux Kernel Package and
Optionally Configure the Package on page 181, follow this procedure to rebuild the kernel.

Step 1 Rebuild the Linux kernel package and file system.

Run the following command from the platform project’s directory to rebuild the kernel package:

$ make -C build linux-windriver.rebuild

Once complete, the new linux-windriver package is available containing the modified kernel
image to be used in the target.

Step 2 Rebuild the file system.

$ make

This command updates the root file system to include the new structure of kernel modules to
be loaded on the target. Note that if your configuration fragments do not modify the current or
default kernel modules then you do not need to rebuild the root file system.

For example, if the only line in the configuration fragment above had been
CONFIG_PRINTK_TIME=y then only the kernel image would have been modified when
rebuilding the kernel package but the root file system would have remained the same.

Wind River Linux
User's Guide, 5.0.1

182

Run the Emulated Target
Run the emulated target after you have configured the Linux kernel with fragments

This procedure tests whether the kernel configuration fragments created in Create the Kernel's
Configuration Fragment on page 180 function as expected on a simulated target platform.

To complete this procedure, you must have previously configured the kernel package and rebuilt
the file system as described in Rebuild the Linux Kernel Package and File System on page 181.

Step 1 Verify that the pcspkr module still exists on the target.

Run the following command from the platform project directory:

$ make start-target

Step 2 Log in to the system.

Use the user name root with password root

Step 3 Verify that status of the floppy, parport, and pcspkr modules:

root@qemux86-64: ~# lsmod

The system should return the following:

Not tainted
pcspkr 2030 0 - Live 0xffffffffa0002000

The module list shows that the floppy and parport modules are no longer present and that the
pcspkr module is active now.

Step 4 Review how the pcspkr module loads.

Run the following command on your qemux86-64 target:

$ cat /usr/lib64/udev/rules.d/60-persistent-input.rules | grep pcspkr

The system should return the following:

DRIVERS=="pcspkr",ENV{.INPUT_CLASS}="spkr"

The automatic loading of modules is handled by the udev infrastructure.

Step 5 Verify that the minix file system is still supported.

root@qemux86-64: ~# cat /proc/filesystems |grep minix

The system should return the following:

minix

Support for the minix file system is still available but this time it is built into the Linux kernel
image itself.

Step 6 Shut down the target.

Enter the following command in the emulator console:

root@qemux86-64: ~# halt

16 Patching and Configuring the Kernel
Configuring Kernel Modules With Make Rules

183

Configuring Kernel Modules With Make Rules

The make command provides a simplified means to add or remove selected kernel modules as
needed.

After you build your project, all configured kernel modules become available for use with the
make command, as detailed in this section.

In this topic, the pcspkr module will be added as a project package and not directly as a kernel
option as was done before.

To perform this procedure, you must have the following pre-requisites met:

A working platform project

If you can configure and build a platform project successfully, then the make command is
working and you have a platform project to perform this procedure. For an example of the
platform project configure options used to create this procedure, see Configuring and Building a
Complete Run-time on page 77.

The pcspkr module

The following procedure assumes the pcspkr module is available at this point because it was
built previously in Kernel Module Configuration and Patching with Fragments on page 179

Understanding What Modules are Already Available

After an initial build of the file system completes, all configured kernel modules become available
as pre-compiled binaries inside your project's working space. The first thing to do is to determine
which modules are available, and then use the make rule options to add or to remove selected
modules.

In this example, once you determine which kernel modules are available, you are going to
add the pcspkr module, verify that it is loaded in the target, and then remove it, using make
commands.

You may have added the pcspkr module already using the menuconfig method as described in
Configuring the Linux Kernel with menuconfig on page 185. In this exercise, that module will be
added as a project package and not directly as a kernel option as was done before.

Step 1 Determine the kernel modules available in your platform project.

Run the following command from the platform project directory to list and sort these files:

$ find bitbake_build/tmp/deploy/rpm | grep kernel-module- | \

perl -p -i -e 's/.*(kernel-module-.*)-3.*/$1/' | sort

The result will be an alphabetically sorted list of all available modules already pre-compiled and
ready to be used. Kernel modules are packaged as individual files in the following directory:

projectDir/bitbake_build/tmp/deploy/rpm

Their file names all start with the kernel-module- prefix.

Step 2 Add the pcspkr module to the build.

As stated in Pre-requisites, above, the following command assumes the pcspkr module is available
at this point because it was built previously in Kernel Module Configuration and Patching with
Fragments on page 179

Wind River Linux
User's Guide, 5.0.1

184

a) Add the module.

$ make -C build kernel-module-pcspkr.addpkg

b) Verify that the kernel module package has been added.

$ cat layers/local/recipes-img/images/wrlinux-image-file-system.bb

In this example, file-system refers to the rootfs used to configure your platform project.
If you used the instructions from Configuring and Building a Complete Run-time on page 77, the
command would be:

$ cat layers/local/recipes-img/images/wrlinux-image-glibc-small.bb

The system will return the following output, after the line that declares #### END Auto
Generated by configure ####:

END Auto Generated by configure
IMAGE_INSTALL += "kernel-module-pcspkr"

This indicates that the package will be included in the build.
c) Rebuild the root file system.

make

Step 3 Verify the pcspkr module exists on the target.
a) Launch the platform project image in an emulator.

make start-target

b) Once the emulator finishes booting, login as user root with password root.
c) Verify that the pcspkr module was added to the target.

root@qemux86-64: ~# lsmod

The system should return the following, indicating that the pcspkr module was added:

Not tainted
 pcspkr 2030 0 - Live 0xffffffffa0002000

d) See how the pcspkr module loads.

$ cat /usr/lib64/udev/rules.d/60-persistent-input.rules | grep pcspkr

The system should return the following:

DRIVERS=="pcspkr",ENV{.INPUT_CLASS}="spkr"

Step 4 Remove the pcspkr module from the build.
a) Remove the pcspkr module package.

Run the following command in the projectDir:

$ make -C build kernel-module-pcspkr.rmpkg

b) Clean and rebuild the kernel image.

$ make -C build linux-windriver.clean

16 Patching and Configuring the Kernel
Configuring the Linux Kernel with menuconfig

185

This updates the set of available kernel modules, removing the pcspkr module in the process.

Step 5 Verify the pcspkr module is removed from the build.
a) Launch the platform project in an emulator.

Run the following command in the projectDir:

$ make start-target

b) After the emulator finishes booting, login as user root with password root.
c) Verify that the pcspkr module is removed from the target.

Run the following command on the target:

root@qemux86-64: ~# lsmod

The system should return the following, indicating that the pcspkr module was added:

Not tainted

Notice that the pcspkr module no longer loads or is present.
d) Shut down the target.

root@qemux86-64: halt

Configuring the Linux Kernel with menuconfig

Perform the procedure in this section to use menuconfig to access and change the different kernel
options.

menuconfig is a basic configuration mechanism provided by the Linux kernel build system that
provides a menu-based access to the different kernel options.

In this section, you will learn to reconfigure the Linux kernel to make some changes on the kernel
modules which are installed by default.

The changes you will make include:

• Removing the floppy and parport (parallel port) modules, assuming that they are not
necessary for the intended target.

• Turning the minix kernel module into a static kernel feature, so that its functionality is
provided by the kernel image itself.

• Add the pcspkr (PC speaker) module.

Once complete, you will rebuild the kernel and file system, reboot the emulated target, and verify
that your changes have been applied.

The following procedures require a configured and built platform project. See About Kernel
Configuration and Patching on page 177.

Step 1 Boot the emulated quemux86-64 target that you have built in the previous sections.
a) Launch the target.

From the platform project’s directory, run the following command:

$ make start-target

b) Log in as user root, and password root.

Wind River Linux
User's Guide, 5.0.1

186

You should have now access to the command line shell on the target.

Step 2 List the kernel modules installed on the target.

Run the following command from the target console:

root@qemux86-64:~# lsmod

The console should return the following output:

Not tainted
 parport 23894 1 parport_pc, Live 0xffffffffa0017000
 floppy 60578 0 - Live 0xffffffffa0022000
 parport_pc 18367 0 - Live 0xffffffffa0038000
 minix 29971 0 - Live 0xffffffffa0042000

This output represents the list of kernel modules loaded in the system. In this example, we will
assume that floppy and parport (parallel port) modules are not required, so we will remove
them. We will also integrate the minix module into the kernel image itself.

Step 3 Verify support for the minix file system.

Run the following command from the target console:

root@qemux86-64:~# cat /proc/filesystems |grep minix

The console should return the following output to indicate support for the minix file system:

minix

Note that since the minix module is already loaded, it is expected that the kernel supports it.

Step 4 Shutdown the emulated target.

Run the following command from the target console:

root@qemux86-64:~# halt

This will cleanly shutdown the console window so you can make changes to the kernel’s
configuration.

Step 5 Launch the menuconfig configuration tool for the kernel

Note that to use xconfig or config, listed in the commands, below, you must have the QT toolkit
and QT development tools installed on your host. For example, with a Debian-based workstation,
you could use the command: sudo apt-get install qt4-dev-tools qt4-qmake to install QT.

16 Patching and Configuring the Kernel
About Kernel Configuration and Patching

187

Enter one of the following commands from the platform project directory to launch the kernel
configuration menu:

Options Description

Run menuconfig in
a separate terminal
window:

$ make -C build linux-windriver.menuconfig

Run the graphical
xconfig interface to
menuconfig:

$ make -C build linux-windriver.xconfig

Run the graphical
gconfig interface to
menuconfig:

$ make -C build linux-windriver.gcconfig

After a few seconds, a new terminal window displays with the kernel configuration menu.

Step 6 Remove the floppy and parport modules from the kernel configuration.
a) From the top kernel configuration menu, select `Device Drivers > Block devices > Normal

floppy disk support .

Normal floppy disk support should be listed with a letter M marker indicating that it is to be
compiled as a module.

b) Press SPACE twice to remove this module from the build.

The marker is now blank indicating that the floppy module is not selected.
c) Select Exit at the bottom menu twice, using TAB or left/right arrow keys, to return to the top

level list of configuration options.
d) From the top kernel configuration menu, select Device Drivers > Parallel port support .

Parallel port support should be listed with a letter M marker indicating that it is to be
compiled as a module.

e) Press SPACE twice to remove this module from the build.
f) Select Exit at the bottom menu to return to the top level list of configuration options.

Step 7 Turn the minix module into a static kernel feature.
a) From the top kernel configuration menu, select File systems > Miscellaneous filesystems >

Minix file system support.

Minix file system support should be listed with a letter M marker indicating that it is to be
compiled as a module.

b) Press SPACE once to turn it into a static kernel feature.

The marker is now a * indicating that the minix option is configured as a static kernel feature.
c) Select Exit at the bottom menu twice, pressing TAB to return to the top level list of

configuration options.

Step 8 Add the pcspkr module.

By default, miscellaneous device support is disabled. To add PC speaker support, you must
enable it.

a) From the top kernel configuration menu, select Device Drivers > Input device support, then
press SPACE.

Wind River Linux
User's Guide, 5.0.1

188

b) Select Miscellaneous devices, then press SPACE to enable the sub-menu.
c) Select PC Speaker support and press the space bar to add the PC Speaker support option as a

module.

The marker is now a letter M indicating that the pcspkr option is a module.
d) Select Exit three times to return to the top level list of configuration options.

Step 9 Save the new kernel configuration and rebuild the image and modules.
a) From the top kernel configuration menu, select Exit.
b) When prompted to save your new configuration, select Yes to finish the configuration session.
c) Run the following command from the platform project directory to rebuild the kernel image

and modules:

$ make -C build linux-windriver.rebuild

d) Run the following command from the platform project directory to rebuild the root file system
and update the kernel modules as necessary:

$ make

Step 10 Boot the emulated target to test your new kernel configuration.
a) Launch the target.

Run the following command from the platform project directory:

$ make start-target

b) After the target window boots, login as user root with password root.
c) Verify that status of the floppy, parport, and pcspkr modules:

root@qemux86-64:~# lsmod

Not tainted
pcspkr 2030 0 - Live 0xffffffffa0002000

The module list shows that the floppy and parport modules are no longer present and that the
pcspkr module is active now.

d) See how the pcspkr module loads.

The udev infrastructure manages automatic module loading.

On your qemux86-64 target, type the following command:

$ cat /usr/lib64/udev/rules.d/60-persistent-input.rules | grep pcspkr

The system should return the following:

DRIVERS=="pcspkr",ENV{.INPUT_CLASS}="spkr"

e) Verify that the minix file system is still supported:

root@qemux86-64:~# cat /proc/filesystems |grep minix

The system should return the following:

minix

16 Patching and Configuring the Kernel
Patching

189

Support for the minix file system is still available but this time it is built into the Linux kernel
image itself.

Patching

Use kernel patching to apply kernel changes directly to the kernel source code.

Depending on end-user requirements for your platform project image, you may need to
customize the kernel source code, either to make changes to the Wind River kernel, or third-party
modules or patches. Use the examples in this section to patch a kernel.

Kernel Configuration Fragment Auditing

Use audit reporting to identify potential issues with your Linux kernel configuration.

Wind River provides an informational audit that takes place when the configuration (.config) file
is generated that looks for the following:

1. Non-hardware specific settings in the BSP fragments.
2. Settings specified in the BSP fragments that it is necessary to change or remove in the final

.config to satisfy the dependency information of LKC.
3. Settings that were duplicated in more than one fragment.
4. Settings that simply do not match any currently available option.

The intent of this on-the-fly-audit of the fragment content and the generated .config file is to
warn you when it looks like a BSP may be doing things it should not be doing.

For example, filtering is performed to identify duplicate entries, and warnings are issued when
options appear to be incorrect due to being unknown or being ignored for dependency reasons.

Because there are many kernel options available and many kernel configuration fragments, the
auditing mechanism provides summary output to the screen and collects detailed information in
a folder relevant to kernel configuration fragment processing. The warnings are captured in files
in the audit data directory

projectDir/build/linux-windriver/linux/.meta/cfg/kernel_type/bsp_name/*.

For example, the following directory would apply to an Intel BSP with a standard kernel type:

projectDir/build/linux-windriver/linux/.meta/cfg/standard/intel-x86-64

Kernel options are all sourced from Kconfig files placed in various directories of the kernel tree
that correspond to the locations of the code that they enable or disable. The logical grouping
has the effect of making each the content of each Kconfig either primarily hardware specific (for
example, options to enable specific drivers) or non-hardware specific (for example, options to
choose which file systems are available.)

Auditing is implemented by the kconf_check script, from the Yocto Project kernel tools recipes.
The auditing takes place in two steps, since the input first needs to be collated and sanitized, and
then the final output in the .config file from the LKC must be compared to the original input
in order to produce warnings about dropped or changed settings. This script is responsible for
assembling the fragments, filtering out duplicates, and auditing them for hardware and non-
hardware content.

The files of interest under the projectDir/build/linux-windriver/linux/.meta/
cfg/kernel_type/bsp_name/ directory include the following:

Wind River Linux
User's Guide, 5.0.1

190

hardware.kcf

The list of hardware Kconfig files.

non-hardware.kcf

The list of non-hardware Kconfig files.

By the end of this process, Wind River has sorted all the existing Kconfig files into hardware and
non-hardware, and this forms the basis of the audit criteria.

Audit Reporting

The audit takes place at the Linux configuration step and reports on the following:

• Items in the BSP that do not look like they are really hardware related.

Having a non-hardware item in a BSP is not treated as an error, since there may be
applications where something like a memory-constrained BSP wants to turn off certain non-
hardware items for size reasons alone.

• Items in one fragment that are re-specified again in another fragment or even in the same
fragment later on.

Again this is not treated as an error, since there are several use cases where an over-ride is
desired (e.g. the customer-supplied fragment described below). Normally there should be no
need for doing this -- but if someone does this, the usual rule applies, that is, the last set value
takes precedence.

• Hardware-related items that were requested in the BSP fragment(s) but not ultimately present
in the final .config file.

Items like this are of the highest concern. These items output a warning as well as a brief
pause in display output to enhance visibility.

• Invalid items that do not match any known available option.

This is for any CONFIG_OPTION item in a fragment that is not actually found in any of
the currently available Kconfig files. Usually this reflects a use of data from an older kernel
configuration where an option has been replaced, renamed, or removed.

See the following section for a commented example of auditing output.

Example of Kernel Fragment Auditing Output

Once you have configured you platform project, you can use the .config build rule to generate the
initial audit directory contents.

$ make -C build linux-windriver.config
make: Entering directory `/mnt/Linux_build/Build/intel-x86-64-glibc_std/build'

...

Setting up host-cross and links
Setting up packages link
Setting up packages link
Creating export directory
Creating project properties
NOTE: Tasks Summary: Attempted 346 tasks of which 346 didn't need to be rerun and all
 succeeded.
make: Leaving directory `/mnt/Linux_build/Build/intel-x86-64-glibc_std/build'

Once the build completes, you can examine the projectDir/build/linux-windriver/temp/
log.do_kernel_config_check file to see a summary of the kernel configuration audit process.

$ cat build/linux-windriver/temp/log.do_kernel_configcheck

16 Patching and Configuring the Kernel
About Kernel Configuration and Patching

191

DEBUG: Executing python function do_kernel_configcheck
NOTE: validating kernel config, see log.do_kernel_configcheck for details
DEBUG: The following new/unknown Kconfig files were found:
 arch/arm/mach-keystone/Kconfig
 drivers/clk/davinci/Kconfig
 drivers/clk/keystone/Kconfig
 drivers/dma/dw/Kconfig
 drivers/gpu/drm/rcar-du/Kconfig
 drivers/hwqueue/Kconfig
 drivers/staging/lttng2/Kconfig

[non-hardware (25)]: .meta/cfg/standard/intel-x86-64/specified_non_hdw.cfg
 This BSP sets config options that are possibly non-hardware related.

[invalid (5)]: .meta/cfg/standard/intel-x86-64/invalid.cfg
 This BSP sets config options that are not offered anywhere within this kernel

[errors (1): .meta/cfg/standard/intel-x86-64/fragment_errors.txt
 There are errors withing the config fragments.

[mismatch (9)]: .meta/cfg/standard/intel-x86-64/mismatch.cfg
 There were hardware options requested that do not
 have a corresponding value present in the final ".config" file.
 This probably means you aren't getting the config you wanted.

DEBUG: Python function do_kernel_configcheck finished

Duplicate instances of options, whether across fragments or in the same fragment, will generate a
warning. You can view the indicated fragment_errors.txt file to see the specific options.

$ cat build/linux-windriver/linux/.meta/cfg/standard/intel-x86-64/fragment_errors.txt

Warning: Value of CONFIG_I2C_I801 is defined multiple times within fragment .meta/cfg/
kernel-cache/bsp/intel-x86/intel-x86.cfg:
CONFIG_I2C_I801=m
CONFIG_I2C_I801=y

Whenever duplicate options are encountered, only the last instance is included in the final
configuration file.

The contents of the invalid.cfg file indicate which options are not being recognized. It may be
that the options are incorrect or obsolete. An option that is spelled incorrectly may also trigger
this warning. Note that any mis-spelled syntax, for example CONFIG_OPTION=y is ignored and
unreported.

$ cat build/linux-windriver/linux/.meta/cfg/standard/intel-x86-64/invalid.cfg
CONFIG_MULTICORE_RAID456
CONFIG_SND_HDA_ENABLE_REALTEK_QUIRKS
CONFIG_SND_HDA_POWER_SAVE
CONFIG_WIRELESS_EXT_SYSFS
CONFIG_USB_SUSPEND

The non-hardware options are meant to be in the domain of the platform, not the BSP. The
provided BSP options are found to be non-hardware-related and so they are reported here.

$ cat build/linux-windriver/linux/.meta/cfg/standard/intel-x86-64/invalid.cfg
CONFIG_MULTICORE_RAID456
CONFIG_SND_HDA_ENABLE_REALTEK_QUIRKS
CONFIG_SND_HDA_POWER_SAVE
CONFIG_WIRELESS_EXT_SYSFS
CONFIG_USB_SUSPEND

The mismatch.cfg file will indicate the option(s) causing this message. An example of a mismatch
is a case where you have requested CONFIG_OPTION=y and you get the message:

$ cat build/linux-windriver/linux/.meta/cfg/standard/intel-x86-64/mismatch.cfg

Value requested for CONFIG_ACPI_CONTAINER not in final ".config"

Wind River Linux
User's Guide, 5.0.1

192

Requested value: "CONFIG_ACPI_CONTAINER=m"
Actual value set: "CONFIG_ACPI_CONTAINER=y"

Value requested for CONFIG_ACPI_IPMI not in final ".config"
Requested value: "CONFIG_ACPI_IPMI=m"
Actual value set: ""

Value requested for CONFIG_ACPI_PCI_SLOT not in final ".config"
Requested value: "CONFIG_ACPI_PCI_SLOT=m"
Actual value set: "# CONFIG_ACPI_PCI_SLOT is not set"

Value requested for CONFIG_ASYNC_TX_DISABLE_PQ_VAL_DMA not in final ".config"
Requested value: "CONFIG_ASYNC_TX_DISABLE_PQ_VAL_DMA=y"
Actual value set: ""

Value requested for CONFIG_ASYNC_TX_DISABLE_XOR_VAL_DMA not in final ".config"
Requested value: "CONFIG_ASYNC_TX_DISABLE_XOR_VAL_DMA=y"
Actual value set: ""

Value requested for CONFIG_DCA not in final ".config"
Requested value: "CONFIG_DCA=m"
Actual value set: ""

Value requested for CONFIG_HOTPLUG_PCI_ACPI not in final ".config"
Requested value: "CONFIG_HOTPLUG_PCI_ACPI=m"
Actual value set: ""

Value requested for CONFIG_IGB_DCA not in final ".config"
Requested value: "CONFIG_IGB_DCA=y"
Actual value set: ""

Value requested for CONFIG_IXGBE_DCA not in final ".config"
Requested value: "CONFIG_IXGBE_DCA=y"
Actual value set: ""

In most cases, the option is not used because it is not valid for the input you provided.

The first example provides a case where you have an option CONFIG_OPTION=m, but you
have not enabled modules. In this case, LKC would provide CONFIG_OPTION=y, assuming
that was a valid option.

If you make changes to the layer content in your Linux platform project and wish to rerun the
kernel audit portion of the build, it is first necessary to rerun the patch stage of the build to gather
the kernel fragments from the layers.

$ BBOPTS="-f" make -C build linux-windriver.patch
make: Entering directory `/mnt/Linux_build/Build/intel-x86-64-glibc_std/build'
Inferred task 'patch' for recipe 'linux-windriver'.
Setting up host-cross and links

...

NOTE: Tainting hash to force rebuild of task /mnt/Linux_build/Build/intel-x86-64-
glibc_std/layers/wr-kernel/recipes-kernel/linux/linux-windriver_3.10.bb, do_patch
NOTE: Executing SetScene Tasks
NOTE: Executing RunQueue Tasks Setting up host-cross and links Setting up packages
 link

Creating export directory Creating project properties
NOTE: Tasks Summary: Attempted 19 tasks of which 18 didn't need to be rerun and all
 succeeded.
make: Leaving directory `/mnt/Linux_build/Build/intel-x86-64-glibc_std/build'

After fragments are gathered into the kernel build directory, you can rerun the audit process with
the kernel_configme command, and observe the results in log files as shown earlier.

$ make -C build linux-windriver.kernel_configme
make: Entering directory `/mnt/Linux_build/Build/intel-x86-64-glibc_std/build'
Inferred task 'kernel_configme' for recipe 'linux-windriver'.
Setting up host-cross and links

16 Patching and Configuring the Kernel
Patching the Kernel With SCC Files

193

...

NOTE: Tasks Summary: Attempted 20 tasks of which 19 didn't need to be rerun and all
 succeeded.
make: Leaving directory `/mnt/Linux_build/Build/intel-x86-64-glibc_std/build'

Contents of the Audit Data Directory

The audit data directory contains the following files:

• all.cfg
• all.kcf input_non_hardware_configs.cfg
• always_nonhardware.cfg
• avail_hardware.cfg
• config_frag.txt
• config.log merge_log.txt
• fragment_errors.txt
• hardware.kcf
• hdw_frags.txt
• input_hardware_configs.cfg
• intel-x86-64-standard-config-3.10.19 redefined_as_board_specific.txt
• invalid.cfg redefinition.txt
• known_current.kcf required.cfg
• known.kcf required_configs.cfg
• mismatch.cfg
• mismatch.txt
• non-hardware.kcf
• non_hdw_frags.txt
• optional_configs.cfg always_hardware.cfg
• specified_hdw.cfg
• specified_non_hdw.cfg
• unknown.kcf
• verify.cfg

Patching the Kernel With SCC Files

Use this procedure to conveniently maintain kernel configuration changes and patches in a local
layer in a single .scc file.

This procedure:

• Requires a configured and built platform project. See Example Platform Project Configure for the
Examples in this Chapter on page 177.

• Requires the use of a single .scc script file to instruct BitBake to apply the kernel configuration
fragment and the patch that were applied in Patching the Kernel on page 195.

• Assumes that you already have the required directory structure in the projectDir/layers/
local directory.

An .scc file is a script file that provides information to the BitBake build system about what
kernel changes to apply, and how to apply them. Use .scc files for grouping kernel changes,
configuration fragments and patches. .scc files are a convenient way to track changes to the stock
kernel provided by Wind River.

Wind River Linux
User's Guide, 5.0.1

194

In this procedure, you will use a single .scc script file to instruct BitBake to apply the kernel
configuration fragment and the patch that were applied in Patching the Kernel on page 195.
Note that the instructions assume that you already have the required directory structure in the
projectDir/layers/local directory.

For concepts related to using series configuration compiler (.scc) files, see Kernel Patching with scc
on page 155.

Step 1 Update the .bbappend file to tell BitBake about the the location of the .scc file.
a) Open the linux-windriver_3.4.bbappend file in an editor, for example:

$ vi layers/local/recipes-kernel/linux/linux-windriver_3.4.bbappend

b) Update the following line, beginning with SRC_URI declaration, to add the location and name
of the new patch file:

SRC_URI += "file://kernel_baseline.scc"

Here we modified the SRC_URI variable to include the file kernel_baseline.scc, and to let
BitBake know that this file has to be processed at build time.

c) In projectDir/layers/local/recipes-kernel/linux/linux-windriver layer directory, use a text
editor to create the .scc file.

$ vi layers/local/recipes-kernel/linux/linux-windriver/kernel_baseline.scc

d) Add the following lines and save the file:

kconf non-hardware config_baseline.cfg
patch 0001-init-add-WR-to-the-boot-label.patch

The file kernel_baseline.scc contains the instructions needed to apply the kernel
configuration changes and the 0001-init-add-WR-to-the-boot-label.patch kernel patch
previously applied in Patching the Kernel on page 195.

.scc files provide you with more control on how the kernel changes are applied. For additional
information, see Kernel Patching with scc on page 155.

Step 2 Clean up and rebuild the Linux kernel package and file system.
a) Clean up the package.

$ make -C build linux-windriver.clean

Do this every time you make changes to the patches that you want to apply to the Linux
kernel. This step forces the build system to subsequently reload all associated configuration
files.

b) Rebuild the Linux kernel package.

$ make -C build linux-windriver

Once complete, a new linux-windriver package is available containing the modified kernel
image to be used in the target.

c) Rebuild the file system.

$ make

This command updates the root file system to include the new structure of kernel modules to
be loaded on the target.

16 Patching and Configuring the Kernel
Patching the Kernel

195

Step 3 Verify that the .scc file changes were successfully applied to the target.

$ make start-target

Note the early boot message from the kernel console. It should read something similar to the
following:

WR Linux version 3.4.6-WR5.0+snapshot-20120807_standard (revo@my-workstation-l1)
 (gcc version 4.6.3 (Wind River Linux Sourcery CodeBench 4.6-60)) #1 SMP PREEMPT
 Tue Aug 7 12:33:23 EDT

Patching the Kernel

Use this procedure to maintain patches in a local layer that will be applied to the Linux kernel at
build time.

• The following procedures require a configured and built platform project. See Example
Platform Project Configure for the Examples in this Chapter on page 177.

• This exercise is an extension of the configuring kernel modules with fragments procedure in
Kernel Module Configuration and Patching with Fragments on page 179 and assumes that you
already have the required directory structure in the projectDir/layers/local directory.

• The following procedure assumes that you have initialized your git environment already
using the command git config --global to setup the user.name and user.email variables.
For additional information, see http://git-scm.com/book/en/Getting-Started-First-Time-Git-
Setup#Your-Identity.

Maintaining individual kernel patches in a layer is one way in which you can track changes to
the stock kernel provided by Wind River. In this procedure, you will apply a single patch to the
kernel to modify the label used to display the kernel version during early booting.

Step 1 Update the .bbappend file to tell BitBake about the patch file.
a) Open the linux-windriver_3.4.bbappend file in an editor, for example:

$ vi layers/local/recipes-kernel/linux/linux-windriver_3.4.bbappend

b) Update the following line to add the location and name of the new patch file:

SRC_URI += "file://config_baseline.cfg \
file://0001-init-add-WR-to-the-boot-label.patch"

Here we modified the SRC_URI variable to include the file 0001-init-add-WR-to-the-boot-
label.patch, and to let BitBake know that this file has to be processed at build time.

c) Save the file.

Step 2 Edit the source code.
a) Open and edit the version.c file:

Run the following commands from the top-level platform project directory:

$ cd build/linux-windriver-3.4-r0/linux

$ vi init/version.c +48

b) Change this line to read:

"WR Linux version " UTS_RELEASE " (" LINUX_COMPILE_BY "@"

http://git-scm.com/book/en/Getting-Started-First-Time-Git-Setup#Your-Identity
http://git-scm.com/book/en/Getting-Started-First-Time-Git-Setup#Your-Identity

Wind River Linux
User's Guide, 5.0.1

196

c) Save the file.

Step 3 Commit the change.

Enter the following to commit the change:

$ git commit -m "init: add 'WR' to the boot label" init/version.c

Step 4 Create the patch.
a) Enter the following to create the patch:

As stated in Prerequisites, above, the following command assumes that you have initialized
your git environment already using the command git config --global to setup the user.name
and user.email variables. For additional information, see http://git-scm.com/book/en/Getting-
Started-First-Time-Git-Setup#Your-Identity.

$ git format-patch -s -n \

-o projectDir/layers/local/recipes-kernel/linux/linux-windriver \

origin/standard/common-pc-64/base

Once applied, this patch modifies the banner message displayed in the Linux console early in
the boot process. Instead of displaying:

Linux version ...

it will now display:

WR Linux version ...

b) Return to the top of your platform project directory.

$ cd ../../..

Step 5 Clean up and rebuild the Linux kernel package.
a) Clean up the package.

$ make -C build linux-windriver.clean

Do this every time you make changes to the patches that you want to apply to the Linux
kernel. This step forces the build system to subsequently reload all associated configuration
files.

b) Rebuild the Linux kernel package:

$ make -C build linux-windriver.rebuild

Once complete, a new linux-windriver package is available containing the modified kernel
image to be used in the target.

Step 6 Verify that the patch has been applied.

You can look directly at the source file located in: projectDir/build/linux-windriver/linux/init/
version.c to verify that the patch has been applied.

Additionally, it is important to note that the git repository of the kernel has been updated
accordingly.

http://git-scm.com/book/en/Getting-Started-First-Time-Git-Setup#Your-Identity
http://git-scm.com/book/en/Getting-Started-First-Time-Git-Setup#Your-Identity

16 Patching and Configuring the Kernel
About Kernel Configuration and Patching

197

a) View the git log.

Run the following commands from the platform project’s directory:

$ cd build/linux-windriver/linux

$ git log

The system will return the following:

commit 4250412525031d95c3d60f4ccac00ea098ce6920
Author: Revo User <revo.user@windriver.com>
Date: Wed Sep 26 10:16:35 2012 -0400

 init: add 'WR' to the boot label

 Signed-off-by: Revo User <revo.user@windriver.com>

b) Enter q to exit the git log command.
c) Return to the top of your platform project directory.

$ cd ../../..

The Linux kernel is deployed as a git repository in your working directory. BitBake has
therefore committed the change using the message you entered in 3 on page 196, above, to
commit the change.

Step 7 Launch the target to test the patch.
a) Start the target.

$ make start-target

Note the early boot message from the kernel console. It should read something similar to the
following:

WR Linux version 3.4.6-WR5.0+snapshot-20120807_standard (revo@my-workstation-l1)
 (gcc version 4.6.3 (Wind River Linux Sourcery CodeBench 4.6-60)) #1 SMP PREEMPT
 Tue Aug 7 12:33:23 EDT

Wind River Linux
User's Guide, 5.0.1

198

199

17
Creating Alternate Kernels from

kernel.org Source

Wind River provides the capability to build arbitrary git-based kernel sources using a development-
only recipe. This recipe uses the Yocto infrastructure to clone and build directly from the desired kernel
repository, starting from a user-specified tag and complete configuration.

NOTE: Only the kernel version supplied with Wind River Linux is validated and supported.
Using any other kernel version is not covered by standard support.

This procedure is therefore suitable only for projects that are not under Wind River standard support,
such as a Proof of Concept. It is expected that this procedure will build without errors with most BSPs,
but it is unlikely the resulting kernel will boot without further configuration and patches.

Step 1 Update the platform project's bblayers.conf file to add kernel development support.

In a previously created Wind River Linux Platform project based on a standard kernel, (that is
without CGL, RT-Linux or similar profile), add projectDir/layers/wr-kernel/kernel-dev to the
file projectDir/bitbake_build/conf/bblayers.conf. This makes the linux-windriver-custom
recipe available to the build.

For example:

$ echo 'BBLAYERS += "${WRL_TOP_BUILD_DIR}wr-kernel/wr-kernel-dev" ' \
 >> projectDir/bitbake_build/conf/bblayers.conf

Step 2 Create a .bbappend file in the local layer of your build.

$ cd projectDir/layers/local
$ mkdir -p recipes-kernel/linux
$ cd recipes-kernel/linux/
$ echo 'FILESEXTRAPATHS := "${THISDIR}/${PN}"' >> linux-windriver-custom.bbappend

Step 3 Update the SRCREV for the kernel version being built.

This is the git hash of a tag in the kernel.org tree. The kernel will be cloned from the kernel.org git
repository so it is necessary to have downloading enabled in your local.conf file.

Wind River Linux
User's Guide, 5.0.1

200

For example, to build the Linux 3.6 kernel the tag is:

$ echo 'SRCREV = "a0d271cbfed1dd50278c6b06bead3d00ba0a88f9"' >> linux-windriver-
custom.bbappend

Step 4 Make the recipe compatible with your machine.

$ echo 'COMPATIBLE_MACHINE = "${MACHINE}"' >> linux-windriver-custom.bbappend

Step 5 Add kernel-specific configuration and patches.

When building a particular kernel version, you will also need to add kernel configuration and
patches that are specific to the new kernel version. These additional files can be placed in the
local layer recipe directory you have just created.

For example, to add a config/defconfig fragment for the board to the SRC_URI:

$ mkdir -p linux-windriver-custom
$ cp /path/to/my/custom_defconfig linux-windriver-custom/defconfig
$ echo 'SRC_URI += " file://defconfig"' >> linux-windriver-custom.bbappend

Step 6 Move to the root of your project and edit your local.conf file.

Change your PREFERRED_PROVIDER_virtual/kernel_BSP_name definition so it selects your
custom kernel. For example:

PREFERRED_PROVIDER_virtual/kernel_qemuppc = "linux-windriver-custom"

Step 7 Build the kernel.

Run the following command from the top-level folder in the projectDir:

$ make -C build linux-windriver-custom

If you are reasonably sure your kernel is compatible, you can build it into your file system image
using:

$ make fs

NOTE: This procedure only replaces the kernel and not the file system components. Most
notably the kernel-headers package that is exported to the SDK sysroot remains unchanged.

201

18
Exporting Custom Kernel Headers

About Exporting Custom Kernel Headers for Cross-compile 201

Adding a File or Directory to be Exported when Rebuilding a
Kernel 201

Exporting Custom Kernel Headers 202

About Exporting Custom Kernel Headers for Cross-compile

It is possible to export custom kernel headers for application development cross-compilation
using a built-in task for the Linux kernel.

The Wind River Linux kernel includes the linux-windriver.install_kernel_headers task, which
enables developers to export their custom kernel headers to the sysroot for use in cross-compiling
user space code. This task is provided by default and does not require any specific platform
project configuration option. This task runs after linux-windriver.do_install() and before linux-
windriver.do_populate_sysroot. Any header files and directories listed in the global variable
KERNEL_INSTALL_HEADER are copied to the sysroot.

Each entry in KERNEL_INSTALL_HEADER is expected to exist in the Linux kernel source include/
directory. If a file already exists in the destination, the build system will not overwrite it, but
instead issue a warning. For example, to include a header file named myfile.h, the file must exist
in the projectDir/build/linux-windriver-3.4-r0/linux/include directory, or a subdirectory of it.
See Adding a File or Directory to be Exported when Rebuilding a Kernel on page 201 for examples of
using add KERNEL_INSTALL_HEADER_append.

For instructions on exporting a custom kernel header, see Exporting Custom Kernel Headers on
page 202.

Adding a File or Directory to be Exported when Rebuilding a Kernel

Append files or directories to the KERNEL_INSTALL_HEADER variable each time the kernel is
rebuilt as shown in these examples

This procedure is a supplement to Exporting Custom Kernel Headers on page 202.

Wind River Linux
User's Guide, 5.0.1

202

Each entry in the KERNEL_INSTALL_HEADER variable is expected to exist in the Linux kernel
source include/ directory. To add a file or directory to be exported each time you rebuild the
kernel, use KERNEL_INSTALL_HEADER_append to add to the variable as illustrated in the
following example.

This variable is not configuration file-specific, and can be added to any of your layer
configuration files, such as

projectDir/layers/local/conf/layers.conf

Step 1 Open the projectDir/layers/local/conf/layers.conf file in a text editor.

Step 2 Update the KERNEL_INSTALL_HEADER variable.

• To add a single file, such as myfile.h:

KERNEL_INSTALL_HEADER_append += "myfiles/myfile.h"

• To add all files in a directory:

KERNEL_INSTALL_HEADER_append += "myfiles"

Step 3 Save the file.

Exporting Custom Kernel Headers

Use this procedure to export custom kernel headers for application development cross-
compilation

This procedure requires a previously configured platform project. For additional information,
see About Configuring a Platform Project Image on page 62. It also requires that any custom kernel
header files that you want to export be located in the projectDir/build/linux-windriver-3.4-r0/
linux/include directory or a subdirectory. For additional information, see About Exporting Custom
Kernel Headers for Cross-compile on page 201.

Step 1 Unpack the Linux kernel.

Run the following command in the root of the projectDir.

$ make -C build linux-windriver.patch

Step 2 Navigate to the source directory of the kernel build.

$ cd build/linux-windriver-3.4-r0/linux

Step 3 Optionally create a file to test this procedure.

If you do not have a file in the projectDir/build/linux-windriver-3.4-r0/linux/include
directory, you can use the following line to create one for testing purposes:

$ echo "#define my file" > include/myfile.h

Step 4 Add and commit your file to the git repository for the kernel.

$ git add include/myfile.h
$ git commit -m "new #define my file"

For the commit message, you can enter anything you like, specific to your custom header file.

18 Exporting Custom Kernel Headers
Exporting Custom Kernel Headers

203

Step 5 Open the projectDir/layers/local/conf/layers.conf file in a text editor.

Step 6 Add the header file to the projectDir/layers/local/conf/layers.conf file and save the file.

$ KERNEL_INSTALL_HEADER_append += "myfile.h"

This will include your custom header file in the build. For additional information on adding
header files, see Adding a File or Directory to be Exported when Rebuilding a Kernel on page 201.

Step 7 Rebuild the kernel:

$ make -C build linux-windriver

This can take some time to complete. When it finishes, your custom header file will be located in
the projectDir/bitbake_build/tmp/sysroots/BSP_name/usr/include directory.

For a qemux86-64 BSP, the path would be projectDir/bitbake_build/tmp/sysroots/
qemux86-64/usr/include/myfile.h. This places your custom header file in the appropriate
directory for user space cross-compiling.

Wind River Linux
User's Guide, 5.0.1

204

205

19
Using the preempt-rt Kernel Type

Introduction to Using the preempt-rt Kernel Type 205

Enabling Real-time 207

Configuring preempt-rt Preemption Level 207

Introduction to Using the preempt-rt Kernel Type

Wind River Linux provides a conditional real-time kernel type, preempt-rt, for certain board and
file system combinations.

The default scheduler for preempt-rt is the Completely Fair Scheduler (CFS). For information on
configuring preemption levels, see About Preemption Model Configuration.

NOTE: Conditional real-time support is not available for all boards.

The preempt-rt kernel type provides four levels of preemption to suit most platform
project requirements, as described in this section. These options are available in the Kernel
Configuration > Processor type and features > Preemption model (Fully Preemptible Kernel
(RT)) menu as described in Configuring preempt-rt Preemption Level on page 207.

NOTE: The Processor type and features selection is specific to using an x86 architecture.
Different architectures may have different wording for this selection. Refer to Kernel
Configuration documentation specific to your architecture for additional information.

No Forced Preemption (Server)

The text kernel configuration entry is CONFIG_PREEMPT_NONE. This is the traditional Linux
preemption model geared towards throughput. It will provide reasonable overall response
latencies but there are no guarantees and occasional long delays are possible. This configuration
will maximize the raw processing throughput of the kernel irrespective of scheduling latencies.

Wind River Linux
User's Guide, 5.0.1

206

Voluntary Kernel Preemption (Desktop)

The text configuration entry is CONFIG_PREEMPT_VOLUNTARY. This configuration reduces
the latency of the kernel by adding more explicit preemption points to the kernel code. The new
preemption points break long non-preemptive kernel paths, minimizing rescheduling latency
and providing faster application reactions, at the cost of slightly lower throughput. This offers
faster reaction to interactive events by enabling a low priority process to voluntarily preempt
itself during a system call. Applications run more smoothly even when the system is under load.
A desktop system is a typical candidate for this configuration.

Preemptible Kernel (Low-latency Desktop)

This configuration applies to embedded systems with latency requirements in the milliseconds
range.

The text configuration entry is CONFIG_PREEMPT_LL. This configuration further
reduces kernel latency by allowing all kernel code that is not executing in a critical
section to be preemptible. This offers immediate reaction to events. A low priority
process can be preempted involuntarily even during syscall execution. This is similar to
CONFIG_PREEMPT_VOLUNTARY, but allows preemption anywhere outside of a critical
(locked) code path.

Applications run more smoothly even when the system is under load, at the cost of slightly lower
throughput and a slight run-time overhead to kernel code. (According to profiles when this mode
is selected, even during kernel-intense workloads the system is in an immediately preemptible
state more than 50% of the time.)

Preemptible Kernel (Basic RT)

This configuration applies to embedded systems with latency requirements in the milliseconds
range.

The text configuration entry is CONFIG_PREEMPT_RTB. This configuration is similar
to CONFIG_PREEMPT_LL, but it enables changes that are considered the preliminary
configuration for CONFIG_PREEMPT_RT_FULL.

With this mode selected, a system can be in an immediately preemptible state more than 70% of
the time, even during kernel-intense workloads.

Fully Preemptible Kernel (RT)

This configuration applies to time-response critical embedded systems, with guaranteed latency
requirements of 100 usecs (microseconds) or lower.

The text configuration entry is CONFIG_PREEMPT_RT_FULL. This configuration further
reduces the kernel latency by replacing virtually every kernel spinlock with preemptible
(blocking) mutexes, and allowing all but the most critical kernel code to be involuntarily
preemptible. The remaining low-level, non-preemptible code paths are short and have a
deterministic latency of a few tens of microseconds, depending on the hardware. This enables
applications to run smoothly irrespective of system load, at the cost of lower throughput and run-
time overhead to kernel code.

Selecting the fully preemptible kernel automatically includes the preemptible RCU configuration
parameter. The text configuration entry is CONFIG_PREEMPT_RCU. This option reduces the
latency of the kernel by making certain RCU sections preemptible. Normally RCU code is non-
preemptible. If this option is selected, read-only RCU sections become preemptible. This helps
latency, but may expose bugs due to now-naive assumptions about each RCU read-side critical
section remaining on a given CPU through its execution.

19 Using the preempt-rt Kernel Type
Enabling Real-time

207

Testing indicates that with this mode selected, a system can be in an immediately preemptible
state more than 95% of the time, even during kernel-intense workloads.

Applications running on a CONFIG_PREEMPT_RT_FULL kernel need to be aware that in some
cases they may be competing with kernel services running in scheduled task context. Various
legacy test suites exercising privileged real-time scheduling policies at high priorities have also
been found to fail, and in some cases have caused system lockup due to the changed scheduling
dynamics in the kernel.

These conditions are a result of kernel code which had been running in hard-exception context
now running in task-scheduled context. The cause of this issue is the ability of a privileged
application or test task to elevate its scheduling priority above system daemons. The potential
exists for such a task to halt system scheduling if it does not relinquish the CPU.

The work-around is to assure system daemons schedule with a priority greater than any
application task. This may be accomplished by either a chrt of the system daemons above the
expected priority range of application usage, or constraining the application to use priorities
below that of system daemons.

Enabling Real-time

To enable the preemptible real-time feature, configure your project with the preempt-rt kernel
option.

This procedure requires that you have previously created a platform project build directory. For
additional information, see About Creating the Platform Project Build Directory on page 62.

Step 1 Configure the platform project with the --enable-kernel=preempt-rt option.

For example, to configure a qemux86-64 board with a standard file system and conditional real-
time, enter:

$ configDir/configure \
--enable-board=qemux86-64 \
--enable-kernel=preempt-rt \
--enable-rootfs=glibc_std

See About Configure Options on page 65 for additional information on configure script options.

Step 2 Build the project.

$ make

Configuring preempt-rt Preemption Level

You may configure the real-time kernel to run in one of four levels of increasingly aggressive
preemption behavior.

This section explains how to launch menuconfig to configure preempt-rt kernel parameters, and
make changes to your preemption levels.

NOTE: These instructions describe command-line procedures for configuring your preemption
levels. See the Wind River Workbench by Example Guide (Linux version) for instructions on using
Workbench to configure preemption.

Wind River Linux
User's Guide, 5.0.1

208

To perform the following procedure, you must have a platform project image configured and
built using the --enable-kernel=preempt-rt configure option. See Enabling Real-time on page
207.

Step 1 Build and open a kernel development shell (kds).

Run the following command from the projectDir:

$ make kds

Once the command completes, it will launch a new kds in a separate window.

Step 2 Open the platform project's kernel configuration menu.

Run the following command in the kds terminal:

$ make menuconfig

The Kernel Configuration graphical interface launches:

Step 3 Navigate to the Preemption Models selection options.

Select Processor type and features > Preemption model (Fully Preemptible Kernel (RT)) to view
the Preemption Models options.

NOTE: The first selection, Processor type and features, is specific to using an x86 architecture.
Different architectures may have different wording for this selection. Refer to Kernel
Configuration documentation specific to your architecture for additional information.

Step 4 Select a preemption model.

Use the arrow keys to select a preemption model, then press SPACE to select and automatically
return to the previous menu.

See About Preemption Model Configuration for additional information on the different preemption
models.

19 Using the preempt-rt Kernel Type
Configuring preempt-rt Preemption Level

209

Step 5 Press ESC twice to return to the main menu.

Step 6 Optionally, set the debug functionality you want to include in your kernel.

Select Kernel hacking from the main menu, then highlight Debug preemptible kernel and press
SPACE to select it. Press ESC twice to return to the main menu.

This option enables the kernel to detect preemption count underflows, track critical
section entries, and emit debug assertions should an illegal sleep attempt occur. Unsafe
use of smp_processor_id() is also detected. The text configuration entry for this option is
CONFIG_DEBUG_PREEMPT.

Step 7 Press ESC and select Yes at the prompt to save your configuration.

Step 8 Enter exit to close the kds window.

Step 9 Rebuild the kernel with the new configuration.

Run the following command in the projectDir:

$ make -C build linux-windriver.rebuild

Step 10 Rebuild the platform project and add the new kernel module changes.

$ make

Wind River Linux
User's Guide, 5.0.1

210

211

PA R T V

Debugging and Enabling Analysis

Tools Support

Kernel Debugging.. 213

Userspace Debugging... 219

Analysis Tools Support... 231

Wind River Linux
User's Guide, 5.0.1

212

213

20
Kernel Debugging

Kernel Debugging 213

Debugging with KGDB Using an Ethernet Port (KGDBOE) 214

Debugging with KGDB Using the Serial Console (KGDBOC) 216

Disabling KGDB in the Kernel 217

Kernel Debugging with QEMU 218

Kernel Debugging

Understand the limitations for using gdb to perform KGDB debugging.

This information in this section is specific to using gdb from the command line. To perform
KGDB debugging with Workbench, see the Wind River Workbench by Example, Linux Version.

You may find it useful to make a KGDB connection from the command line using gdb for several
reasons:

• You are more familiar with gdb for particular types of debugging,
• You wish to automate some KGDB tests.
• You are having problems with your KGDB connection from Workbench.

Known KGDB Limitations

Before you begin, there are some known limitations with using KGDB. The following is not
supported:

• Serial console (KGDBoC) over USB interface through one USB-serial gadget. See Debugging
with KGDB Using the Serial Console (KGDBOC) on page 216.

• Ethernet (KGDBoE) on SMP systems with threaded interrupts.

Always refer to the BSP README for the most up to date info regarding any limitations or
restrictions.

Wind River Linux
User's Guide, 5.0.1

214

Debugging with KGDB Using an Ethernet Port (KGDBOE)

KGDBOE permits KGDB debugging operations over an Ethernet port. By default, KGDBOE is
available as a module in the WR Linux kernel.

Perform the procedure in this topic to use KGDB debugging operations over an Ethernet port
using gdb.

Step 1 Launch a platform project image on a hardware target.

Step 2 Install the kernel module.

Run the following command in the target's console:

modprobe kgdboe kgdboe=@/,@host_ip_adress/

See the kernel documentation for the full details on the option syntax.

NOTE: KGDBOE is only available on Ethernet drivers that support the Linux Netpoll API. If this
is not the case for your board the modprobe command above will fail with the message:

kgdboe: netpoll_setup failed kgdboe failed

Step 3 Run the cross-compiled version of gdb on your vmlinux image.
a) Go to your project directory.

$ cd projectDir

This makes it easier to provide the path to the vmlinux symbol file
b) Run the cross-compiled version of on your vmlinux image.

$./scripts/gdb export/images/vmlinux-symbols-qemux86-64

For some boards, you need to assert the architecture for gdb.

• For the 8560, for example, it is necessary to specify:

(gdb) set architecture powerpc:common

• For a MIPS-64 CPU board with a 32-bit kernel, it is necessary to specify:

(gdb) set architecture mips

NOTE: Without this setting, gdb may continually respond with errors such as the following and
other errors.

Program received signal SIGTRAP, Trace/breakpoint trap. 0x00000000 in ?? ()

Step 4 In the gdb session, connect to the target.

Port 6443 is reserved for KGDB communication.

(gdb) target remote udp:target IP:6443

20 Kernel Debugging
Debugging with KGDB Using an Ethernet Port (KGDBOE)

215

NOTE: You may see various warnings and exceptions that you can ignore. If, however, gdb
informs you that the connection was not made, review your configuration, command syntax,
and the IP addresses used.

Note that after issuing this command, and if the connection to the target is successful, the target
will halt.

Step 5 Enter the where command, and note the output.

(gdb) where

You should see a backtrace stack of some depth. If you see only one or two entries, or a ??, then
you are observing an error.

Step 6 Enter the info registers command, and note the output.
a) Type the following gdb command:

(gdb) info registers

You should see the list of registers.
b) Examine the list of registers.

If, for example, the program counter is zero or otherwise unreasonable, then you are
observing an error.

Step 7 Enter a breakpoint command for do_fork.

(gdb) break do_fork

NOTE: If the do_fork location as a breakpoint does not work on this installation, note it and
choose another kernel entry point. See Wind River Workbench by Example, Linux Version: Debugging
Kernel Space for more information.

Step 8 Continue the target execution.

(gdb) c

NOTE: Note that the target resumes normal operation.

Step 9 On the host, verify that the program stopped at the do_fork breakpoint.
a) On the target, type ls then press RETURN.

The host displays the status of the do_fork breakpoint:

Breakpoint 1, do_fork ... linux/kernel/fork.c:16011601 if (clone_flags &
 CLONE_NEWUSER) {

b) Perform additional debugging operations as necessary.

• You can resume the target's operation using the gdb command c (for continue) again.
• You can press CTRL+C to send a break, set breakpoints, view the stack, view variables, and

so on.

Wind River Linux
User's Guide, 5.0.1

216

NOTE: You may wish to build the kernel with CONFIG_DEBUG_INFO=y if you want more
debugging info.

Step 10 Release the KGDB connection.

When you are finished debugging, enter the following command to disconnect gdb from the
target:

(gdb) disconnect
(gdb) quit

WARNING: If you quit gdb without first disconnecting from the target, you may have to reboot
the target before you can reconnect.

You may also lose Telnet and other communication, especially if the target was stopped at a
breakpoint.

Debugging with KGDB Using the Serial Console (KGDBOC)

The following procedure illustrates the use of KGDB debugging operations from a serial console.

KGDBOC permits KGDB debugging operations using the serial console. The serial console
operates in two modes-the usual mode in which you use the serial console to login and so on, and
a mode that allows you to enter the KGDB debugger.

If your hardware does not support the line break sequence or agent-proxy is connected to
your target as a debug splitter, you will have to start the agent-proxy with the -s003 option.
(Workbench users set the Work Bench Linux KGDB Connection properties to select Use
character based break.) If your target continues to run after sending a break command, you most
likely need to employ one of these methods.

The following example assumes that he board's console port is connected to the development
workstation through a serial-to-USB adapter which can be accessed through the /dev/ttyUSB0
device:

Step 1 Launch the agent-proxy from within your project's directory.

$ host-cross/usr/bin/agent-proxy 2223^2222 localhost /dev/ttyUSB0,115200

Step 2 Connect to the board's console port.

$ telnet localhost 2223

To display the # prompt of the target, press ENTER.

Step 3 Find the device file used as console by inspecting the kernel's boot command line.

Run the following command on the target:

telnet localhost 2223

20 Kernel Debugging
Disabling KGDB in the Kernel

217

The command returns the following output:

... console=ttyO2,115200n8 mpurate=auto ...

Step 4 Configure kgdboc to use the console device.

echo ttyO2 > /sys/module/kgdboc/parameters/kgdboc

The console returns a confirmation:

kgdb: Registered I/O driver kgdboc.

Step 5 Enter kdb mode by sending the sysrq-g magic sequence:

echo g > /proc/sysrq-trigger

The console returns:

SysRq : DEBUG
Entering kdb (current=0xde63da40, pid 543) due to Keyboard Entry
kdb>
kgdb: Registered I/O driver kgdboc.

Step 6 Enter kgdb mode from the kdb prompt.

kdb> kgdb

The console returns a confirmation:

Entering please attach debugger or use $D#44+ or $3#33

Step 7 Launch the gdb debugger.

Run the following command on the host workstation:

$./scripts/gdb export/images/vmlinux-symbols-beagleboard

The host console displays the gdb prompt.

Step 8 Connect gdb to the target:

(gdb) target remote localhost:2222

You can start now your debugging session using all available gdb commands.

You can use the gdb command c (for continue) followed by CTRL+C to resume and stop
execution on the target.

Disabling KGDB in the Kernel

Learn how to disable KGDB to begin a transition to production builds.

By default, KGDB is enabled in the pre-built and generated Wind River Linux kernels, but can
be disabled if necessary. Typically, production-level builds no longer require kernel debugging
support, so you can use the following procedure to disable it..

Step 1 Set up the configuration support files of the kernel.

Wind River Linux
User's Guide, 5.0.1

218

Run the following command in the projectDir:

$ make -C build linux-windriver.menuconfig

This command launches the Configuration tool.

Step 2 Disable debugging info in the kernel.

Select Kernel hacking > Compile the kernel with debug info and press SPACE to disable.

Step 3 Exit the configuration tool.

Tab to the bottom menu and select Exit > Exit. Select Yes when prompted to save your changes.

Step 4 Rebuild the kernel.

$ make -C build linux-windriver.rebuild

A new kernel is built and vmlinux symbol table file created in the export directory.

Remember these files for Workbench and the command line testing.

Kernel Debugging with QEMU

Learn how to start QEMU from the command line and load the KGDB kernel modules.

The following example procedure assumes you have built a platform project for one of the
supported boards.

When you have created the platform project, you can start QEMU from the command line and
load the KGDB kernel modules shown in the following procedure.

After the module is loaded you can, for example, connect to the kernel using Workbench as
described in Workbench by Example, Linux Version.

Step 1 Launch a QEMU target.

Run the following command from the projectDir:

$ make start-target

See QEMU Targets on page 241 for more information.

Step 2 Start gdb on your workstation.

$./scripts/gdb export/images/vmlinux-symbols-qemux86-64

Step 3 Connect to the emulated target.

(gdb) target remote :1234

From this moment on, you can use the gdb command c (for continue) followed by CTRL+C to
resume and stop execution on the target.

NOTE: Refer to Wind River Workbench by Example, Linux Version for details on loading Ethernet as
well as Serial KGDB target modules on physical targets.

219

21
Userspace Debugging

Adding Debugging Symbols to a Platform Project 219

Adding Debugging Symbols for a Specific Package 220

Dynamic Instrumentation of User Applications with uprobes 221

Debugging Individual Packages 228

Debugging Packages on the Target Using gdb 228

Debugging Packages on the Target Using gdbserver 229

Adding Debugging Symbols to a Platform Project

Learn how to add debugging symbols to your binaries for debugging on the target.

Whether you are debugging on the target directly or remotely from the development
workstation, you will want to have debugging symbols for your binaries. The easiest method to
use to add debugging symbols is to use the --enable-build=debug configure script option when
you create your platform project.

Once you build the project with the make command, this option installs debug symbols in the
form of a *.debuginfo archive file, located in the projectDir/export folder. For example:

projectDir/export/qemux86-64-glibc-small-standard-dist-debuginfo.tar.bz2

If you use this option, the *.debuginfo file and symbols are automatically added to the target root
file system, so there is no need to extract this file on the target to perform local debugging.

These symbols are located in .debug subdirectories, along with the location of the corresponding
binaries. For example, the debug information for binaries in /usr/bin is in the directory

/usr/bin.debug

If you used the --enable-build=profiling configure script option, note that this also adds symbols
in your file system for debugging, but requires you to manually extract the symbols to the target
file system to perform debugging.

Step 1 Verify whether debugging symbols have been built for your platform project.

Wind River Linux
User's Guide, 5.0.1

220

Navigate to the projectDir/export folder to see whether the *.debuginfo archive exists. For
example:

projectDir/export/qemux86-64-glibc-small-standard-dist-debuginfo.tar.bz2

The full name of the archive is based on the BSP, root file system, and kernel type, amd may differ
depending on your platform project configuration. If your platform project includes this archive,
it is ready to perform userspace debugging. If not, you can add them in the following step.

Step 2 Add debugging symbols.

Options Description

Previously built
platform project

1. Perform a distclean on the root file system.

Run the following command from the projectDir:

$ make -C build wrlinux-image-filesystem.distclean

where make -C build wrlinux-image-filesystem refers to the
name of the projectDir/layers/local/recipes-img/images/wrlinux-
image-file-system.bb recipe file, for example, make -C build
wrlinux-image-glibc-std.distclean.

This can take a few moments to complete.
2. Create the *.debuginfo archive.

$ make fs-debug

Previously configured
platform project

Run the following command in the projectDir:

$ make fs-debug

Once the command completes, it creates the *.debuginfo archive in the project export directory.

Adding Debugging Symbols for a Specific Package

Depending on your development needs, you may only need to create debugging symbols for a
specific package, and not the entire platform project.

For platform projects with the glibc_small rootfs, you can pre-configure or add symbols after the
root file system has built.

• To add symbols to the root file system, take one of the following actions:

Options Description

--with-
package=busybox-
dbg

Use the configure option at configuration time

make -C build
busybox-dbg.addpkg

Use the command after the project is built

21 Userspace Debugging
Dynamic Instrumentation of User Applications with uprobes

221

Dynamic Instrumentation of User Applications with uprobes

There are number of tracing options provided with Wind River Linux. This example focuses
on uprobes. The 'u' indicates "user," and uprobes are designed to trace applications and user
libraries, whereas many other types of Linux instrumentation are focused on the kernel.

Other instrumentation libraries provided with Wind River Linux that examine applications are:

ptrace

Used by GDB and Wind River user mode agent for debugging

LTTng (The Linux trace toolkit)

Records system calls for the workbench System Viewer

Wind River Profiler

Periodically records the contents of both user and kernel stacks

In the following examples, we will be doing profiling. It is far more convenient to use the Wind
River Profiler than the following method, and the Profiler is functional with striped binaries on
the target file system because it obtains debug information though object path mapping on the
host. However, the uprobes method has the advantage of being entirely target based and has no
dependence on development host tool connectivity.

The uprobe library provides a mechanism for a kernel function to be invoked whenever a process
executes a specific instruction location. An interface to uprobes is provided through the perf
events subsystem, accessed from the shell with the perf probe command.

When a uprobe is inserted in a program, a special copy is made of the page containing the probe.
In that copy the instruction is replaced by a breakpoint. When the breakpoint is hit by a running
process, the event is recorded and the program continues normal operation.

While the kernel event tracing system is the default user of uprobes; there is also a published
interface you can use for your own custom tools. At the core of uprobes is this function:

#include <linux/uprobes.h>

int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc);

The inode structure points to an executable file; the probe is placed at offset bytes from the
beginning. The uprobe_consumer structure provides the callback mechanism for when the
process encounters the probe; it looks like:

struct uprobe_consumer {
 int (*handler) (struct uprobe_consumer *self, struct pt_regs *regs);
 bool (*filter) (struct uprobe_consumer *self, struct task_struct *task);
 struct uprobe_consumer *next;
 };

The filter() function is optional; if it exists, it determines whether handler() is called for each
specific hit on the probe. The handler returns an int, but the return value is ignored in the current
code.

uprobe Syntax

The uprobe syntax is similar the kprobe syntax, but because only minimal process symbol
information is available to the kernel, it is typical to specify the probe location with an offset.

Wind River Linux
User's Guide, 5.0.1

222

Table 6 Synopsis of uprobe_tracer

Parameter Definition

p[:[GRP/]EVENT] PATH:SYMBOL[+offs]
[FETCHARGS]

Sets a probe

GRP Group name. If omitted, use "uprobes" as
default.

EVENT Event name. If omitted, the event name is
generated based on SYMBOL[+offs].

PATH Path to an executable of a library.

SYMBOL[+offs] Symbol+offset where the probe is inserted.

FETCHARGS Arguments. Each probe can have up to 128
arguments.

%REG Fetch register REG.

This comes from the Linux kernel documentation directory of your platform project in the file:

projectDir/build/BSP_name-wrs-linux/linux-windriver-version/linux/ Documentation/
trace/uprobetracer.txt

The format of the perf probe command is not consistent across versions of Linux. The version in
Wind River Linux supports the following options:

 usage: perf probe [<options>] 'PROBEDEF' ['PROBEDEF' ...]
 or: perf probe [<options>] --add 'PROBEDEF' [--add 'PROBEDEF' ...]
 or: perf probe [<options>] --del '[GROUP:]EVENT' ...
 or: perf probe --list

 -v, --verbose be more verbose (show parsed arguments, etc)
 -l, --list list up current probe events
 -d, --del <[GROUP:]EVENT>
 delete a probe event.
 -a, --add <[EVENT=]FUNC[+OFF|%return] [[NAME=]ARG ...]>
 probe point definition, where
 GROUP: Group name (optional)
 EVENT: Event name
 FUNC: Function name
 OFF: Offset from function entry (in byte)
 %return: Put the probe at function return
 ARG: Probe argument (kprobe-tracer argument format.)

 -f, --force forcibly add events with existing name
 -n, --dry-run dry run
 --max-probes <n> Set how many probe points can be found for a probe.
 -F, --funcs Show potential probe-able functions.
 --filter <[!]FILTER>
 Set a filter (with --vars/funcs only)
 (default: "!__k???tab_* & !__crc_*" for --vars,
 "!_*" for --funcs)
 -x, --exec <executable|path>
 target executable name or path

Configuring uprobes with perf

Install perf to enable uprobe debugging

21 Userspace Debugging
Dynamically Obtain User Application Data with uprobes

223

uprobes requires the perf package. By default, uprobes are already included in your kernel
configuration if your BSP supports this functionality in the Kernel Hacking > Tracers section of
the kernel configuration.

Figure 5: CONFIG_UPROBE_EVENT=y

• Enter the following commands from the root of your project directory tree.

$ make -C build perf.addpkg
$ make -C build perf
$ make fs

These commands have no negative side effect if the package is already present in your
platform project.

Dynamically Obtain User Application Data with uprobes

Use uprobe to dynamically obtain application and library data on the perf application.

This procedure requires the following for successful completion:

• Previously configured and built platform project with debugging symbols. See Adding
Debugging Symbols to a Platform Project on page 219.

• The perf package included in your platform project build. For additional information on
adding packages, see Adding Debugging Symbols to a Platform Project on page 219.

• The CONFIG_UPROBE_EVENT=y kernel configuration parameter enabled in the kernel.

By default, uprobes are included in your kernel configuration, but may not be supported
by all BSPs. To see whether your BSP supports this functionality, refer to the Kernel
Configuration > Kernel Hacking > Tracers section of the utility. For example:

Wind River Linux
User's Guide, 5.0.1

224

• The platform project is launched on a hardware target and you are logged in.

Step 1 Confirm that the virtual debug file system is mounted.

$ ls /sys/kernel/debug/
bdi kprobes memblock sched_features usb
hid ltt powerpc tracing

Step 2 Mount it if it is not.

$ mount -t debugfs nodev /sys/kernel/debug

Step 3 Observer the current perf functions using the CPU.

$ perf top

Step 4 Press q to stop and return to the prompt once you have seen enough:

Step 5 Choose a symbol to examine in a user library.

In the previous step, a list of symbols displayed in the terminal. In this step, you will examine one
of them.

$ perf probe -x /lib/libc-2.15.so strstr
Added new event:
 probe_libc:strstr (on 0x8dcd4)

You can now use it in all perf tools, such as:

$ perf record -e probe_libc:strstr -aR sleep 1

Step 6 Obtain some data.

21 Userspace Debugging
Dynamically Obtain Object Data with uprobes

225

Run the following command in the background for an extended period of time to obtain data:

$ perf record -e probe_libc:strstr -aR sleep 60 &

Step 7 Enter some random commands to generate data.

$ top
tar -czf this.tar /etc/*

When the background task is complete, a message displays in the console, for example:

[perf record: Woken up 1 times to write data]
[perf record: Captured and wrote 0.111 MB perf.data (~4844 samples)]

[1]+ Done perf record -e probe_libc:strstr -aR sleep 60

Step 8 Review your results.

$ perf report

Events: 602 probe_libc:strstr
 70.43% tar libc-2.15.so [.] strstr
 28.74% perf libc-2.15.so [.] strstr
 0.83% top libc-2.15.so [.] strstr

Step 9 Press q to exit the perf application's interactive mode.

Run this command once your tracing operations are complete.

Dynamically Obtain Object Data with uprobes

Use uprobe to dynamically obtain data on a specific object, created as a new probe, in the perf
application.

This procedure requires the following for successful completion:

• Previously configured and built platform project with debugging symbols. See Adding
Debugging Symbols to a Platform Project on page 219.

• The perf package included in your platform project build. For additional information on
adding packages, see Options for Adding an Application to a Platform Project Image on page 138.

• The CONFIG_UPROBE_EVENT=y kernel configuration parameter enabled in the kernel.

By default, uprobes are included in your kernel configuration, but may not be supported
by all BSPs. To see whether your BSP supports this functionality, refer to the Kernel
Configuration > Kernel Hacking > Tracers section of the utility. For example:

Wind River Linux
User's Guide, 5.0.1

226

• The platform project is launched on a hardware target and you are logged in.

To debug an object file effectively, you can use the following procedure to examine the symbols
visible to perf probe.

Step 1 Confirm which symbols are available to perf in a specific object file.

This step uses the F option, for example:

$ perf probe -F -x /lib/libc.so.6 | grep mal

malloc
malloc@plt
malloc_info
memalign@plt

Step 2 Create a probe for an interesting function.

$ perf probe -x /lib/libc.so.6 malloc

Added new event:
 probe_libc:malloc (on 0x88914)

You can now use it in all perf command-line tools, such as:

$ perf record -e probe_libc:malloc -aR sleep 1

Step 3 Obtain some data.

Run it in the background for an extended period of time:

$ perf record -e probe_libc:malloc -agR sleep 60 &

21 Userspace Debugging
Dynamic Instrumentation of User Applications with uprobes

227

Step 4 In this example we have added the g option to the command; this enables a call tree in the
recorded results. Enter some random commands to generate data. For example:

$ top
tar -czf this.tar /etc/*

Step 5 Observe the results.

Once the console reports the run as complete, enter perf report to observe the results. They will
look similar to the following:

Events: 3K probe_libc:malloc
 86.37% tar libc-2.15.so [.] malloc
 5.33% perf libc-2.15.so [.] malloc
 4.73% tcf-agent libc-2.15.so [.] malloc
 2.30% top libc-2.15.so [.] malloc
 1.28% gzip libc-2.15.so [.] malloc

Step 6 Select a line and press ENTER to observe the call tree if perf report is interactive.

Not all functions are displayed. On a typical embedded system, the libraries will be stripped of
debug information and only public APIs will be shown.

Figure 6: perf report Call Tree

Step 7 Press q to exit the interactive mode of perf.

Step 8 List the probes you have created.

$ perf probe -l |more

 probe_libc:malloc (on 0x00088914)
 probe_libc:strstr (on 0x0008dcd4)

Step 9 Remove the probes with the d option.

Wind River Linux
User's Guide, 5.0.1

228

$ perf probe -d probe_libc:malloc

Removed event: probe_libc:malloc

Debugging Individual Packages

Use these debug options to debug your packages.

See the Wind River Linux Getting Started Guide: Debugging an Executable.

Table 7 Synopsis of debugging individual packages

Debugging method or option Description

Default Package Options Packages may have configuration or compile-time options
that are not used in the default build of the package.
You may have specific needs that require that the default
package be built with different options. Refer to the
particular packages for customizable options.

Using gcore When using gdb with Wind River Linux, note that
gdb has an internal gcore command that provides
functionality that in other systems is provided by a
separate gcore executable.

Debugging Packages on the Target Using gdb

This topic explains how to add the gdb package to your build.

In order to debug programs on the target, you will need to add the gdb package to your build.
This can be done at configuration time with the --with-package=gdb configure option (see
Configuring a New Project to Add Application Packages on page 142) or after the project is built with
the make -C build gdb.addpkg command (see Adding New Application Packages to an Existing
Project on page 139).

You will also want the debugging symbol files on your target using one of the methods described
in Adding Debugging Symbols to a Platform Project on page 219.

The following is an example of on-target debugging commands on a glibc-small system. The
debugging target is /bin/busybox, and specifically the ls command implementation.

Step 1 Start gdb.

gdb

Step 2 Set the debug directory.

(gdb) set debug-file-directory /bin/.debug

Step 3 Select the busybox binary.

(gdb) file /bin/busybox

21 Userspace Debugging
Debugging Packages on the Target Using gdbserver

229

Step 4 Set ls as the busybox command to debug.

(gdb) set args ls /

NOTE: To debug other functionality implemented by busybox, change the arguments of the set
args option command.

Step 5 Set a breakpoint.

(gdb) break main

Step 6 Run under the debugger until you reach the breakpoint.

(gdb) run

NOTE: You can then step over the implementation details of the ls command within the
busybox binary.

Debugging Packages on the Target Using gdbserver

Use this procedure to debug a package by running gdbserver on the target and gdb on the
development host.

You can debug target binaries remotely by running gdbserver on the target and gdb on the
development host.

The following example illustrates how to debug the ls command remotely on a qemux86-64
target with a glibc_small root file system.

In order to debug programs on the target using gdbserver, you will need to add the gdb package
to your build. This can be done at configuration time with the --with-package=gdbserver
configure option (see Configuring a New Project to Add Application Packages on page 142) or
after the project is built with the make -C build gdbserver.addpkg command (see Adding New
Application Packages to an Existing Project on page 139).

This procedure assumes that you are already connected to the target.

Step 1 Launch the gdbserver.

gdbserver :23 /bin/ls

Step 2 Perform a debugging session.
a) Begin the debug session on the development host.

$ cd projectDir
$./scripts/gdb
(gdb) file bin/busybox
(gdb) target remote localhost:4441
(gdb) break main
(gdb) continue

You can then proceed with the debugging session as if it were being performed locally.
b) Change the gdbserver command arguments to debug other BusyBox programs.

Wind River Linux
User's Guide, 5.0.1

230

For example:

gdbserver :23 /usr/bin/less /etc/hosts

The command initiates debugging of the less command implementation.
c) Use the make command to change the default TCP ports.

In this example, TCP ports 23 and 4441 are the default values used by QEMU.

To customize them, use the make config-target command, then modify option 39
TARGET0_QEMU_TELNET_RPORT.

d) To debug remotely on a hardware target, connect the host gdb session directly to the target.

At the (gdb) prompt, type the following command:

(gdb) target remote target-ip-address:23

Note that in this case, the selection of port number 23 is entirely arbitrary. Any value will do.

231

22
Analysis Tools Support

About Analysis Tools Support 231

Using Dynamic Probes with ftrace 231

Analysis Tools Support Examples 237

About Analysis Tools Support

Use analysis tools with Workbench as documented in online Analysis Tools and Workbench
documentation.

NOTE: Analysis tools are primarily used with Workbench as documented in online Analysis
Tools and Workbench documentation.

Like other Wind River Linux configuration commands, you can perform the following through
Workbench or the command line. Note that if you create projects through the command line, you
then have to import them into Workbench for them to become visible.

Backtracing, which is used by the analysis tools, is performed differently by MIPS boards than
by non-MIPS boards, so the following presents two examples of configuring builds for analysis
tools.

If you are not interested in memory allocations invoked in libraries called by your application,
then you can use the production stripped versions of the library object files and simply build
your application in Workbench with the Debug build specification. Workbench Memory Analysis
will resolve addresses to functions, files and line numbers for addresses in your main application
object file but report the addresses in your samples that reside in stripped library objects as
“unknown” functions.

Using Dynamic Probes with ftrace

The dynamic kprobes feature is an extension of the Linux kernel ftrace function tracer.

Currently, x86 is the only platform supported, and the format is instruction-dependent. For more
information about supported instructions, please refer to the document

Wind River Linux
User's Guide, 5.0.1

232

arch/x86/lib/x86-opcode-map.txt

Unlike the function tracer, the kprobes tracer can probe instructions inside of kernel functions. It
allows you to check which instruction has been executed. And unlike the Tracepoint-based events
tracer described in tracepoints.txt the kprobes tracer can add new probe points on the fly.

One of the design goals of kprobes is to allow their insertion and deletion from the command-
line without the need for any specialized user tools. So the manipulation of kprobes is done via
the proc and sys virtual file systems. The syntax is complex and probably best implemented in a
script for processes that are more complex than this example.

The kernel tracing infrastructure is documented in the ../Documentation/trace/ directory
found at http://www.kernel.org/doc/Documentation/trace/ and in your platform project projectDir/
build/BSP_name-wrs-linux/linux-windriver-version/linux/Documentation/trace directory.
The ftrace.txt file describes the basic kernel tracing facility. The dynamic kprobes extension is
described in the kprobetrace.txt file.

Configuration

There are no user packages required to use dynamic kprobes. The required features are already
enabled in the kernel on supported Wind River Linux BSPs in the Kernel Hacking > Tracers
section of the kernel configuration.

There are two kernel options:

• CONFIG_KPROBE_EVENT=y
• CONFIG_DYNAMIC_FTRACE=y

Figure 7: kprobe Configuration

kprobe Syntax Parameters Definition

The following table provides a list of the kprobe syntax parameters and their definitions.

http://www.kernel.org/doc/Documentation/trace/

22 Analysis Tools Support
Preparing to use a kprobe

233

Table 8 kprobe Syntax Parameters

Parameter Definition

p[:[GRP/]EVENT] SYMBOL[+offs]|
MEMADDR [FETCHARGS]

Set a probe

r[:[GRP/]EVENT] SYMBOL[+0] [FETCHARGS] Set a return probe

-:[GRP/]EVENT Clear a probe

GRP Group name. If omitted, "kprobes" is used as
the default.

EVENT Event name. If omitted, the event name
is generated based on SYMBOL[+offs] or
MEMADDR

SYMBOL[+offs] Symbol+offset where the probe is inserted.

MEMADDR Address where the probe is inserted.

FETCHARGS Arguments. Each probe can have up to 128
arguments.

%REG Fetch register REG.

@ADDR Fetch memory at ADDR (in kernel text
segment)

@SYM[+|-offs] Fetch memory at SYM +|- offs (SYM should be
a data symbol)

$stackN Fetch Nth entry of stack (N >= 0)

$stack Fetch stack address

$retval Fetch return value3

+|-offs(FETCHARG) Fetch memory at FETCHARG +|- offs address4

NAME=FETCHARG Set NAME as the argument name of
FETCHARG

Resources

Documentation/trace/kprobetrace.txt in your installation.

Documentation/trace/ftrace.txt in your installation.

http://lwn.net/Articles/343766/

Preparing to use a kprobe

Complete these steps to prepare to debug with a kprobe.

3 Only for return probe
4 This is useful for fetching a field of data structures

http://lwn.net/Articles/343766/

Wind River Linux
User's Guide, 5.0.1

234

Step 1 Check that your BSP supports kprobes.

For information on supported boards, see Bootloaders and Board README Files on page 18

Step 2 Create a platform project based on the BSP.

Step 3 Verify the correct kernel options are enabled.

Open the Wind River Workbench Kernel Configuration editor and review your settings.

Step 4 Build your project and deploy to your target.

Step 5 Mount the debugfs file system if it is not already available.

mount -t debugfs nodev /sys/kernel/debug

Ftrace uses the debugfs file system to hold the control files as well as the files to display output.

Step 6 Enable /proc/sys/kernel/ftrace_enabled if it is not already.

echo 1 > /proc/sys/kernel/ftrace_enabled
 echo > /sys/kernel/debug/tracing/trace
 1

Setting up a kprobe

The steps in this procedure show you how to set up a kprobe for kernel debugging and confirm
that it is working.

Step 1 Determine the correct address(es) to set probe points at.

You can find the related value of a function in your project’s kernel in System.map; a link to this
file is found at:

projectDir/export/BSP_name-System.map-WRversion_standard

For example, to find the address of do_fork, you can enter the following command:

export$ grep "do_fork" qemux86-System.map-WR5.0.1.0_standard
c102e680 T do_fork
c167b905 t do_fork_idle

The example above would yield an address similar to 0xc102bac0.

Step 2 Set probe points.

Echo the points to /sys/kernel/debug/tracing/kprobe_events, replacing the numeric value
0xc102bac0 with the correct value for your project.

echo 'p:doforkprobe 0xc102bac0 clone_flags=%ax stack_start=%dx regs=%cx
 parent_tidptr=+4($stack) child_tidptr=+8($stack)' \
 >> /sys/kernel/debug/tracing/kprobe_events

NOTE: Ensure that the entire quoted section of the command is on the same line when you enter
it at the terminal prompt.

Additional examples.

22 Analysis Tools Support
Enabling and Using a kprobe

235

Check the four parameters of do_sys_open

echo 'p:myprobe do_sys_open dfd=%ax filename=%dx flags=%cx mode=+4($stack)' > /sys/
kernel/debug/tracing/kprobe_events

Check the return value of do_sys_open, __dentry_open, and do_fork.

echo 'r:myretprobe do_sys_open $retval' >> /sys/kernel/debug/tracing/kprobe_events

'r:fork_retprobe do_fork $retval' >> /sys/kernel/debug/tracing/kprobe_events

'r:dentry_openprobe __dentry_open $retval' >> /sys/kernel/debug/tracing/kprobe_events

This sets a kprobe on the top of the do_fork() function with recording 1st to 5th arguments as
doforkprobe event. Note also that whichever register/stack entry is assigned to each function
argument depends on arch-specific ABI.

Step 3 Confirm that the kprobe is working.

You can cat the kprobe and review output to determine if it is working correctly.

a) Generate output

For example:

cat /sys/kernel/debug/tracing/kprobe_events
p:kprobes/doforkprobe 0xc102e680 clone_flags=%ax stack_start=%dx regs=%cx
 parent_tidptr=+4($stack) child_tidptr=+8($stack)

b) Review the output.

A successfully inserted probe will also appear in the tracing directory. If there is one kprobe
in kprobe_events, kprobe will be in the directory of /sys/kernel/debug/tracing/events. For
example:

root@d610:/sys/kernel/debug/tracing> ls -l events/kprobes/
total 0
drwxr-xr-x 2 root root 0 May 26 13:44 doforkprobe
-rw-r--r-- 1 root root 0 May 26 13:44 enable
-rw-r--r-- 1 root root 0 May 26 13:44 filter
root@d610:/sys/kernel/debug/tracing> ls -l events/kprobes/doforkprobe/
total 0
-rw-r--r-- 1 root root 0 May 26 13:45 enable
-rw-r--r-- 1 root root 0 May 26 13:44 filter
-r--r--r-- 1 root root 0 May 26 13:44 format
-r--r--r-- 1 root root 0 May 26 13:44 id

Enabling and Using a kprobe

The steps in this procedure show you how to enable and use a kprobe to trace kernel debugging
data.

Step 1 Enable the kprobe.
a) Set the value of /sys/kernel/debug/tracing/events/kprobes/doforkprobe/enable to 1.

echo 1 > /sys/kernel/debug/tracing/events/kprobes/doforkprobe/enable

There will now be some capture counts in <kprobe_profile>.:

Wind River Linux
User's Guide, 5.0.1

236

b) Review the capture counts..

root@d610:/sys/kernel/debug/tracing> cat kprobe_profile

You should see results similar to the following:

doforkprobe 26 0

The first column is the event; the second is the number of probe hits; and the third is the
number of probe miss-hits.

NOTE: Substitute the value appropriate to your environment for @d610.

Step 2 Enable tracing.

echo 1 > /sys/kernel/debug/tracing/tracing_enabled

Step 3 View the trace.

cat /sys/kernel/debug/tracing/trace#

tracer: nop
#
entries-in-buffer/entries-written: 2/2 #P:1
#
_-----=> irqs-off
/ _----=> need-resched
| / _---=> hardirq/softirq
|| / _--=> preempt-depth
||| / delay
TASK-PID CPU# |||| TIMESTAMP FUNCTION
| | | |||| | |
 sh-518 [000] d..2 1679.804579: doforkprobe: (do_fork+0x0/0x310)
 clone_flags=1200011 stack_start=bfc6c7d0 regs=d6689fb4 parent_tidptr=0 child_tidptr=0
 sh-518 [000] d..2 2068.342909: doforkprobe: (do_fork+0x0/0x310)
 clone_flags=1200011 stack_start=bfc6c7d0 regs=d6689fb4 parent_tidptr=0 child_tidptr=0

Disabling a kprobe

The steps in this procedure show you how to disable a kprobe after using it to debug a kernel.

• Remove your probe from kprobe_events..

echo 0 > /sys/kernel/debug/tracing/events/kprobes/doforkprobe/enable

echo 0 > /sys/kernel/debug/tracing/tracing_enabled

echo '-:doforkprobe' >> /sys/kernel/debug/tracing/kprobe_events

doforkprobe will be removed from kprobe_events, kprobe_profile, and events/kprobes. If
there is no kprobe in kprobe_events, events/kprobes will be deleted too.

22 Analysis Tools Support
Analysis Tools Support Examples

237

Analysis Tools Support Examples

Use the examples in this section to configure a platform project to add analysis tools support
from the command line.

Additional Reading

Refer to the analysis tools documentation for specifics on using the Wind River Analysis Tools.

Adding Analysis Tools Support for MIPS Targets

These instructions show you how to add analysis tool support to MIPS targets.

Step 1 Configure the platform project for MIPS targets.

The following configure example command adds analysis tools support using the --with-
template=feature/analysis option:

$.../configure --enable-board=qemumips \
--enable-rootfs=glibc_std \
--enable-kernel=standard \
--with-template=feature/analysis

NOTE: MIPS boards use a different method for backtracing. A production build along with a
make fs-debug (which places the symbolic information on the host) is fine for use with oprofile,
but if you are using mpatrol, you should specify the --enable-build=profiling argument to
your configure command. This is necessary because mpatrol requires the presence of additional
symbols to analyze target memory on the target. Note that oprofile can fetch these symbols from
the host.

Step 2 Build the MIPS target file system.

$ make

Adding Analysis Tools Support for Non-MIPS Targets

These instructions show you how to add analysis tool support to non-MIPS targets.

Step 1 Configure the target.

Use the following configure example command to add analysis tools support to, for example, a
qemux86-64 target:

$ configDir/configure \
--enable-board=qemux86-64 \
--enable-rootfs=glibc_std \
--enable-kernel=standard \
--with-template=feature/analysis \
--enable-build=profiling

Wind River Linux
User's Guide, 5.0.1

238

NOTE: The --enable-build=profiling option enables frame pointers for the backtrace code. (The
--enable-build=debug option also enables frame pointers which enables backtrace functionality.)

Step 2 Build the target file system.

$ make

239

PA R T V I

Using Simulated Target Platforms for

Development

QEMU Targets.. 241

Wind River Simics Targets... 251

Wind River Linux
User's Guide, 5.0.1

240

241

23
QEMU Targets

QEMU Targets 241

QEMU Targets

QEMU is a processor simulator for supported boards. (Refer to your Release Notes for a list of
supported boards.) Using QEMU for simulated deployment, no actual target boards are required,
and there are no networking preliminaries.

QEMU and Workbench are compatible both in User Mode and Kernel Mode. QEMU deployment,
for the supported boards, offers a suitable environment for application development and
architectural level validation. User-space and kernel binaries are compatible with the real
hardware.

When started, QEMU runs in a pseudo-root environment and starts the NFS server with alternate
RPC ports. The simulated target is given a hard-coded IP address of 10.0.2.15, and localhost is
visible from the simulated target as 10.0.2.2.

See QEMU Target Deployment Options on page 241.

QEMU Prerequisites

To deploy a QEMU simulation, you must have built a platform project for one of the QEMU-
enabled BSPs, which are named after their architecture. For example, qemux86-64 represents a
64-bit x86 board. See the Wind River Linux Release Notes for a list of QEMU-enabled BSPs.

QEMU Target Deployment Options

Use the examples in this section to configure, monitor, and specify launch options for QEMU
from the command line.

The Wind River Linux Getting Started Guide: Deploying a Platform Project Image provides an example
of how to deploy a QEMU target for user mode debugging. You can also use QEMU to perform
kernel mode debugging (KGDB) of supported Wind River Linux targets as described in this
section.

Wind River Linux
User's Guide, 5.0.1

242

After you have built a platform project for one of the QEMU-supported boards and then built the
file system (make), you can start an instance of QEMU for that target.

Note that after a building a platform project using the make command, the pre-built kernel is
automatically copied to the export subdirectory of the project directory. The QEMU simulator
loads and executes the kernel found within the export subdirectory, and NFS-mounts the export/
dist subdirectory as its root file system.

Setting QEMU Configuration Options

This procedure shows you how to access and change QEMU configuration options

Step 1 Start the QEMU configuration tool.

Issue the following command to enter an interactive QEMU configuration tool.

$ make config-target

===QEMU and or User NFS Configuration===
1: TARGET_QEMU_BOOT_TYPE=usernfs
2: NFS_EXPORT_DIR=/home/user/WindRiver/workspace/qemux86-64_prj
3: NFS_MOUNTPROG=21111
4: NFS_NFSPROG=11111
5: NFS_PORT=3049
6: TARGET_QEMU_BIN=qemu
7: TARGET_QEMU_AUTO_IP=yes
8: TARGET_QEMU_USE_STDIO=yes
9: TARGET_QEMU_BOOT_CONSOLE=ttyS0
10: TARGET_QEMU_GRAPHICS=no
11: TARGET_QEMU_KEYBOARD=en-us
12: TARGET_QEMU_PROXY_PORT=4442
13: TARGET_QEMU_PROXY_LISTEN_PORT=4446
14: TARGET_QEMU_DEBUG_PORT=1234
15: TARGET_QEMU_AGENT_RPORT=udp:4444::17185
16: TARGET_QEMU_KGDB_RPORT=udp:4445::6443
17: TARGET_QEMU_TELNET_RPORT=tcp:4441::23
18: TARGET_QEMU_SSH_RPORT=tcp:4440::22
19: TARGET_QEMU_MEMSCOPE_RPORT=tcp:5698::5698
20: TARGET_QEMU_PROFILESCOPE_RPORT=tcp:5678::5678
21: TARGET_QEMU_KERNEL=bzImage
22: TARGET_QEMU_INITRD=
23: TARGET_QEMU_HARD_DISK=
24: TARGET_QEMU_CDROM=
25: TARGET_QEMU_BOOT_DEVICE=
26: TARGET_QEMU_KERNEL_OPTS=
27: TARGET_QEMU_OPTS=
Enter number to change (q quit)(s save):

Step 2 Make configuration changes.

Enter the corresponding number and press ENTER to change the value of an option.

For example, enter 10 to turn graphics on or off.

NOTE: You need to build graphics support into your kernel, change the bootline, or use the
TOPTS="-gc" option, which does both for you.

Step 3 Save your changes.

Type S and press ENTER.

23 QEMU Targets
Accessing the QEMU Monitor

243

Accessing the QEMU Monitor

Learn how to access the QEMU Monitor to manipulate QEMU from within a running simulation

The QEMU Monitor provides QEMU-specific commands from within the simulation.

Step 1 Start QEMU.

$ make start-target

Step 2 Enter the monitor.

Press CTRL+A C to access the QEMU Monitor.

The Monitor appears:

(qemu) help
help|? [cmd] -- show the help
commit device|all -- commit changes to the disk images (if -snapshot is used) or
 backing files
info subcommand -- show various information about the system state
q|quit -- quit the emulator
.
.
.
(qemu) CTRL+A,C
root@localhost:/root>

Step 3 Quit the Monitor.

When you are done using the Monitor, type one of the following to exit QEMU.

• q

• quit

Viewing QEMU Command Line Options

Learn how to access QEMU command line options

• Display QEMU command line options.

Passing the -h option to the TOPTS parameter displays the options available to set.

$ make start-target TOPTS="-h"

Output similar to the following is displayed:

Usage ./scripts/config-target.pl [Options] <command>
 Options:
 -c Use text console
 -gc Use graphics console
 -p Use telnet proxy as console
 -i # Increment the remote port offsets by #
 typically used when starting more than
 one target
 -d Extra script debug output
 -w Wait until debugger attaches to QEMU
 -x Use an external console defined by
 TARGET_VIRT_EXTERNAL_CONSOLE
 and go into the background

Wind River Linux
User's Guide, 5.0.1

244

 -o Output the target start command which you
 could use to start a debugger with
 -m # Number of megabytes of RAM to use on the target
 -su Use "su -c" instead of "sudo" for root access
 -t Use tuntap
 -cd <iso_file> Boot from CD (QEMU Only)
 -disk <disk_image> Boot kernel with disk image
 -cow <cow_file> COW file for (UML Only)
 -no-kqemu Do not use the kqemu accelerator

 Commands:
 start Start target, NFS server and proxy (if needed)
 stop Stop the target and NFS server...
 nfs-start Start the NFS server
 nfs-stop Stop the NFS server
 net-start Start the network server (TUN/TAP)
 net-stop Stop the network server (TUN/TAP)
 kqemu-start Load the KQEMU kernel module
 kqemu-stop unload the KQEMU kernel module
 allstop Stop target, NFS server and proxy
 config Display or change the default configuration

QEMU Targets

Starting a QEMU Session

Use this information as a guideline for starting a new QEMU session.

After you build a QEMU-enabled project, you can run it in a QEMU session. You can perform
typical operations as if you are running on an actual hardware target. You can communicate to
the host using IP address 10.0.2.2. The IP address of the simulation is 10.0.2.15.

Step 1 Run the following command:

$ make start-target

The emulated system boots.

Step 2 Log in with the user name root, password root.

The session is now running.

Resolving QEMU Start Errors

Use this information as a guideline for resolving errors that occur while staring QEMU.

If there is an error because you have a former session still running that you no longer want, you
will have to close those sessions.

• Enter the following command:

$ pkill rpc

The previous session is ended.

Running Multiple QEMU Sessions

Use this information as a guideline for running multiple QEMU sessions simultaneously.

23 QEMU Targets
Starting a QEMU Session From a .iso File

245

To run am additional QEMU session, you could also use -i option to automatically increment port
numbers by the specified amount.

• Issue the following command to start a new session with the port number incremented by 2:

$ make start-target TOPTS="-i 2"

Starting a QEMU Session From a .iso File

Use this information as a guideline for starting a QEMU session from an ISO file.

In some circumstances you may need to boot a CDROM image in QEMU.

• To boot a CDROM image (.iso file) in QEMU, enter:

$ make start-target TOPTS="-cd projectDir/export/image.iso"

See About Configuring and Building Bootable Targets on page 265.

Starting a QEMU Session From a Disk Image

Use this information as a guideline for starting a QEMU session from a disk image.

Under some circumstances you may need to start a QEMU session from a disk image.

• To boot a USB or hard disk image in QEMU, enter:

$ make start-target TOPTS="-disk Hard_Disk_Image"

See About Configuring and Building Bootable Targets on page 265 for more on creating and
booting .iso images.

Starting a QEMU Session With a Graphics Console

Use this information as a guideline for starting a QEMU session with a graphics console.

Your development efforts may involve a graphics console such as X Windows.

• To boot with a graphics console in your simulation, enter:

$ make start-target TOPTS="-gc"

Passing Boot Options to QEMU

Use this information as a guideline for passing boot options to QEMU.

You may want to pass multiple boot options to a QEMU session. You can do this using the
environment variable TARGET_QEMU_KERNEL_OPTS.

• Enter a command similar to the following example:

$ make TARGET_QEMU_KERNEL_OPTS="init=/bin/bash" make start-target

Wind River Linux
User's Guide, 5.0.1

246

Using Multiple QEMU Options

Use this information as a guideline for applying multiple QEMU options.

You may need to combine multiple QEMU options on the command line.

• Increment the port count and boot a .iso image.

Enter the following example command:

$ make start-target TOPTS="-i 2 -cd projectDir/export/image.iso"

Port Mappings for Accessing the QEMU Target Simulation

Use this information as a guideline for using port mapping to access a QEMU target simulation.

By default QEMU is launched with NAT (Network Address Translation) by default. QEMU with
NAT does not require root privileges on the host. The tap option avoids network routing issues
associated with NAT but requires root privileges. The usual host ports are mapped to new port
numbers so that you can access the features through the new port numbers. For example, KGDB
is usually accessed at port 6443, but you use port 4445 when you connect to the simulation.

Telnet port 23 has been mapped to port 4441, and ssh port 22 has been mapped to port 4440. You
can access the running simulation through those ports with the appropriate tools.

• Log in to the running simulation.

Enter the following command to use ssh to log in to the running simulation from another
terminal window on the same host:

$ ssh -p 4440 root@localhost

Ending a QEMU Session

Use this information as a guideline for ending a QEMU session.

It is good practice to end your QEMU session when you are finished with it.

• Use one of the following options to end your QEMU session:.

- Enter the following in the terminal window

CTRL+A,X

- Run the halt.command.

halt

This will cleanly perform a system shutdown on the emulated target.

TUN/TAP Networking with QEMU

Use the information in this section to enable virtual networking in QEMU.

23 QEMU Targets
Configure TUN/TAP in the Wind River Workbench New Target Wizard

247

TUN and TAP are virtual network kernel drivers used to implement network devices that are
supported entirely in software, making them ideal for use with a QEMU deployment.

TAP, for network “tap”, simulates an Ethernet device and works with layer 2 packets such as
Ethernet frames.

TUN, short for network “tunnel”, simulates a network layer device. It works with layer 3 packets,
such as IP packets. Once enabled, TAP creates a network bridge while TUN provides the routing.

You can use TUN/TAP networking to configure a network on your host that connects to the
QEMU target simulation. If you wish to connect two or more QEMU simulations for testing and
debugging, TUN/TAP lets you specify the networking parameters for each simulation.

NOTE: Configuring TUN/TAP networking on the host requires root privileges—you can start
the emulation as the root user, or start it as another user and you will be prompted for the root
password.

TUN/TAP Settings from Workbench

If you used Workbench to create the QEMU target connection, TUN/TAP is enabled by default.
It is possible to make changes to the default settings when you create a new target connection or
from the Target Connection Properties dialog.

The default settings include:

TARGET_TAP_DEV

The device number of the software network tap. The default setting is auto, but you may
specify a number for the tap. For example, tap0, tap1, and so on.

TARGET_TAP_UID

The user ID name of the tap device. The default setting is auto.

TARGET_TAP_IP

The IP address of the tap interface. The default setting is auto.

TARGET_TAP_ROOTACCESS

The root access command for starting or making changes to TAP settings. The default setting
is sudo, but su -c is also acceptable.

TARGET_TAP_HOST_DEV

The host Ethernet interface. The default is eth0.

NOTE: You must configure the TUN/TAP interface once for each system boot.

Configure TUN/TAP in the Wind River Workbench New Target Wizard

Use this information as a guideline for configuring TUN/TAP using the Wind River Workbench
New Target Wizard.

TUN/TAP can be set up from within Wind River Workbench.

Step 1 Start Wind River Workbench.

Step 2 Click the New Connection button in the Remote Systems window to launch the New Connection
Wizard.

Wind River Linux
User's Guide, 5.0.1

248

Step 3 Select the connection type.

Since we are accessing TUN/TAP settings for a QEMU deployment, choose Wind River QEMU
Connection, then click Next.

Step 4 Update TUN/TAP settings.

In the QEMU Simulator Configuration section of the New Connection dialog, , make changes as
necessary to the default TUN/TAP settings.

Step 5 Complete the wizard process in accordance with your target connection requirements.

Configure TUN/TAP settings for an existing target connection

Use this information as a guideline for configuring TUN/TAP for use with an existing target
connection.

In some circumstances, you may need to configure TUN/TAP for use with an existing target
connection.

Step 1 Start Wind River Workbench.

Step 2 Access Remote Systems properties.

In the Remote Systems window, right-click on the QEMU target connection you want to make
changes on, then click Properties.

Step 3 Update TUN/TAP settings.

In the Target Connection dialog, QEMU Simulator Configuration tab, make changes as
necessary to the default TUN/TAP settings.

Step 4 Click OK to save the settings.

Configure TUN/TAP from the Command Line

Use this information as a guideline for configuring TUN/TAP from the command line.

In some circumstances, you may need to configure TUN/TAP from the command line.

Step 1 Enter the following at the command line:

$ make net-start TOPTS="-t"

NOTE: This command must be run as root. If you are not logged in as root, sudo will
automatically run and prompt you for the root password.

Step 2 When your simulation is running, view the routing information on the simulation:

root@localhost:/root> route

Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
192.168.200.0 * 255.255.255.0 U 0 0 0 eth0
default 192.168.200.1 0.0.0.0 UG 0 0 0 eth0

23 QEMU Targets
QEMU Targets

249

root@localhost:/root>

Step 3 View routing information on the host:

host_$ route

Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
192.168.200.15 * 255.255.255.255 UH 0 0 0 tap0
192.168.200.0 * 255.255.255.0 U 0 0 0 tap0
190.0.2.123 * 255.255.255.0 U 0 0 0 eth0
default gateway-02 0.0.0.0 UG 0 0 0 eth0
host_$

Notice that 192.168.200.1 is assigned to the host and 192.168.200.15 is assigned to the target.

Wind River Linux
User's Guide, 5.0.1

250

251

24
Wind River Simics Targets

Wind River Simics Targets 251

Wind River Simics Targets

Use Wind River Simics to simulate real world hardware target platforms.

Wind River Simics is a fast, functionally-accurate, full system simulator. Simics creates a high-
performance virtual environment in which any electronic system – from a single board to
complex, heterogeneous, multi-board, multi-processor, multicore systems – can be defined,
developed and deployed.

Simics enables companies to adopt new approaches to the product development life cycle
resulting in dramatic reduction in project risks, time to market, and development costs while also
improving product quality and engineering efficiency. Simics allows engineering, integration and
test teams to use approaches and techniques that are simply not possible on physical hardware.

To purchase Wind River Simics, contact your Wind River sales representative.

To use Simics as a platform project image target, see Using Simics from the Command Line on page
251.

Using Simics from the Command Line

Use the basic procedures in this section to launch and/or configure a Simics target from the
command-line.

You can enter make help at any time from your project directory to view a full listing of Simics
options.

Where to Find Additional Information

For detailed information on using Simics, see:

• Wind River Simics Hindsight Installation Guide
• Wind River Simics Hindsight Getting Started Guide
• Wind River Simics Hindsight User’s Guide

Wind River Linux
User's Guide, 5.0.1

252

Meeting Simics Prerequisites

To use Wind River Simics successfully, ensure the prerequisites in this section are met.

Before you can use Simics, you must first install it. See the Wind River Simics Installation Guide for
detailed instructions.

Step 1 Set up the environment.

Add the following lines of code to your .bashrc file or the equivalent configuration file for your
shell environment. Adjust the paths and Simics version number to match your installation.

export SIMICS_BIN_HOME=customer_path_to_simics_install/simics-x.x/bin
export SIMICS_LICENSE_FILE=customer_path_to_license_file

Step 2 Save the file and close the terminal.

The next time you open a terminal window, the path is set up and Simics will be ready for use.

Launching the Simics Basic Target Console

Use this information as a guideline for launching the Simics Basic Target console.

This procedure requires a previously configured and built platform project and a Wind River
Simics installation. For additional information, see Meeting Simics Prerequisites on page 252.

Step 1 Change to your project directory.

$ cd projectDir

Step 2 Boot the Simics target.

$ make start-simics

The target starts, and you can perform debugging tasks.

Step 3 Stop the target simulation.

Issue the following command from a second terminal window to stop Simics:

$ make stop-simics

Launching the Simics Graphics Target Console

Use this information as a guideline for launching the Simics Graphics Target console.

To have access to the full set of Simics capabilities, you need to run the Simics emulation in a
graphics console.

This procedure requires a previously configured and built platform project and a Wind River
Simics installation. For additional information, see Meeting Simics Prerequisites on page 252.

Step 1 Change to your project directory.

$ cd projectDir

24 Wind River Simics Targets
Enabling Simics Acceleration for x86 BSPs

253

Step 2 Boot the target in a Simics graphics console.

Run the following from the platform project directory:

$ make start-simics TOPTS=" -g"

Step 3 Stop the target simulation.

Issue the following command from a second terminal window to stop Simics:

$ make stop-simics

Refer to the Wind River Simics Hindsight User’s Guide for additional information on using the full
capabilities of Simics.

Enabling Simics Acceleration for x86 BSPs

Use this information as a guideline for using Simics acceleration for x86 BSPs.

Simulated targets can be accelerated for x86 BSPs with Simics.

This procedure requires a previously configured and built platform project based on an x86 BSP
and a Wind River Simics installation. For additional information, see Meeting Simics Prerequisites
on page 252.

Step 1 Change to your project directory.

$ cd projectDir

Step 2 Boot the Simics target.

Run the following command as root to use the Simics Accelerator on x86 BSPs:

make start-simics-vmp

NOTE: You only need to run this command once on the development host.

Refer to the Wind River Simics Hindsight User’s Guide for additional information on the VMP
acceleration feature.

Step 3 Stop the target simulation.

Issue the following command from a second terminal window to stop Simics:

$ make stop-simics

Configuring a Simics Target

Use this information as a guideline for configuring a Simics target.

Once your target is ready, you need to configure it for use with Simics.

• Configure Simics.

Wind River Linux
User's Guide, 5.0.1

254

Issue the following command from the platform project’s directory:

$ make config-target-simics

For additional information on configuring Simics, see the Wind River Simics Hindsight User’s
Guide.

255

PA R T V I I

Deployment

Managing Target Platforms... 257

Deploying Flash or Disk Target Platforms........................ 265

Deploying initramfs System Images.................................. 283

Deploying KVM System Images... 287

Wind River Linux
User's Guide, 5.0.1

256

257

25
Managing Target Platforms

Customizing Password and Group Files 257

About ldconfig 259

Connecting to a LAN 260

Adding an RPM Package to a Running Target 261

Adding Reference Manual Page Support to a Target 262

Using Pseudo 263

Customizing Password and Group Files

You can modify the password and group file construction process to produce custom password
and group files using several methods as described in this section.

Overview

The default contents of the Wind River Linux file system contain only one login for the root
user. In any secure system you will want to create additional logins for the various roles that are
implemented in your security policies. Creating these logins can be problematic as the operations
require privileged access.

It is important to note that there is a preferred method for making these modifications. The other
methods are described in case the preferred method does not suit your needs, but you should
take care when using these other methods for reasons discussed below.

Wind River Linux
User's Guide, 5.0.1

258

CAUTION: This caution applies if you are not using the preferred method (Adding an Application
to a Root File System with fs_final*.sh Scripts on page 141) of modifying these files.

Individual package configurations, file system owners and groups, and other items may be
affected if the numeric IDs do not match the password and group files as originally installed.
Modifying or removing password or group file entries may cause adverse behavior to occur
within the system.

It is important to look at the file system installation logs, as RPM automatically sets the user
and group ID to root for files that have an owner or group ID that is not in the password or
group files. This can introduce a security flaw in specific cases, but will more likely cause an
application to not work as intended.

You should also be aware of the fact that some configuration files may have specific user ID or
group ID numbers defined in them. Changing these numbers in the password or group files
could then cause application behavior to be affected.

The following topics provide different options for customizing system password and group files:

Using an fs_final.sh Script to Edit the Password and Group File

Use this information as a guideline for editing password and group files using an fs_final.sh
script.

This method of modifying the password and group files is preferred because it preserves the
default password and group settings, along with any additions for individual packages that may
have occurred during file system generation. This is important because file owner and group ID
numbers are defined as individual files are created in the target file system.

Step 1 Create an fs_final.sh script in a layer that contains your desired modifications.

Step 2 Add your desired modifications.

See Adding an Application to a Root File System with fs_final*.sh Scripts on page 141 for an example
of what is required to get the fs_final*.sh script working with your platform project.

For example, the following fs_final.sh script adds a new wrs1 user with password wrs1 to a
glibc_small rootfs, only if the user does not already exist:

Example of preferred methodology to add to password and group files
 grep -q "^wrs1:" etc/passwd if [$? -ne 0] ; then
 #
 # If the user does not already exist:
 # Add the user
 #
 echo "Adding wrs1 default user..."
 echo 'wrs1:1JUYoDU8h$tFUwFwPWO4tfE24KJBEOB/:500:500:Default non-root user
 account:/home/wrs1:/bin/sh'>> etc/passwd
 #
 # Add a group for the user
 #
 echo 'wrs1:x:500:'>> etc/group
 #
 # Create a home directory for the user
 #
 cp -r etc/skel home/wrs1
 chown -R 500:500 home/wrs1
fi

Once set up, the script will run each time the platform project is built using the make command.

25 Managing Target Platforms
Using an fs_final_sh Script to Overwrite the Password and Group File

259

projectDir/layers/local/recipes-local/myusermods/fs_final.sh

Using an fs_final_sh Script to Overwrite the Password and Group File

Use this information to explicitly generate password and group files from an fs_final.sh script.

You can use an fs_final.sh script that explicitly creates password and group files in the script.
This method overwrites the default password and group files after the filesystem has been
constructed.

Step 1 Create an fs_final.sh script in a layer that contains your desired modifications.

Step 2 Add your desired modifications.

See Adding an Application to a Root File System with fs_final*.sh Scripts on page 141 for an example
of what is required to get the fs_final*.sh script working with your platform project.

For example, you could use these commands in an fs_final.sh script to create a new passwd file:

...
cat <<EOF > etc/passwd
custom passwd file contents
EOF
...

About ldconfig

ldconfig is a utility that indexes shared object names to simplify loading on shared object
libraries by executables.

It scans standard directories and those found in the ld.so.conf configuration file and stores its
index in ld.so.cache. Although not generally used on embedded systems, there are a couple of
circumstances where it may be useful as a work-around on Wind River Linux:

• In situations where an executable binary lacks an RPATH.
• When a library such as libfoo.so provides a shared object name (soname) of libbar.so, the

filesystem convention requires a symbolic link from libbar.so to libfoo.so. However, broken
applications, filesystems, or images can fail to create the link.

ldconfig is not enabled by default. See Enabling ldconfig Support on page 259 for installation
instructions.

Enabling ldconfig Support

The ldconfig utility may be required for executables to successfully load shared objects under
unusual circumstances.

ldconfig support is not enabled by default. In exceptional circumstances, it may be required for
executables to load properly.

Step 1 Run configure to create your project.

You will need to include the option --enable-ldconfig=yes in the project definition.

$ configDir/configure \
--enable-board=qemux86-64 \
--enable-kernel=standard \

Wind River Linux
User's Guide, 5.0.1

260

--enable-rootfs=glibc_small \
--with-template=feature/debug,feature/analysis \
--enable-ldconfig=yes

NOTE: If you are adding ldconfig support to an existing project, you must also specify the --
enable-reconfig option.

Step 2 Build your project.

$ make

After rebuilding, ldconfig and an empty ld.so.conf file will be included in your project. The
USE_LDCONFIG environment variable is automatically enabled (set to USE_LDCONFIG=1). You
can disable ldconfig at any time by setting it to 0 in your project's local.conf file.

Connecting to a LAN

Use this procedure to connect your target platform to a local area network.

To perform the following procedure, you will need

• An IP address on your local network
• A platform built with the glibc_std file system
• Optionally, a resolv.conf file for name service

Step 1 Assign an IP address on your running target.

Step 2 Configure routing.

Step 3 Optional. Enable name service.

Step 4 Test the configuration of the system's network connection.
a) Check the status of the network connection.

bash-3.2# ifconfig

eth0 Link encap:Ethernet HWaddr 00:1D:09:B7:DF:A7
 inet addr:192.168.1.18 Bcast:147.11.152.255 Mask:255.255.255.0
 inet6 addr: fe80::21d:9ff:feb7:dfa7/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:738 errors:0 dropped:0 overruns:0 frame:0
 TX packets:362 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:361276 (352.8 KiB) TX bytes:37878 (36.9 KiB)
 Interrupt:7

The interface should be UP.
b) Display the connection's routing information.

bash-3.2# route

Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
147.11.152.0 * 255.255.255.0 U 0 0 0 eth0
default 192.168.1.1 0.0.0.0 UG 0 0 0 eth0

25 Managing Target Platforms
Adding an RPM Package to a Running Target

261

Your routing table should include the default gateway and, if you configured name service,
you should be able to access hosts by their hostname.

c) Test connectivity to an external network.

bash-3.2# ping -c 1 google.com

PING google.com (74.125.67.100) 56(84) bytes of data.
64 bytes from gw-in-f100.google.com (74.125.67.100): icmp_seq=1 ttl=51 time=82.0 ms

--- google.com ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 84ms
rtt min/avg/max/mdev = 82.007/82.007/82.007/0.000 ms
bash-3.2#

You should be able to reach external targets.

Adding an RPM Package to a Running Target

You must install packages with the correct architecture for your target when installing on the
running target.

The following examples assumes your target system has:

• A qemux86 architecture
• A network connection and a valid /etc/resolv.conf file

Step 1 Get an RPM from a network location:

bash-3.2# rpm -ivh dash-0.5.4-1.el5.rf.i386.rpm \
http://dag.wieers.com/rpm/packages/dash/dash-0.5.4-1.el5.rf.i386.rpm

The system displays the progress of the package download.

--17:24:45--
http://dag.wieers.com/rpm/packages/dash/dash-0.5.4-1.el5.rf.i386.rpm
 => `dash-0.5.4-1.el5.rf.i386.rpm'
Resolving dag.wieers.com... 62.213.193.164
Connecting to dag.wieers.com|62.213.193.164|:80...
connected.
HTTP request sent, awaiting response... 302 Found
Location:
http://rpmforge.sw.be/redhat/el5/en/i386/rpmforge/RPMS/dash-0.5.4-1.el5.rf.i386.rpm
[following]
--17:24:46--
http://rpmforge.sw.be/redhat/el5/en/i386/rpmforge/RPMS/dash-0.5.4-1.el5.rf.i386.rpm
 => `dash-0.5.4-1.el5.rf.i386.rpm'
Resolving rpmforge.sw.be... 130.133.35.16
Connecting to rpmforge.sw.be|130.133.35.16|:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 85,914 (84K) [application/x-rpm]

100%[====================================>] 85,914
98.07K/s

17:24:47 (97.63 KB/s) - `dash-0.5.4-1.el5.rf.i386.rpm' saved

Wind River Linux
User's Guide, 5.0.1

262

[85914/85914]

NOTE: If there are problems with the URL to access the RPM, you can also retrieve the RPM
with wget first, then install it using the following:

$ wget http://dag.wieers.com/rpm/packages/dash/dash-0.5.4-1.el5.rf.i386.rpm
rpm -ivh dash-0.5.4-1.el5.rf.i386.rpm dash-0.5.4-1.el5.rf.i386.rpm

Step 2 Use the rpm command to install the package on the running target.

bash-3.2# rpm -ivh dash-0.5.4-1.el5.rf.i386.rpm

The system displays the progress of package installation.

dash-0.5.4-1.el5.rf.i386.rpm dash_0.5.5.1-2_i386.deb.1
bash-3.2# rpm -ivh dash-0.5.4-1.el5.rf.i386.rpm
warning: dash-0.5.4-1.el5.rf.i386.rpm: Header V3 DSA
signature: NOKEY, key ID 6b8d79e6
Preparing...
[100%]
 1:dash
[100%]
bash-3.2#

Step 3 Verify that the installation of the dash shell was successful.

bash-3.2# dash

You get the dash shell prompt.

Step 4 Exit the dash shell.

exit

You are returned to the bash shell.

bash-3.2#

Adding Reference Manual Page Support to a Target

This topic illustrates the installation of the packages for the man command onto a running target,
then demonstrates the use of the installed man command

Reference manual pages can enhance the usability of your platform project image. Use the
following procedure to add the man command for manual page support.

Step 1 Configure the project.

Add the option --enable-doc-pages=target to the project

NOTE: The --enable-doc-pages configure option only applies to the glibc_std file system.

The option automatically adds the required man package to your platform project image.

25 Managing Target Platforms
Using Pseudo

263

Step 2 Build and deploy the platform on a target.

$ make
$ make start-target

Step 3 Test the results.

If you have configured your project correctly, the man pages should be available in /usr/share/
man/. For example, view the section 1 pages on the installed target:

a) List the man pages

ls /usr/share/man/man1/

:.1.gz make_win_bin_dist.1.gz pkcs8.1ssl.gz
CA.pl.1ssl.gz make_win_src_distribution.1.gz pkill.1.gz
Mail.1.gz man.1.gz pl2pm.1.gz

b) View a man page

man man

man(1) man(1)

NAME
 man - format and display the on-line manual pages
 manpath - determine user's search path for man pages

SYNOPSIS
 man [-acdfFhkKtwW] [--path] [-m system] [-p string] [-C config_file]

 Using Pseudo

About Using Pseudo (fakestart.sh)

TBD

Concept definition.

Examining Files using Pseudo

Use this information as a guideline for examining files on the target file system using Pseudo.

To examine a file with its settings as they will appear on the target, you can supply the ls
command to pseudo using fakestart.sh. For example:

• $ scripts/fakestart.sh ls -l export/dist/bin/sh

The system responds with output similar to the following:

lrwxrwxrwx 1 root root 4 Mar 11 11:11 export/dist/bin/sh -> busybox

Wind River Linux
User's Guide, 5.0.1

264

Navigating the Target File System with Pseudo

Use this information as a guideline for viewing target file systems with Pseudo.

You can enter a pseudo shell to move around the target file system and view multiple settings.

Step 1 Start the pseudo shell.

$ scripts/fakestart.sh sh

Notice that the shell prompt changes to sh 4.2 to indicate you are using the pseudo shell.

Step 2 Navigate to the platform project bin (binary) directory.

sh 4.2# cd export/dist/bin

Step 3 List the directory's contents.

sh 4.2# ls -l s*

The system responds with output similar to the following:

lrwxrwxrwx 1 root root 11 Mar 11 11:12 sh -> busybox
lrwxrwxrwx 1 root root 11 Mar 11 11:12 sleep -> busybox

Step 4 Exit the pseudo shell.

sh 4.2#exit

The exit command closes the pseudo shell and return to your normal shell.

265

26
Deploying Flash or Disk Target

Platforms

About Configuring and Building Bootable Targets 265

About Configuring a Boot Disk with a USB/ISO Image (Two Build
Directories) 266

Host-Based Installation of Wind River Linux Images 266

Booting and Installing from a USB or ISO Device 268

Booting and Installing with QEMU 269

Configuring and Building the Host Install (Self-Contained Option) 273

Configuring and Building the Host Install (Two Build Directories
Option) 274

Creating Bootable USB Images 275

Creating ubifs Bootable Flash Images 278

Enforcing Read-only Root Target File Systems 279

Installing a Bootable Image to a Disk 279

Installing or Updating bzImage 280

About Configuring and Building Bootable Targets

To create a single, bootable image from which to boot a target device, specify the enable-
bootimage option.

A bootimage option will construct bootable disk or DVD image with the selected file system type,
and if necessary multiple partitions, and place the image as single file in the export directory
of the project. When you create a single, bootable image from which to boot a target device, the
platform project configure options must include --enable-bootimage=bootimageType, where
bootimageType is one of ext3, iso, jffs2, ubifs, tar.gz or tar.bz2 (with tar.bz2 being the default).

Wind River Linux
User's Guide, 5.0.1

266

For information on creating USB boot images, see Creating Bootable USB Images on page 275.

For additional information on configuring ubifs boot images, see Creating ubifs Bootable Flash
Images on page 278.

The following is a sample configure command to create an ISO-enabled image:

$ configDir/configure \
--enable-board=qemux86-64 \
--enable-kernel=standard \
--enable-rootfs=glibc_std \
--enable-bootimage=iso

If you need to use additional bootable image options, you can use a comma to add and separate
them. For example:

--enable-bootimage=iso,jffs2

After the platform project is configured, use the make command to build the target platform
image and create a single image with which to boot a target device. The image is placed in the
projectDir/export directory.

About Configuring a Boot Disk with a USB/ISO Image (Two Build Directories)

To create a self-contained, host-installable image from a reference platform project, you must first
have a previously built platform project, or create one.

The following sections describe how to boot from a USB or ISO image so that you can configure a
disk that will be your boot disk.

To create a bootable USB directly from a platform project, see About Configuring and Building
Bootable Targets on page 265.

Preliminaries

The following example shows how to use Wind River Linux to configure a common PC to boot
Wind River Linux from hard disk. With this method you do not use the server installer and must
configure the hard drive manually.

(See Host-Based Installation of Wind River Linux Images on page 266 for using the installer to
automate this procedure).

You can boot and configure your target using either an ISO or USB image as described in this
section. The basic procedure is the following:

1. Configure and Build the Standalone Image
2. Prepare the Target's Hard Drive
3. Place the File System and Kernel on the Hard Disk
4. Configure the Target System Files and Boot

Host-Based Installation of Wind River Linux Images

Wind River Linux provides options for creating a distribution for installing a platform project
image on a host (server) hard disk.

26 Deploying Flash or Disk Target Platforms
Host-Based Installation of Wind River Linux Images

267

WARNING: The content of this section must be considered to be preliminary.

Due to the iterative nature of feature development there may be some variation between the
documentation and latest delivered functionally.

These options allow for a flexible configuration in which you can create a standalone platform
project image or specify a different Wind River Linux platform project image to create your
installation disk from. Once complete, the installer lets you specify or accept default sizes for the
boot, swap, and root partitions.

Using the Wind River Linux build system, you can create an image to burn to a CD, DVD, or
USB device, and then use that image to boot up the target, format the local disk, and install the
runtime on the disk. At that point, you can remove the CD, DVD, or USB device and boot the
target directly from the local disk. You can also test your build using QEMU as shown in Booting
and Installing with QEMU on page 269.

There are two options, and three methods, to create a host-based installation:

• Self-contained in a single build directory.

In the self-contained installation, the build creates a /RPM directory in the root file system,
where it puts all the RPM packages that will be used to install the runtime on the target from
the same platform project configure options. This installation type requires a single build.

• Using two build directories with a reference platform project for the runtime to install on the
target, and one for the install image itself.

Use the --with-installer-target-build= configure script option to specify the location of a built
platform project's projectDir/export/images/*.ext3 root file system image file that will be
used to create an installable Wind River Linux distribution. So, you first build the project you
want to use as a basis to create the installer, specify the location of the project's *.ext3 file using
the --with-installer-target-build= configure option, and then perform another build to build
everything in your project directory.

This installation type uses one or two builds, depending on whether you have previously
configured a platform project image using the --enable-bootimage=iso or (ext3) and --enable-
target-installer=yes configure options.

NOTE: Wind River Linux only supports *.ext3 root file system files for the target installer
feature.

Use this option for a minimal installer that creates an installable image from an existing
platform project image.

The related options for the configure command are as follows:

--enable-bootimage=iso
--enable-target-installer=yes
--with-installer-target-build=otherprojectDir/export/images/*.ext3

Once the build is finished, you will find the ISO image in, for example, projectDir/export/
images/wrlinux-image-glibc-small-qemux86.iso. This is the file that contains the bootable
system image that you will to copy to a USB memory stick.

The --enable-bootimage=iso option builds an image that you can use to boot from CD, DVD, or
USB devices. With this image, you boot directly from a read-only root on the device. Whether you
specify iso or usb (or both) to the --enable-bootimage option, the result is a hybrid image that
supports booting from both ISO and USB.

Wind River Linux
User's Guide, 5.0.1

268

The difference between the build types is just a question of where those packages come from—
either the same build in which you create the bootable image, or from another build. If you do not
specify the --with-installer-target-build option, the build system will use the RPMs that are in
export/RPMS/ in your project directory for the installer image.

Booting and Installing from a USB or ISO Device

Use this procedure to place an installable image on a USB or ISO device and install it on a target.

WARNING: The content of this section must be considered to be preliminary.

Due to the iterative nature of feature development there may be some variation between the
documentation and latest delivered functionally.

In the following example, you will place the installer on a USB device such as a thumb drive, or
on an ISO device such as a CD-ROM, and then install on a target.

Step 1 Create a boot image of the desired type.

For information about creating boot images, see:

• Configuring and Building the Host Install (Self-Contained Option) on page 273
• Configuring and Building the Host Install (Two Build Directories Option) on page 274

Step 2 Burn the image to the USB or ISO device.

For information about burning boot images, see Burning and Installing the ISO or USB Image

Step 3 Insert the device in the target to be booted.

Options Description

USB Insert the device and determine the USB device assigned to the drive.

NOTE: If there is not an operating system already installed on
the target to enable the determination of the device associated
with the USB thumb drive, use the boot menu selections, select
Drive 0 (sda) as the USB device when prompted in step 7 on
page 269 of this procedure, below.

In the (likely) event that /dev/sda is not the correct device, you
can use the kernel log information immediately above the panic
message to identify the available devices on the target.

ISO Insert the device in the CD-ROM or DVD drive.

Step 4 Reboot the target from the appropriate device.

For example, on a laptop, set the boot settings to boot from USB or CD-ROM.

Step 5 Select Graphics console then press ENTER.

Step 6 Select one of the following device-specific options.

26 Deploying Flash or Disk Target Platforms
Booting and Installing with QEMU

269

Options Description

USB Choose USB Memory Stick (or disk or SCSI disk)

ISO Choose USB DVD-ROM (or SCSI DVD-ROM)

a) Press ENTER to apply your choice.

Step 7 Select Drive 0 (sr0) then press ENTER.

Step 8 Follow the rest of the procedure as described in Installing a Bootable Image to a Disk on page 279.

Booting and Installing with QEMU

Once you create an installable Wind River Linux disk image, you can test it using QEMU before
you burn it to disk or install it on a hardware device.

WARNING: The content of this section must be considered to be preliminary.

Due to the iterative nature of feature development there may be some variation between the
documentation and latest delivered functionally.

After building the file system and boot image, perform the following procedure to use QEMU to
create, install to, and then boot from a virtual disk.

Step 1 Create the virtual QEMU disk.

Use the qemu-img host tool to create and size the virtual disk.

$ cd projectDir
$ host-cross/usr/bin/qemu-img create -f qcow hd0.vdisk 5000M

Step 2 Boot the ISO image and install Wind River Linux.
a) Boot the .iso image you created in Configuring and Building the Host Install (Self-Contained

Option) on page 273.

In this case we will use the graphics console (option -gc) with QEMU. Omit this option if you
want to use the serial console.

$ make start-target \
TOPTS="-cd export/qemux86-64-glibc-small-standard-dist.iso -no-kernel -disk
 hd0.vdisk -gc"

NOTE: The -gc options starts the QEMU session in graphics mode. Omit this option to perform a
serial-based, non-graphical installation.

Press CTRL+ALT at any time to exit from the boot window. You can click in the window to
return control to it.

You can exit the menus entirely by pressing the ESC key at the initial menu.

At the boot prompt (boot:) you can get help by pressing F1 (or CTRL+F1). The help information
documents the commands available at the prompt.

Wind River Linux
User's Guide, 5.0.1

270

When the boot loader starts, it presents a series of menus which you use to select a console
type, a boot device type, and a specific boot device.

b) Select Graphics console and press ENTER.

NOTE: If you did use the -gc option in step 2 on page 269, above, select Serial console, and
refer to the instructions at Installing a Bootable Image to a Disk on page 279. Once the hard disk
installation completes, go to step 3 on page 272, below.

c) Select USB DVD-ROM (or SCSI DVD_ROM) and press ENTER.

26 Deploying Flash or Disk Target Platforms
Booting and Installing with QEMU

271

d) Select Drive 0 and press ENTER.

Wind River Linux
User's Guide, 5.0.1

272

Once you select the drive option, the installation will begin automatically. For instructions on the
installation itself, see Installing a Bootable Image to a Disk on page 279.

Step 3 Boot the installed disk.

In this example, the installation was performed on the virtual disk you created in step 1 on page
269, above.

a) Boot from the disk that you installed Wind River Linux on in the previous step.

$ make start-target TOPTS=" -no-kernel -disk hd0.vdisk -gc"

Do not enter the -gc option if you are using the serial console.
b) Press any key if you are prompted to do so, and then you see the grub bootloader menu.

26 Deploying Flash or Disk Target Platforms
Configuring and Building the Host Install (Self-Contained Option)

273

Step 4 Press ENTER to boot from the installed Wind River Linux.

Step 5 At the localhost login: prompt, enter root and press ENTER to continue.

Configuring and Building the Host Install (Self-Contained Option)

To create a self-contained, host-installable image, you must first configure and build the platform
project.

WARNING: The content of this section must be considered to be preliminary.

Due to the iterative nature of feature development there may be some variation between the
documentation and latest delivered functionally.

Perform the following procedure to configure and build a single project that will furnish the boot
image and the packages for your target(s).

To test the installation, you can use QEMU to create, configure, and boot the installation from a
virtual disk as described in Booting and Installing with QEMU on page 269.

Step 1 Configure the bootable image of the server installation.

$ configDir/configure \
--enable-board=qemux86-64 \
--enable-kernel=standard \
--enable-rootfs=glibc_small \
--enable-bootimage=iso \
--enable-target-installer=yes

Step 2 Create the boot image.

$ make fs

Wind River Linux
User's Guide, 5.0.1

274

When you build the file system after specifying the --enable-bootimage=iso configure option, it
creates a bootable iso image in the platform project's /export directory, named after the platform
project name, for example: projectDir/export/qemux86-64-glibc-small-standard-dist.iso. This
is the image you will use to boot and install Wind River Linux on a target system.

The resulting installer will contain the packages from and match the settings of this project's
configuration.

Once the build system creates your image, you will want to burn it to a disk. See Burning and
Installing the ISO or USB Image

Configuring and Building the Host Install (Two Build Directories Option)

To create a self-contained, host-installable image from an existing platform project, you can use
an existing platform project, or create one to specify the installable image's configuration and
packages.

WARNING: The content of this section must be considered to be preliminary.

Due to the iterative nature of feature development there may be some variation between the
documentation and latest delivered functionally.

The two build directories option requires two builds to create the image:

• One platform project to provide the packages you want to install on your target systems. If
you already have an existing reference platform project to use, you can go to step 3 on page
274, and specify the path to your existing platform project directory using the --with-
installer-target-build configure script option. If not, you will need to create one.

• One project that will furnish the boot image for your targets

Step 1 Configure and build a platform project.

The packages assembled in this project are the ones you will install on your target(s).

For example:

$ configDir/configure \
--enable-board=qemux86-64 \
--enable-kernel=standard \
--enable-bootimage=iso \
--enable-rootfs=glibc_std

Step 2 Build the project.

$ make

Step 3 Configure and build your bootable image.

Specify the location of the packages in your first project with the --with-installer-target-build
configure option where otherprojectDir is the path to the projectDir directory of your
previous build, or existing reference platform project.

$ configDir/configure \
--enable-board=qemux86-64 \
--enable-kernel=standard \
--enable-rootfs=glibc_small
--enable-bootimage=iso \
--enable-target-installer=yes \

26 Deploying Flash or Disk Target Platforms
Creating Bootable USB Images

275

--with-installer-target-build=otherprojectDir/export/images/wrlinux-image-glibc-small-
qemux86-64-2013807210107.rootfs.ext3

In this example, you must provide the actual file name of the *.ext3 file above. This name differs
depending on your BSP and root file system configure script options, and the date the image was
built.

NOTE: If you do not specify a project directory with the --with-installer-target-build option, the
project itself will be used to create the target file system.

Step 4 Create the boot image.

$ make

The result is a bootable image in the export subdirectory of your project build directory, for
example

projectDir/export/qemux86-64-glibc-small-standard-dist.iso

Creating Bootable USB Images

Wind River Linux provides make command options for creating bootable USB images.

The following procedure describes how to create a bootable USB image and launch it on a target
system. Wind River Linux provides three methods for creating bootable USB images to meet most
development needs.

See About Configuring and Building Bootable Targets on page 265 for concepts related to
deploying target images.

Step 1 Choose an option to create a bootable image.

Wind River Linux
User's Guide, 5.0.1

276

Options Description

Method 1: ISO
Hybrid Boot with
make fs

The image you create with this option is called an ISO hybrid because
you can burn it to a CDR, DVD, or USB flash for the purpose of booting
an x86 system. The boot menu that displays on the target provides two
options: serial or graphics.

To use this option, you must configure a platform project image with
the --enable-bootimage=iso option. For example:

$ configDir/configure \
--enable-board=qemux86-64 \
--enable-rootfs=glibc_small \
--enable-kernel=standard \
--enable-bootimage=iso

NOTE: For additional information on configuring platform
projects, see About Configuring a Platform Project Image on page
62.

The --enable-bootimage=iso option adds several packages to the target
file system, including syslinux; applies the read-only rootfs template,
and changes the kernel configuration options to provide generic ISO
boot support.

Method 2: Two-
Partition USB Boot
with make usb-image

This option creates a bootable USB image from any existing platform
project image. The image includes two partitions:

16 FAT

The first is a small 16 FAT file system for syslinux, the kernel, and a
static BusyBox initrd

ext2

The second is an ext2 file system to mount the root partition for the
operating system

This method has the following advantages over Method 1: ISO Hybrid:

• Does not require any specific configure options, so you can create a
USB file system from any x86-based platform project.

• Does not require extra packages on the target file system
• You may mount the file system as read/write to provide persistent

changes.
• You can later update the file system, instead of entirely re-writing it

because you can simply mount it on your host.
• Works with older BIOS which do not support the ISO hybrid boot.

Additionally, it is not necessary to configure the kernel to support USB
flash devices, or the ext2 file system in order to use this feature, since
this is generally the default for all BSPs.

26 Deploying Flash or Disk Target Platforms
Creating Bootable USB Images

277

Options Description

Method 3: Two-
Partition USB Boot
Directly to Disk with
make usb-image-burn

This option works in the same manner as Method 2: Two-Partition USB
Boot, but saves you a step by writing the image directly to the USB
device. This method allows you to avoid reformatting the USB device if
you already have a partition layout you are happy with.

Step 2 In the platform project directory, enter one of the following commands to create the boot image:

Options Description

For Method 1: $ make fs

When you build the file system after specifying the --enable-
bootimage=iso configure option, it creates a bootable iso image in the
platform project's /export directory, named after the platform project
name, for example:

projectDir/export/qemux86-64-boot.iso

For Method 2: $ make usb-image

When you run this command, it creates a bootable image file in the
following location:

projectDir/export/usb.img

For Method 3: $ make usb-image-burn

This option requires that you have inserted a USB device with no
mounted partitions. For an example output of this script, see make usb-
image-burn Example Output. Once you run this command, go to Step 5,
below.

With the Method 1 and 2 commands, you have the option of pressing ENTER at each prompt to
select the default. For Method 2, you may optionally choose to mount the file system read/write,
to provide persistent storage to the USB flash device.

The following example output displays make usb-image options once you run the command:

Location to write image file [/Builds/qemux86-64-glibc_std/export/usb.img]:
Size of FAT16 boot <#MEGS> [64]:

 The size of export dist is: 37MB
 The creation program automatically adds 100MB
 NOTE: You can make size of the ext2fs partition as large as you like
 so long as it does not exceed the size of the target device.
Size of ext2 fs <#MEGS> [137]:
Use ext 2, 3, 4 [2]:
Location of bzImage [/Labs/qemux86-glibc_std/export/qemux86-bzImage-
WR5.0.1.0_standard]:
Make root file system readonly? <y/n> [y]:

Step 3 Find the device name of your USB device and make sure it is unmounted. For this example we'll
assume it is /dev/sdc.

Wind River Linux
User's Guide, 5.0.1

278

Step 4 Run one of the following commands to write the image to the USB character device:

Options Description

For Method 1: $ dd if=export/qemux86_64-boot.iso of=/dev/sdc bs=1M

For Method 2: $ dd if=export/usb.img of=/dev/sdc bs=1M

NOTE: For the Method 3: Two-Partition USB Boot Directly to Disk option, once the command
finishes, the disk is written to automatically in the same manner as in this step for the other
options.

Step 5 Run the following command to unmount and eject the USB:

$ sudo eject /dev/sdc

Step 6 Optionally launch the USB flash drive on a target. You can use the new USB flash device to boot a
hardware device. To test your new image using QEMU, enter one of the following commands:

• For Method 1:

$ make start-target \
TOPTS="-disk export/qemux86_64-boot.iso" \
TARGET_QEMU_KERNEL=""

• For Method 2:

$ make start-target \
TOPTS="-disk export/usb.img" \
TARGET_QEMU_KERNEL=""

When the QEMU session begins, you will be prompted to choose a console option. Select serial to
continue loading the image.

Creating ubifs Bootable Flash Images

Learn about the options available for creating bootable ubifs images.

Wind River Linux provides the option to create a ubifs target image.

Step 1 Create a ubifs target image using the following platform project configure options:

$ configDir/configure \
--enable-board=qemux86-64 \
--enable-kernel=standard \
--enable-rootfs=glibc_std \
--enable-bootimage=ubifs \
--with-mkubifs-args="-m 2048 -e 129024 -c 1996"

In this configure example, the --with-mkubifs-args= option specifies the following ubifs
parameters:

-m

The minimum-I/O-unit-size.

-e

26 Deploying Flash or Disk Target Platforms
Enforcing Read-only Root Target File Systems

279

The logical-eraseblock-size.

-c

The maximum-logical-eraseblock-count.

Step 2 Build the target platform image and create a single image with which to boot a target device.

$ make

The image is placed in the projectDir/export directory.

Postrequisites

See About Configuring and Building Bootable Targets on page 265 for concepts related to
deploying target images.

Enforcing Read-only Root Target File Systems

Learn how to build your target with a read-only root file system.

This feature causes the root filesystem to be mounted read-only with writable data (directories
under /var) located on a ram disk. It is designed to be used on glibc_small and glibc_standard
root file systems. Read only file systems are useful in situations in which you want the
environment to revert to a pristine state at each boot, such as a terminal or consumer electronics.
Read only root file systems can also be faster to boot since they don't need to be checked.
Packages added either by SATO or manually may need to be updated by hand to work with a
read-only root filesystem.

In the following example, we will create an ISO boot image.

Step 1 Configure the platform project to make the root file system read-only.

$ configDir/configure \
--enable-board=qemux86-64 \
--enable-kernel=standard \
--enable-rootfs=glibc_std \
--enable-bootimage=iso \
--with-template=feature/readonly-root

Step 2 Build the file system.

$ make fs

Postrequisites

Depending on the type of image you create, additional steps are required. Refer to the
instructions for each and add --with-template=feature/readonly-root to the configure command
as illustrated above.

Installing a Bootable Image to a Disk

Once you create an installable Wind River Linux image using the --enable-target-installer=yes
configure option, use this procedure to install it.

Wind River Linux
User's Guide, 5.0.1

280

This procedure works to install either to a hard disk, or when using QEMU to test an installation
using a virtual disk, as described in Booting and Installing with QEMU on page 269.

This procedure assumes that you have previously created an installable .iso disk image as
described in Creating Bootable USB Images on page 275 or About Configuring a Boot Disk with a
USB/ISO Image (Two Build Directories) on page 266.

Step 1 Press ENTER, or modify the values to meet your specifications for the following.

Disk to format (default is sda) Enter
What disk do you want to format? (sda) [sda]
MB for the /boot partition (default is 100) Enter
MB for the swap partition (default is 240) Enter
MB for the root partition (default is rest of disk) Enter
...
If you wish to modify the default list of packages to be installed enter
"yes" at the prompt: Enter
...
Would you like to view or modify what will be installed? [no] Enter
...
Press ENTER to continue to the installation. Enter

Press CTRL-C at any time to exit to the shell.

Once you press ENTER to continue the installation, the installation progress displays graphically
in the terminal window. Depending on the size of your installation and its required packages,
installation may take some time.

Step 2 Enable the serial console if prompted.

Do you want login enabled on the serial console? [no] Enter

Accept the default no here.

The following message will display when the step completes:

Initial installation is now complete.
Please remove the install media and reboot from the hard disk.

Step 3 Remove the boot device (USB or ISO) from the server and reboot from the hard disk.

If you are using a virtual disk such as in the example described in Booting and Installing with
QEMU on page 269, just close the graphics window (or press CTRL-A, X if you are using the
serial console).

Installing or Updating bzImage

Add INHERIT_append = "kernel-grub" to your local.conf file to allow fallback boot options.

This procedure assumes that the boot partition is writable and has at least 5 MB of free space.

WARNING: The content of this section must be considered to be preliminary.

Due to the iterative nature of feature development there may be some variation between the
documentation and latest delivered functionally.

Complete the following steps to allow your current kernel to be preserved as a fall-back boot
option during updates.

Step 1 Download a new kernel image rpm file to the target.

26 Deploying Flash or Disk Target Platforms
Installing or Updating bzImage

281

Step 2 Examine the boot directory.

ls /boot/
grub vmlinuz

Step 3 Review your grub configuration.

cat /boot/grub/grub.cfg

If you are using Grub 0.97, substitute menu.lst for

grub.cfg

You should see content similar to the following:

menuentry "Linux" {
 set root=(hd0,1)
 linux /vmlinuz root=/dev/hdb2 rw console=tty0 quiet

Notice that only one boot entry exists.

Step 4 Install or update bzImage.

For example:

rpm -i kernel-image-3.10.11-yocto-standard-3.10.12+git0+285f93bf94_702040ac7c-
r0.qemux86_64.rpm

Installing the same rpm more than once with the --force option will result in multiple kernel
images in the boot directory and grub menu.

WARNING: Updating the bzImage file can adversely affect compatibility with the kernel-
module.

Step 5 Confirm the update or install:

ls /boot/ -al

You should see a listing similar to the following:

drwxr-xr-x 4 root root 1024 Sep 18 06:58 .
drwxr-xr-x 17 root root 4096 Sep 18 06:41 ..
lrwxrwxrwx 1 root root 30 Sep 18 06:58 bzImage -> bzImage-3.10.11-
yocto-standard
-rw-r--r-- 1 root root 5601808 Sep 18 06:45 bzImage-3.10.11-yocto-standard
drwxr-xr-x 4 root root 1024 Sep 18 06:58 grub
-rwxr-x--- 1 root root 5601776 Sep 18 06:38 vmlinuz

Step 6 Review your grub configuration.

cat /boot/grub/grub.cfg

If you are using GRUB 0.97, substitute menu.lst for

grub.cfg

You should see a new boot entry similar to the following:

menuentry "Update bzImage-3.10.11-yocto-standard-3.10.12+gitAUTOINC
+285f93bf94_702040ac7c" {

Wind River Linux
User's Guide, 5.0.1

282

 set root=(hd0,1)
 linux /bzImage-3.10.11-yocto-standard root=/dev/hdb2 rw console=tty0 quiet
}
menuentry "Linux" {
 set root=(hd0,1)
 linux /vmlinuz root=/dev/hdb2 rw console=tty0 quiet
}

Notice that both the new and original boot entries exist.

Step 7 Reboot the target.

You will see a new option on the boot menu similar to the following:

Update bzImage-3.10.11-yocto-standard-3.10.12+gitAUTOINC+285f93bf94_702040ac7c

283

27
Deploying initramfs System Images

About initramfs System Images 283

Creating initramfs Images 284

Adding Packages to initramfs Images 285

About initramfs System Images

Wind River Linux expands on the initramfs support found in the Yocto Project by providing the
ability to specify the contents of the image and also bundle the image with a kernel image.

With Wind River Linux, you have the option of creating a basic initramfs image, or an image that
is bundled with the kernel image. The idea behind using a bundled initramfs image is that a cpio
archive can be attached to the kernel image itself. At boot time, the kernel unpacks the archive
into a RAM-based disk, which is then mounted and used as the initial root filesystem. The
advantage of bundling (building) an image into the kernel is that the rootfs in already provided
in the archive, so you do not require one.

NOTE: Bundling the initramfs may cause boot issues if the image size becomes too large.

When you create an initramfs image, it is important to note that because the image does not
include a kernel, you cannot have packages that depend on the kernel in the image, otherwise it
will create a circular dependency when you run make to build the platform project image. The
circular dependency occurs because the kernel is waiting for the image and vice-versa. In this
case, the build output will display the following error message, in a loop:

Aborted dependency loops search after 10 matches
Aborted dependency loops search after 10 matches
Aborted dependency loops search after 10 matches
...

For information on troubleshooting circular dependencies, refer to the projectDir/layers/wr-
kernel/Documentation/initramfs.txt file.

Regardless of the image type, creating an initramfs image is done by including the feature/
initramfs template when you configure the project. For additional information, see Creating
initramfs Images on page 284.

Wind River Linux
User's Guide, 5.0.1

284

Creating initramfs Images

You can create a basic image, or one bundled with a kernel, depending on your development
needs.

Use the procedures in this section to create an initramfs platform project image. For information
on initramfs images in general, see: About initramfs System Images on page 283.

After the build is complete, your image will be available in the projectDir/export/images
directory. For example:

projectDir/export/images/wrlinux-image-initramfs-qemux86-64.cpio.gz

Step 1 Create a platform project directory and navigate to it.

For example:

$ mkdir qemux86-64-glibc-small-initramfs
$ cd qemux86-64-glibc-small-initramfs

Step 2 Configure a platform project using the initramfs feature template.

$ configDir/configure \
--enable-board=qemux86-64 \
--enable-rootfs=glibc_small \
--enable-kernel=standard \
--with-template=feature/initramfs

To create an initramfs image bundled with a kernel, replace the --with-template=feature/
initramfs configure option with --with-template=feature/initramfs-integrated.

You may also substitute the --with-template=feature/initramfs option by adding +initramfs to
the end of the --enable-rootfs option, for example: --enable-rootfs=glibc_small+initramfs for a
basic image and --enable-rootfs=glibc_small+initramfs-integrated for a bundled kernel image.

NOTE: It is important that you specify glibc_small as the root file system. Using glibc_core in
this example will cause boot failures.

Step 3 Build the file system and create the initramfs image(s).

$ make

This command can take some time to complete, depending on your host system configuration.
Once complete, your image(s) are available in the projectDir/export/images directory. These
images include the main initramfs image and a separate rootfs image. For example:

• wrlinux-image-initramfs-qemux86-64.cpio.gz
• wrlinux-image-initramfs-qemux86-64-20130219204726.rootfs.cpio.gz

Images bundled with a kernel include the kernel image with initramfs, and one without. For
example:

• bzImage-initramfs-x86-64.bin
• bzImage-x86-64.bin

27 Deploying initramfs System Images
Adding Packages to initramfs Images

285

Adding Packages to initramfs Images

Once you create an initramfs image, you may need to add packages to it to meet your specific
development requirements.

Use the procedures in this section to add packages to an initramfs image created using the
procedures in Creating initramfs Images on page 284. For information on initramfs images in
general, see: About initramfs System Images on page 283.

Step 1 Open the projectDir/layers/local/recipes-img/images/wrlinux-image-file-system.bb file in
an editor.

In this example, file-system represents the name of the rootfs used to configure the platform
project. If you configured your platform project using the instructions in Creating initramfs Images
on page 284, the file name would be

projectDir/layers/local/recipes-img/images/wrlinux-image-glibc-small.bb

Step 2 Add the package to the file.

For each package you want to add, add the following line to the file, after the line that reads ####
END Auto Generated by configure ####:

END Auto Generated by configure
IMAGE_INSTALL_pn-wrlinux-image-initramfs += "packageName1"
IMAGE_INSTALL_pn-wrlinux-image-initramfs += "packageName2"

When adding packages, it is important to keep track of the package's footprint, since adding
too many, or too large a package may make the initramfs image too large to function on your
hardware. Refer to your hardware manufacturer's documentation for memory footprint
limitations.

Step 3 Save the file once you are finished.

Step 4 Rebuild the platform project.

$ make

Once the project build completes, the initramfs images located in the projectDir/export/
images directory will include the new packages. For specific information the initramfs image
names, see Creating initramfs Images on page 284.

Wind River Linux
User's Guide, 5.0.1

286

287

28
Deploying KVM System Images

About Creating and Deploying KVM Guest Images 287

Create the Host and Guest Systems 289

Deploying a KVM Host and Guest 290

About Creating and Deploying KVM Guest Images

Learn about the requirements for deploying and networking a Linux guest system using the
kernel virtual machine (KVM)-enabled x86_64_kvm_guest BSP and virtio.

About Multiple Environment Systems

In an environment where code is running in multiple OS environments, it is easy to get confused
about what we are building and running on. To minimize this confusion, this document
specifically refers to three general environments:

Build host

The computer/OS where all code is compiled.

KVM host

This is the primary OS running on the hardware machine of the target.

KVM guest

This is the OS that is running in (in the case of the example in this guide) a QEMU emulation
running on the KVM host.

KVM refers to QEMU (userspace) with KVM acceleration enabled, with KVM kernel extensions,
and hardware support.

In this guide, the KVM procedure uses two separate operating systems running on the same
target hardware. These systems are referred to as the host and guest OS. The host environment, is
assumed to be implemented as a 64-bit BSP, on a hardware target board. The guest can be either
32- or 64-bit, but for this example we will use a 64-bit BSP.

Wind River Linux
User's Guide, 5.0.1

288

About Networking with MacVTap, virtio and netperf

virtio

To provide networking between a host and a guest operating system, KVM provides
several emulated device and para-virtualized device options for host to guest network
communications. This is implemented using virtio, which is a series of efficient, well-
maintained Linux drivers designed for that purpose. This includes a simple extensible feature
mechanism for each driver, a ring buffer transport implementation called vring, and more.
The procedure in this guide uses virtio paravirtualization because of its ease of setup and low-
latency characteristics.

VhostNet

To improve network latency and throughput, you can optionally use VhostNet as part of your
system configuration. VhostNet replaces QEMU interaction in the transmission and receipt
of packets with a kernel module. To implement VhostNet, the host and guest kernel must be
configured with the following parameters and components:

Host

The CONFIG_VHOST_NET=y option is included automatically when you configure your
host using the --with-template=feature/kvm configure option.

Guest

• CONFIG_PCI_MSI=y
• CONFIG_VIRTIO_PCI
• CONFIG_VIRTIO_NET

These guest options are added automatically when you create the guest using the x86-64-
kvm-guest BSP as explained in this guide.

In addition, VHostNet requires x86-64 support as well as AMD_IOMMU for the guest. For
additional information on using VhostNet, see http://www.linux-kvm.org/page/VhostNet.

MacVTap

To create virtual MAC address on the host for the guest to communicate with, MacVTap is
used. MacVTap is a device driver designed to simplify virtualized bridged networking. It
replaces the combination of the TUN/TAP and bridge drivers with a single module based on
the MacVLan device driver. A MacVTap endpoint is typically a character device that largely
follows the TUN/TAP ioctl interface and can be used directly by KVM/QEMU and other
hypervisor implementations that support the TUN/TAP interface. The endpoint extends
an existing network interface, the lower device, and has its own MAC address on the same
Ethernet segment, or the host in our example.

MacVTap operates in several modes, but for the purposes of the procedure in this guide - for
host to guest/guest to host communications - MacVTap is configured to use bridge mode. This
is necessary because some modes actually rely on external hardware to route packets, which
slows communication from host to guest (and back), and requires external hardware to be
configured correctly, which is out of scope for this procedure.

netperf

To test network performance between the host and guest, the netperf package is used.
Due to licensing restrictions, it is necessary for you to obtain the netperf package at http://
www.netperf.org .

http://www.linux-kvm.org/page/VhostNet
http://www.netperf.org
http://www.netperf.org

28 Deploying KVM System Images
Create the Host and Guest Systems

289

Create the Host and Guest Systems

Use the following procedure to create a KVM host and guest system for deployment.

The following procedure creates QEMU KVM host and guest target platforms ready for
deployment. Before you begin, if you want to test the network performance between the host and
guest, you will need to obtain the netperf 2.6.0 package from http://www.netperf.org.

Step 1 Configure a platform project image for the KVM host system.

Run the following configure command on the build host:

$ configDir/configure \
--enable-kernel=standard \
--enable-rootfs=glibc_std \
--enable-board=intel-xeon-core \
--with-template=feature/kvm

The configure command may take a couple moments to complete.

Step 2 Install the netperf package.
a) Obtain the netperf package (netperf-2.6.0.tar.bz2).

This package is available online from http://www.netperf.org.
b) Place the netperf package in the projectDir/layers/local/download directory.
c) Update the projectDir/local.conf file, LICENSE_FLAGS_WHITELIST option to read:

LICENSE_FLAGS_WHITELIST += "non-commercial"

d) Build and add the package.

$ make -C build netperf.addpkg

Step 3 Add the bridge-util package.

$ make -C build bridge-utils.addpkg

Step 4 Add the wrs-kvm-helper package.

$ make -C build wrs-kvm-helper.addpkg

Step 5 Build the KVM host platform project image.

$ make fs

The build process can take some time. Once it completes, your KVM host is ready for
deployment.

Step 6 Configure a platform project image for the KVM guest system.

$ configDir/configure \
--enable-kernel=standard \
--enable-rootfs=glibc_std \
--enable-board=x86-64-kvm-guest

The configure command may take a couple moments to complete.

Step 7 Install the netperf package.

http://www.netperf.org
http://www.netperf.org

Wind River Linux
User's Guide, 5.0.1

290

a) Obtain the netperf package (netperf-2.6.0.tar.bz2). from and

This package is available online from http://www.netperf.org.
b) Place the netperf package in the projectDir/layers/local/download directory.
c) Update the projectDir/local.conf file, LICENSE_FLAGS_WHITELIST option to read:

LICENSE_FLAGS_WHITELIST += "non-commercial"

d) Build and add the package.

$ make -C build netperf.addpkg

Step 8 Build the KVM guest platform project image.

$ make fs

The build process can take some time. Once it completes, your KVM host is ready for
deployment.

Step 9 Create a USB image to boot the KVM guest.

$ make usb-image

Accept the defaults to create the image, with the exception of the ext type. Choose ext 3 when
prompted.

Also, if you wish to make changes to the root file system on the guest, enter n (no) when
prompted to make the root file system readonly.

Step 10 Copy the KVM guest image to the root directory of the KVM host platform project.

For example, you would copy the guest projectDir/export/usb.img image file to the host
platform project's projectDir/export/dist directory.

You now should have a KVM host and KVM guest platform project image ready for deployment.

Deploying a KVM Host and Guest

Once you have configured and built KVM host and guest images, use this procedure to deploy
them and set up networking.

To perform this procedure, you must have a previously built KVM host and guest platform
project image as described in Create the Host and Guest Systems on page 289.

Step 1 Boot the KVM host platform and log in as root.

This process differs, depending on your hardware target board setup. Refer to your board
manufacturer's procedures for additional information.

Step 2 Insert the KVM kernel mod.

root@host0 # modprobe kvm-intel

Step 3 Configure the MacVTap interface.

root@host0 # ip link add link eth0 name macvtap0 type macvtap
root@qemu0 # ip link set macvtap0 address 1a:46:0b:ca:bc:7b up
root@qemu0 # ip link show macvtap0

http://www.netperf.org

28 Deploying KVM System Images
Deploying a KVM Host and Guest

291

Step 4 Verify that the MacVTap driver is included in the KVM host kernel.

The expected result displays immediately after the command:

root@host0 #dmesg | grep macv
macvtap0: no IPv6 routers present

With the virtio device nodes set up and MacVTap configured, the KVM host is ready to boot the
KVM guest.

Step 5 Verify that the tap device is available.

The expected result displays immediately after the command:

root@qemu0 #ls /dev/tap*
/dev/tap7

Step 6 Boot the KVM guest.

Run the following command in the root (/) directory on the KVM host:

root@host0 #qemu-system-x86_64 -nographic -k en-us -m 1024 \
-net user,hostname="kvm-guest" \
-enable-kvm \
-net nic,macaddr=1a:46:0b:ca:bc:7d,model=virtio \
-net tap \
-drive file=usb.img,if=virtio

Step 7 Select the boot option and log in.

When the guest starts to boot, select Serial console at the graphical prompt. Once the guest boots,
enter root for the user name and password to log in.

Step 8 Start the guest network interface.

Run the following command on the KVM guest:

root@kvm-guest~# ifconfig eth0 10.0.2.15

Step 9 Start netserver and netperf.
a) Log into the KVM host.

On the build host, log into the KVM host using ssh:

$ ssh root@qemu0

When prompted, enter root for password.
b) Start netserver.

root@qemu0 #netserver

Starting netserver at port 12865
Starting netserver at hostname 0.0.0.0 port 12865 and family AF_UNSPEC

Step 10 Start netperf to display network throughput between the KVM host and guest.

Run the following command on the KVM guest:

root@kvm-guest~# netperf -H 10.0.2.2 -l 60

TCP STREAM TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to host_ip port 0 AF_INET

Wind River Linux
User's Guide, 5.0.1

292

Recv Send Send
Socket Socket Message Elapsed
Size Size Size Time Throughput
bytes bytes bytes secs. 10^6bits/sec

87380 16384 16384 60.08 91.87

When the netperf command runs successfully, the very presence of bytes sent and received
indicates that the KVM host and guest are networked correctly.

293

PA R T V I I I

Testing

Running Linux Standard Base (LSB) Tests....................... 295

Wind River Linux
User's Guide, 5.0.1

294

295

29
Running Linux Standard Base

(LSB) Tests

About the LSB Tests 295

Testing LSB on Previously Configured and Built Target Platforms 296

Disabling Grsecurity Kernel Configurations on CGL Kernels 297

Running LSB Distribution Tests 297

Running LSB Application Tests 299

About the LSB Tests

Understand the requirements and preparation necessary to run the LSB tests on your hardware
target platform.

LSB Distribution Tests Overview

The goal of the LSB is to develop and promote a set of open standards that will increase
compatibility among Linux distributions and enable software applications to run on any
compliant system, even in binary form. In addition, the LSB will help coordinate efforts to recruit
software vendors to port and write products for Linux Operating System.

Wind River Linux provides the lsbtesting feature template (--with-template=feature/lsbtesting
configure option) to prepare a target platform to run the LSB Distribution Checker (/usr/bin/
LSB_Test.sh script). This template automatically installs the packages required to support
the LSB tests on your hardware target platform. In addition, you can also use the hello-world
application to test LSB application compliance. For additional information, see Running LSB
Application Tests on page 299.

When you run the /usr/bin/LSB_Test.sh script on the target system, it starts a HTTP web server
that automatically retrieves and installs the files required to run the distribution tests. A full
installation requires approximately 1.2 GB of available disk space. If you include the application
battery packages as part of running the tests, this will increase the disk space requirement even
more. Before running the tests, the target platform should have three to five GB of available
space.

Wind River Linux
User's Guide, 5.0.1

296

There are some prerequisites for the test suites to be able to run as listed in the /opt/lsb-test/
manager/README file. If they are not met, an error message will display when you try to run
the test(s). If this occurs, you must resolve the problem(s) and run the tests again.

LSB Test Requirements

In addition to the disk space requirements described in the previous section, successful execution
of the LSB distribution tests requires the following:

• A hardware target platform with Wind River Linux 5.0.1 installed.
• A host development system for cross-development
• A sound device with compatible drivers installed for the ALSA tests
• Root access to the target system
• Internet access on the target system with DNS
• Access to a FTP and/or NFS boot server, preferably with the same geo-location for the host

and target
• Three to five GB local storage on the target system

NOTE: Local storage is necessary, as running the LSB tests over a NFS-based root file system it is
not recommended.

• (Optional) An X server if you wish to run the graphical tests

In addition, the target system requires a network subsystem with the following:

• Ability to resolve its hostname and localhost. You can accomplish this using the ip=dhcp flag
at boot time.

• Available ports, including port 80 for the LSB Apache tests, and others required by specific
tests, such as port 5000. Stop any applications or processes that run on port 80, such as boa.

NOTE: Running sshd on the standard port should not cause any conflicts.

Testing LSB on Previously Configured and Built Target Platforms

Learn how to download and install LSB tests directly to a pre-built target

If your hardware target platform is already up and running, and you do not want to reconfigure
and build it to add the LSB tests with the lsbtesting feature template, you can download the tests
directly to your platform.

Step 1 Download and install tests.

Wind River recommends using the --with-template=feature/lsbtesting configure option over
downloading it directly. This option adds extra, required packages to the target platform image's
root file system, and configures other packages as necessary to enable LSB testing.

a) Download the tests.

Download the tests directly to your platform at http://ftp.linuxfoundation.org/pub/lsb/snapshots/
distribution-checker

b) Install for the architect of your test platform.

Run the included install.pl script as root.

http://ftp.linuxfoundation.org/pub/lsb/snapshots/distribution-checker
http://ftp.linuxfoundation.org/pub/lsb/snapshots/distribution-checker

29 Running Linux Standard Base (LSB) Tests
Disabling Grsecurity Kernel Configurations on CGL Kernels

297

Step 2 Start the interface.

Run the following command on the target platform:

root@target>~# /opt/lsb/test/manager/bin/dist-checker-start.pl

This starts an HTTP web server with a web interface where you can select and run the various
tests from.

Disabling Grsecurity Kernel Configurations on CGL Kernels

Learn how to check if Grsecurity is enabled for your kernel, and disable it if necessary for LSB
testing

For target platforms with a standard kernel type, Grsecurity must be disabled for the LSB core
tests to run successfully.

Step 1 Start the Kernel Configuration tool.

$ make -C build linux-windriver.menuconfig

Step 2 Disable Grsecurity.
a) Deselect Grsecurity

In the Kernel Configuration tool, select Kernel Configuration > Security options and deselect
Grsecurity if necessary.

b) Rebuild the kernel if you made changes.

$ make -C build linux-windriver.rebuild

Step 3 Disable tpe on the target.

NOTE: This step only applies to target platforms with a CGL-enabled kernel type.

Run the following command on the target platform to disable tpe:

root@target>~# sysctl -w kernel.grsecurity.tpe=0

Running LSB Distribution Tests

Use the following procedure to run the LSB distribution tests on your hardware target platform.

Before you begin, make sure that your target system meets the requirements in About the LSB
Tests on page 295.

Step 1 Launch the hardware target platform from the host system.

Step 2 Log into the target as root.

Step 3 Start the tests.

On the target platform console, enter the following:

root@target~# sh /usr/bin/LSB_Test.sh

Wind River Linux
User's Guide, 5.0.1

298

The script will begin downloading the required files, and will start the tests once complete.

Step 4 Connect to the test interface.

The test interface at http://localhost:8888 on the local machine, or from a remote machine with
network connectivity at http://targetIP:8888.

The main page of the LSB Distribution Checker interface lets you choose whether you want to
perform certification tests, or select a specific set of custom tests. If you select Custom Tests, a
page displays where you can select the specific test, or tests, that you want to run.

Step 5 Select the tests you want to run and click Run Selected Tests.

The Execution page loads to provide details for each test as it is run. Required components are
downloaded to facilitate test completion. To see test results, select the Results link. You can toggle
between the Execution and Results page as much as you. This does interrupt the tests.

Step 6 View the results.

When the tests complete, the Results page loads automatically. It may be necessary to run some
tests manually, depending on the results and information provided by the LSB Distribution
Checker.

29 Running Linux Standard Base (LSB) Tests
Running LSB Application Tests

299

Should a failure occur in a given test, the LSB Distribution Tester provides summaries and logs to
help you troubleshoot the problem. In addition, a history of previous LSB tests can be retrieved,
as each test run is stored as a tar file on the target platform.

For additional information on the LSB tests, go to the Linux Foundation's website located at:
http://www.linuxfoundation.org/collaborate/workgroups/lsb.

Running LSB Application Tests

In addition to the LSB distribution tests, you can use the LSB application tests to verify that an
application meets LSB requirements.

This procedure uses the Hello World application included with Wind River Linux to demonstrate
how to verify LSB application compliance. Before you begin, make sure that your target
system meets the requirements in About the LSB Tests on page 295. In addition, you must
download and install the LSB Application Checker that matches your architecture from the Linux
Foundation website at: http://ispras.linuxbase.org/index.php/Linux_App_Checker_Releases on the
target platform. You can use the installable or the local all-in-one version.

NOTE: For PPC 64-bit target platforms, the default userspace is 32-bit. As a result, the correct
architecture to download is ppc32.

Refer to the README file located in the main directory where the LSB Application Checker is
extracted or installed to. This file provides information on the prerequisites for running each test.
If these prerequisites are not met, the tests will most likely fail.

Step 1 Add the Hello World application to your target system's root file system.

For instructions, see the Wind River Linux Getting Started Guide: Creating and Deploying an
Application.

Step 2 Launch the hardware target platform from the host.

Step 3 Log into the target as root.

Step 4 Start the test interface.

On the target platform console, enter the following:

root@target~# ./app-checker/bin/app-checker-start.pl port_number

Where port_number is optional. The default port is 8889. If another application or process uses
the default, you may specify another port.

The script will locate your system's web browser and launch the interface.

http://www.linuxfoundation.org/collaborate/workgroups/lsb
http://ispras.linuxbase.org/index.php/Linux_App_Checker_Releases

Wind River Linux
User's Guide, 5.0.1

300

If the script cannot locate the system's web browser, you may start the browser manually and
specify the address http://localhost:8889. If you specified a different port to start the interface,
replace 8889 with that port number.

Optionally, you can connect the LSB Application Checker from any remote computer with
network connectivity to the target system. To do so, enter the URL to the target system in the
remote computer's web browser:

http://targetIP:8889

To enable this remote feature, modify the AcceptConnections option in the server configuration
file and restart the server. This configuration file is located in one of the following locations:

• /etc/opt/lsb/app-checker/app-checker-server.conf for the installable version running system-
wide

• ./config/app-checker-server.conf for the non-installable version

Step 5 Select the Application Check link.

The Specify Your Application page loads.

29 Running Linux Standard Base (LSB) Tests
Running LSB Application Tests

301

Step 6 Enter application-specific information for the application you want to test.
a) In the Name field, enter a name for your test report.
b) In the Components field, enter the file path to the application, for example: /usr/bin/hello
c) Click Select Application Components to specify the components associated with the

application. This includes:

• Individual files
• Whole directories
• Installed RPM packages (prepended with pkg)
• RPM and DEB package files
• TAR.GZ and TAR.BZ2 archives

The tool will unpack archive files, but only test the following file types: ELF executables
and shared libraries, Perl, Python, and Shell scripts.

Wind River Linux
User's Guide, 5.0.1

302

Navigate to the location of your application's components and select each component to add
it.

NOTE: The Hello World (hello) application is a standalone binary. As a result, there is nothing
additional to select.

d) Once component selection is complete, click Finish to add them to the Components field.
e) Optionally, select additional options.

Click Additional options to display the advanced test options where you can specify the LSB
version and enter comments about the test.

f) To save the test for future use, enter a name in the User Profile Management section of the
page and click Save.

Step 7 Once all test parameters are set, click Run the Test.

Once the test completes, the results will display on the Test Report page. Review your results,
and take appropriate action to correct any issues that arise. In addition, if your test does not
identify any compatibility issues, click the Apply for Certification link to be directed to the
Certification System.

303

PA R T I X

Optimization

About Optimization.. 305

Analyzing and Optimizing Runtime Footprint................... 307

Reducing the Footprint... 313

Analyzing and Optimizing Boot Time................................ 317

Wind River Linux
User's Guide, 5.0.1

304

305

30
About Optimization

This section provides information on optimizing your platform project image to prepare it for product
deployment.

Reducing Footprint

Reducing the footprint of the platform image to fit on smaller memory footprint devices. See:

• About BusyBox on page 313
• About devshell on page 314

Analyzing Boot-time

Analyzing boot-time (system startup) and using the data to reduce it. See:

• Analyzing and Optimizing Boot Time on page 317
• About Reducing Early Boot Time on page 321
• Reducing Network Initialization Time with Sleep Statements on page 321
• Reducing Device Initialization Time on page 323
• Removing Unnecessary Device Initialization Times on page 323

Reducing File System Size

Reducing file system size by statically linking required libraries to their binaries, and optimizing them.
See: About Static Linking on page 314

Wind River Linux
User's Guide, 5.0.1

306

307

31
Analyzing and Optimizing Runtime

Footprint

Analyzing and Optimizing Runtime Footprint 307

Collecting Platform Project Footprint Data 308

Footprint (fetch-footprint.sh) Command Option Reference 311

Analyzing and Optimizing Runtime Footprint

Use the fetch-footprint.sh tool to gather information that can help you reduce the size of your
target image (footprint).

The fetch-footprint.sh tool is a bash script that recurses through a file system and captures
runtime information on file and directory access and modification times. It outputs results based
on the kind of information you request and the output format you desire, including output that
can be used by Workbench or other tools.

You can build your runtime from Workbench or the command line. But note that if you want to
use the output to analyze your platform project in Workbench, you must view the output from
the project in which you created the runtime. If you build the project from the command line and
want to view fetch-footprint.sh XML output in Workbench to analyze that project, you must
import the project into Workbench. Note that fetch-footprint.sh is designed to ignore the /proc/
and /sys/ directories.

The fetch-footprint.sh script recognizes touched files based on the clock minute and second. If
you are using an NFS file system or a QEMU session, you may notice that the target and its file
system may be slightly out-of-sync with system time. If the time difference is small, you may be
missing the most immediately changed files, and if the difference is radical, then you may not get
any samples at all. If this occurs, obtaining an accurate time difference between the host and the
target system, plus extending your sample session, will help you adjust timestamps accordingly.

Wind River Linux
User's Guide, 5.0.1

308

Collecting Platform Project Footprint Data

Learn how to configure a platform project to collect footprint data, and to optionally use
Workbench to analyze that data.

Collecting footprint data requires that you configure a platform project with the --with-
template=feature/footprint configure option, and run the fetch-footprint.sh script once the
project's file system is built. Optionally, you can create an XML footprint file for use with
Workbench, to view the results and manage your target platform accordingly.

Step 1 Configure and build a platform project with the footprint feature template.
a) Create a platform project directory and navigate to it if needed.

If you do not already have a platform project to check the footprint on, run the following
command on your development host to create a platform project directory and navigate to it

$ mkdir -p qemux86-64_glibc-footprint && cd qemux86-64_glibc-footprint

b) Configure the platform project.

$ configDir/configure \
--enable-kernel=standard \
--enable-rootfs=glibc_std \
--enable-board=qemux86-64 \
--with-template=feature/footprint

NOTE: To configure an existing platform project, add the following configure options to your
existing platform project's configure command:

--enable-reconfig --with-template=feature/footprint

c) Build the file system.

$ make fs

This command may take some time to complete.

Step 2 Boot your target to run the fetch-footprint.sh script.

For a hardware board, refer to your board's recommended instructions. For the QEMU target
created in step 1 on page 308, above, run the following command:

$ make start-qemu

Step 3 Log in to the target.

Once the target boots, enter root for the user name and password to log in.

Step 4 Run the fetch-foorprint.sh script with options on the target.

For a list of available options, see Footprint (fetch-footprint.sh) Command Option Reference on page
311, or run the script without any options for online help. For example:

root@qemu0:~# cd /
root@qemu0:~# /opt/windriver/footprint/fetch-footprint.sh

fetch-footprint assists in identifying files that were accessed/modified/changed during
 a

31 Analyzing and Optimizing Runtime Footprint
Collecting Platform Project Footprint Data

309

given time interval Usage: fetch-footprint [OPTION] [FORMAT] <directory>

Options:
 [Mandatory - use one]
 -a Display all files
 -b Select files accessed/modified/changed since last boot time
 -f Display files that have future timestamps
 [Optional]
 -s Print disk usage statistics
 -d Include directories also
 -S Start date should follow this option <yyyy.mm.dd-HH:MM:SS>
 -E End date should follow this option <yyyy.mm.dd-HH:MM:SS>
 Note: Start Date can not be greater than the end date
Format:
 [Optional]
 -I Prints files in a format that fetch_host_footprint understands [Execute
 from the target's /]
 -R Displays accessed, modified & changed timestamps
 -X Displays the data in an XML format
 -T Run in Busybox mode [Display all timestamps in seconds from Epoch]

Usage Scenarios:
 Display timestamps of files ONLY `fetch-footprint.sh -a`

 Display timestamps of files & directories `fetch-footprint.sh -a -d`

 Display Files AND Directories inside `fetch-footprint.sh -b -d ../
tempDir/ -R`
 ../tempDir/ directory that were accessed
 /modified/changed since boottime

 List all files in the input mode `fetch-footprint.sh -a -d ../../
 -s -I
 [Execute this from target's /]

 Display files between timestamps `fetch-footprint.sh -a -S
 2009.05.29-21:49:01 -E 2009.05.30-02:50:01 -s`

(c) WindRiver Systems

NOTE: When you run the script, you my see more files than you expect in the output—for
example, running daemons may touch files which will then appear in command output.

Step 5 Create an XML file for Workbench to use to help you view and managed touched files.

This step is optional.

a) Create XML output.

To produce XML output, use the -X option. To produce output on files touched since boot
time, use the -b argument. For example, the following command creates a XML file named
touchfile.xml that includes all files touched since boot time:

root@qemu0:/# /opt/windriver/footprint/fetch-footprint.sh -b -X > touchfile.xml

Once created, you can use Workbench to view the touchfile.xml file and list of all files
"touched" while the target boots. Use this information to determine which files are not being
used on the target.

b) Copy the output to your development host where you built the runtime.

$ scp root@targetIP:/touchfile.xml /tmp

Alternately, when using the NFS mounted file system, (which is the default for
simulators), the file will be found locally, in the NFS root, typically: projectDir/export/dist/
touchfile.xml

Wind River Linux
User's Guide, 5.0.1

310

c) Launch Workbench.

If you created the platform project using Workbench, go to the next step. If you created the
platform project from the command line, you must import it to Workbench.

To import the platform project, right-click in the Project Explorer view and select File > Import
> Wind River Linux > Existing Wind River Linux Platform Project into Workspace and click
Next.

Select the directory for the platform project (where you created the footprint's XML file) and
click OK.

d) Expand the platform project in Project Explorer and double-click on User Space
Configuration.

If prompted, click OK to rebuild the package database.
e) Import the XML file.

In the Filesystem tab, right-click and select Import the Touch Footprint. Browse to the XML
file you copied to your development host in step 5.b on page 309 and click OK.

f) View touched files in the Filesystem Layout view.

The files that were accessed since the last boot (and during any subsequent coverage testing

you might perform), now have a hand icon decorator indicating that they were accessed.

The remaining files in the system may be removed to reduce the footprint of your file system.
For example, in the lib directory, you might decide after viewing the touch, like the one below,
that you will need libc-2.15.so, but not libBrokenLocale-2.15.so. Right click the file you wish
to remove, and select Remove.

31 Analyzing and Optimizing Runtime Footprint
Footprint (fetch-footprint.sh) Command Option Reference

311

Perform this action for any and all files you wish to remove, to help reduce your platform
project's footprint.

Footprint (fetch-footprint.sh) Command Option Reference

Use this command reference to learn about the available options for running fetch-footprint.sh to
obtain platform project footprint data. Run the script without any options to view online help.

Table 9 Options for Running fetch-footprint.sh

Command Option Description

Mandatory Options- Use only one mandatory option when you run the command

-a Display all files

-b Select files accessed/modified/
changed since last boot time

fetch-footprint.sh

-f Display files that have future
timestamps

Optional Command Options - Not required to run the command, these options let you specify
report information and output

-s Print disk usage statistics

-d Include directories

-S yyyy.mm.dd-HH:MM:SS Use to specify the start date
of the files to begin gathering
footprint data on.

fetch-footprint.sh

-E yyyy.mm.dd-HH:MM:SS Use to specify the end date
of the files to gather footprint
data on.

Wind River Linux
User's Guide, 5.0.1

312

Command Option Description

NOTE: The specified
start date must occur
before the end date.

-I This command is executed
from the target's file system.
Prints data in a format that
the fetch_host_footprint
understands.

-R Displays accessed, modified
and changed timestamps

-X Displays the data in XML
format

-T Runs in BusyBox mode to
display all timestamps in
seconds from Epoch

313

32
Reducing the Footprint

About BusyBox 313

Configuring a Platform Project Image to Use BusyBox 313

About devshell 314

About Static Linking 314

About the Library Optimization Option 315

About BusyBox

You can use BusyBox to reduce the footprint of your platform project image.

BusyBox merges tiny versions of standard Linux utilities into a single small executable. These
utilities include a shell, compression utilities, a DHCP server, login utilities, archiving utilities
like tar and rpm, core utilities like cat, df and ls, networking utilities like ping and tftp, system
administration utilities like mount and more, and process utilities like free, ps, and kill.

These utilities have reduced functionality compared to their standard Linux counterparts, but
they also have a much smaller footprint, and merging them into a single executable results in a
smaller footprint still.

Configuring a Platform Project Image to Use BusyBox

Add BusyBox to your platform project image to reduce its footprint.

You may add or remove commands supported by the BusyBox executable in much the same way
as you configure the Linux kernel. By removing commands you do not intend to use, you reduce
the size of the executable even further.

Step 1 Open the BusyBox Configuration tool.

In the projectDir/build directory, enter the following command:

$ make -C build busybox.menuconfig

The configuration utility displays:

Wind River Linux
User's Guide, 5.0.1

314

Step 2 Make changes to your configuration as necessary.

The BusyBox menuconfig program functions in exactly the same way as the kernel menuconfig.
You can access help for each command, and discard or save your changes.

Step 3 Rebuild BusyBox.

$ make -C build busybox

About devshell

The devshell is a terminal shell that runs in the same context as the BitBake task engine.

You can run devshell directly, or it may spawn automatically, depending on your development
activity. The devshell is automatically included when you configure and build a platform project.

For additional information on using devshell, see: The Yocto Project Reference Manual: Development
Within a Development Shell.

About Static Linking

Static linking can improve the performance and portability of your code by including all library
files required by a package or application into a single executable module.

32 Reducing the Footprint
About the Library Optimization Option

315

Library references are more efficient because the library procedures are statically linked to the
program, instead of dynamically linked to library or libraries located elsewhere within the
system. Unlike dynamic linking, the overhead required to manage links from applications and
packages to their library sources and any network-related issues is not required.

Because the library files are no longer shared by other applications or packages, using static
linking can increase file size and project footprint, but offers significant gains by simplifying
development and deployment. If your project uses a few core applications, then static linking can
save resources and simplify development and portability.

See http://www.yoctoproject.org/docs/current/dev-manual/dev-manual.html#including-static-library-files
for details on enabling static linking with your platform project image.

About the Library Optimization Option

Use this feature to optimize Glibc and libm by removing library functions not required by the
applications installed into the run-time file system.

Library optimization works only with glibc_small file systems. Library optimization also rebuilds
libraries to relink them with only the object files necessary for chosen applications.

You enable library optimization with the enable-scalable=mklibs option in the platform project
configure command. See Configure Options Reference on page 66.

Like static linking (see About Static Linking on page 314), library optimization offers the
greatest savings in run-time file system size when very few applications are included. Although
library optimization may not offer as great initial savings in size as static linking, the savings
should not tail off quite so rapidly as more applications are added. As with static linking, the
savings realized will depend on the run-time file system.

http://www.yoctoproject.org/docs/current/dev-manual/dev-manual.html#including-static-library-files

Wind River Linux
User's Guide, 5.0.1

316

317

33
Analyzing and Optimizing Boot

Time

Analyzing and Optimizing Boot Time 317

Creating a Project to Collect Boot Time Data 318

Analyzing Early Boot Time 319

About Reducing Early Boot Time 321

Analyzing and Optimizing Boot Time

Understanding the factors that impact your platform project image's boot process can help you
make decisions to improve and optimize it.

There are two distinct phases of system boot time:

Early boot time

The time from when the kernel is launched to the time the init process (usually /sbin/init) is
launched

Late boot time

The time from when the init process is launched until the last start-up script is executed.

For Wind River Linux 5, this manual focuses on early boot time analysis and optimization.

The bootlogger script collects data on both of these phases of boot time. The script uses the Linux
kernel’s ftrace feature to capture profiling data from the Wind River Linux boot sequence.

The bootlogger script overrides the regular /sbin/init as the first process and copies the early
boot time data in /debug/tracing/trace to /home/root/kernel-init.log and then configures ftrace
to trace init processes. When the final init process is executed (/etc/rcS.d/S999stop-bootlogger),
bootlogger copies the late boot time data to /var/log/post-kernel-init.log. The names and
locations of these files are configurable in the /export/dist/sbin/bootlogger/bootlogger.conf
file of the target (projectDir/export/dist/sbin/bootlogger/bootlogger.conf). As a final step,
bootlogger launches the regular init process.

Wind River Linux
User's Guide, 5.0.1

318

NOTE: The bootlogger script is designed to be used in development and is not intended to be
deployed in production systems.

Creating a Project to Collect Boot Time Data

Before you can collect boot-time data with bootlogger, you must configure a platform project to
include the feature.

To collect boot time data with bootlogger, do the following:

Step 1 Configure and build your platform project for boot logging.
a) Create a project directory and navigate to it.
b) Run the configure command.

To configure your platform project for boot logging, specify the feature/boottime template, for
example

$ configDir/configure \
 --enable-board=qemux86-64 \
 --enable-kernel=standard \
 --enable-rootfs=glibc_small \
 --enable-jobs=4 \
 --enable-parallel-pkgbuilds=4 \
 --with-template=feature/boottime

c) Build the project by entering the following in the project directory:

$ make

When you build your project, you will have an /sbin/bootlogger script, an /etc/
bootlogger.conf configuration file, and a stop-bootlogger script configured as the last init
script to run.

Step 2 Configure your boot sequence to use bootlogger.

Configure your kernel boot command line to pass initcall_debug ftrace=initcall init=/sbin/
bootlogger. This is typically done by passing commands to the bootloader, or as a compilable
kernel option.

If you are using QEMU to emulate your target, you can enter make config-target and then
replace the current options or insert the new bootlogger options before the current options for
TARGET0_QEMU_KERNEL_OPTS.

For example, add the options initcall_debug ftrace=initcall init=/sbin/bootlogger as follows:

$ make config-target
....
53: TARGET0_QEMU_KERNEL=bzImage
54: TARGET0_QEMU_CPU=
55: TARGET0_QEMU_INITRD=
56: TARGET0_VIRT_DISK=
57: TARGET0_VIRT_DISK_UNIT=
58: TARGET0_VIRT_CDROM=
59: TARGET0_VIRT_ROOT_MOUNT=rw
60: TARGET0_QEMU_BOOT_DEVICE=
61: TARGET0_QEMU_KERNEL_OPTS=clock=pit oprofile.timer=1
62: TARGET0_VIRT_UMA_START=yes
63: TARGET0_QEMU_OPTS=
64: TARGET0_VIRT_EXT_WINDOW=no
65: TARGET0_VIRT_EXT_CON_CMD=xterm -T Virtual-WRLinux -e
66: TARGET0_VIRT_CONSOLE_SLEEP=5

33 Analyzing and Optimizing Boot Time
Analyzing Early Boot Time

319

67: TARGET0_QEMU_HOSTNAME=
68: TARGET0_VIRT_DEBUG_WAIT=no
69: TARGET0_VIRT_DEBUG_TIMEOUT_DEFAULT=40
Enter number to change (q quit)(s save): 61

New Value:initcall_debug ftrace=initcall init=/sbin/bootlogger other-options
Enter number to change (q quit)(s save): s
Enter number to change (q quit)(s save): q

Step 3 Boot the target to collect the data.

Boot your target or emulation. When it has finished the complete boot sequence there will be boot
logs for both the early and late phases of the boot process in /root/ on the target.

Once you have collected the data, you will want to analyze it. The following sections describe
how to use the data collected by ftrace and bootlogger:

• Analyzing Early Boot Time on page 319
• About Reducing Early Boot Time on page 321

Analyzing Early Boot Time

Use the analyze-boottime command to analyze early boot time data.

A platform project, configured and built with the boot time parameters set as described in
Creating a Project to Collect Boot Time Data on page 318.

Perform the following steps to analyze early boot-time data:

Step 1 Boot the target.

Step 2 Copy /home/root/kernel-init.log.

Copy the log from the target to your development host for analysis or, if you are using QEMU,
you can analyze export/dist/var/bootlog/kernel-init.log on the host.

Step 3 Run the analyze-boottime command

Run analyze-boottime on the early boot log data. (For command-line help, run the command
without arguments.) For example, to display results on the console (-c), sorted (-s) by the time
they take, and identify (-i) a log file, enter:

$ host-cross/usr/bin/analyze-boottime -c -s -i \
export/dist/home/root/kernel-init.log

Time Delta Context Switch Function Name
 ---------- -------------- -------------
 0.007607 patch_conexant_init
 0.007950 serport_init
 0.009109 pci_sysfs_init
 0.009660 alsa_sound_init
 0.009781 raid_init
...
 0.171444 * e100_init_module
 0.223721 acpi_pci_root_init
 0.266659 * acpi_init
 0.275421 * dm_init
 0.292454 serial8250_pnp_init
 1.384742 * pty_init
 1.597498 * ip_auto_config

 Total : 325 Functions

Wind River Linux
User's Guide, 5.0.1

320

 Boottime: 13.434060 sec

NOTE: If you are using QEMU and run analyze-boottime in your projectDir, you do not
have to enter the -i path_to/kernel-init.log portion of the command.

With analyze-boottime you can find which functions are taking most of the time:

Time Delta

This column provides the time each function takes. For example, in the output shown,
ip_auto_config takes the most time.

Context Switch

This column indicates where the kernel takes control of a function, performs its task, and
returns control to the function.

Function Name

This column provides the name of the kernel function. Totals are summarized at the bottom.
The example shown is for a QEMU boot.

Refer to the following sections for information on optimizing your project based on the two most
time-consuming aspects of the example output:

• ip_auto_config—see Reducing Network Initialization Time with Sleep Statements on page 321
• pty_init—see Reducing Device Initialization Time on page 323

Step 4 Review the results of the analyze-boottime command.

To view the results graphically, run the command with following options:

$ host-cross/usr/bin/analyze-boottime -g early_bootgraph.png

This produces a ping file, a portion of which is provided for example:

NOTE: The analyze-boottime command uses gnuplot, which requires the GDFONTPATH and
GNUPLOT_DEFAULT_GDFONT environment variables to be set appropriately.

Step 5 Optionally set the environment variables for gnuplot for bash shell users.

33 Analyzing and Optimizing Boot Time
About Reducing Early Boot Time

321

Run the following commands in the projectDir, or add them to your .bashrc file:

$ export GDFONTPATH=/usr/share/fonts/liberation
$ export GNUPLOT_DEFAULT_GDFONT=LiberationSans-Regular

About Reducing Early Boot Time

Once you've analyzed your platform project image's boot-time, the next step is to reduce it.

The process of reducing early boot time is an iterative one. It includes identifying where time can
be reduced on a kernel function, making modifications, examining the results, and then repeating
the process for some new function.

Where you can reclaim time from particular functions depends on the requirements of your
particular end-system. For an example, the instructions here refer to analyzing a single user
system with known hardware and a fixed IP address. The results for a multi-user system with
more complex networking requirements will be different, and also pose different challenges to
overcome.

Reducing early boot time is accomplished by analyzing and optimizing the following aspects:

• Reducing network initialization time

In the example output from Analyzing Early Boot Time on page 319, it shows that the largest
single amount of time was spent in the ip_auto_config() function. One way to reduce this
time is to assign a static IP address to the device so that it does not spend time in DHCP
negotiation.

You can assign a static IP address in QEMU with make config-target and setting the
TARGET_VIRT_IP setting to, for example, 10.0.2.15.

With known hardware that does not require time to stabilize, it is possible to remove sleeps
from the startup time. To do so, remove sleep statements in build/linux-windriver-3.4-r0/
linux/net/ipv4/ipconfig.c. See Reducing Network Initialization Time with Sleep Statements on page
321.

• Reducing device initialization time
• Removing unnecessary device initialization times

Reducing Network Initialization Time with Sleep Statements

Once you have analyzed your boot-time, you can improve network boot time using the
information in this section.

The steps in this section require the following prerequisites:

• A platform project image has been configured and built with the feature/boottime template—
see Creating a Project to Collect Boot Time Data on page 318

• You have run the analyze-boottime command to establish a baseline for how long your
network initialization (ip_auto_config) is taking—see Analyzing Early Boot Time on page
319.

Once you have established a baseline, perform the following steps to set a fixed IP address for
your QEMU session to help reduce network initialization time:

Wind River Linux
User's Guide, 5.0.1

322

Step 1 Extract the kernel source:

$ make -C build linux-windriver.config

Step 2 Edit build/linux-windriver/linux/net/ipv4/ipconfig.c and comment out the sleep states:

Find the three lines with sleeps:

msleep(CONF_PRE_OPEN);
...
ssleep(1);
...
ssleep(CONF_POST_OPEN);

and change them to:

//msleep(CONF_PRE_OPEN);
...
//ssleep(1);
...
//ssleep(CONF_POST_OPEN);

Step 3 Rebuild the kernel and file system:

$ make -C build linux-windriver.rebuild; make all

Step 4 Reboot.

Step 5 Analyze the new boot logs as you did the first time in Analyzing Early Boot Time on page 319.

For example, look at the difference between the first QEMU early boot, and the second which
used a fixed IP address and with sleep states removed:

$ host-cross/usr/bin/analyze-boottime -c -s \
-i /tmp/initial/kernel-init.log |tail
 0.223721 acpi_pci_root_init
 0.266659 * acpi_init
 0.275421 * dm_init
 0.292454 serial8250_pnp_init
 1.384742 * pty_init
 1.597498 * ip_auto_config

 Total : 325 Functions
 Boottime: 13.434060 sec

$ host-cross/usr/bin/analyze-boottime -c -s \
-i /tmp/w_fixedIP_no_sleeps/kernel-init.log |tail
 0.093698 slab_sysfs_init
 0.108006 * ip_auto_config
 0.120562 * e100_init_module
 0.142908 * acpi_init
 0.151690 * dm_init
 0.397953 pty_init

 Total : 325 Functions
 Boottime: 6.756338 sec

Note the significant improvement in total boot time, as well as the fact that ip_auto_config is now
not taking the most time. Time to look at the next function that takes the most time, pty_init.

33 Analyzing and Optimizing Boot Time
Reducing Device Initialization Time

323

Reducing Device Initialization Time

Once you have analyzed your boot-time, you can improve device-related initialization times
using the information in this section.

The steps in this section require the following prerequisites:

• A platform project image has been configured and built with the feature/boottime template—
see Creating a Project to Collect Boot Time Data on page 318.

• You have run analyze-boottime command to obtain metrics on your device initialization time
—see Analyzing Early Boot Time on page 319

In the following procedure, we are going to help you reduce the pty_init time. This initialization
includes busywaits, locks and mutexes for PTY initialization that can be greatly reduced in this
single-user system.

In this example, you will learn to modify a kernel option as follows:

Step 1 Change the value of the kernel config option to 5.

Use the Workbench Kernel Configuration tool, a command-line tool such as make -C build
linux-windriver.menuconfig, or edit build/linux-windriver-3.4-r0/linux-qemux86-64-
standard-build/.config directly and change the value of the kernel config option
CONFIG_LEGACY_PTY_COUNT from 256 to 5.

Step 2 Rebuild the kernel and file system:

$ make -C build linux-windriver.rebuild; make

Step 3 Reboot the target.

Step 4 Analyze the new boot logs as you did the first time in Analyzing Early Boot Time on page 319.

For example, here is a difference between the pty_init time for two QEMU early boots with the
CONFIG_LEGACY_PTY_COUNT set from 256 to 5:

$ host-cross/usr/bin/analyze-boottime -c -i \
/tmp/w_fixedIP_no_sleeps/kernel-init.log|grep pty_init
 0.397953 pty_init

$ host-cross/usr/bin/analyze-boottime -c -i \
/tmp/w_pty_5/kernel-init.log|grep pty_init
 0.018961 pty_init

Note the significant reduction in function time, from 0.397953 to 0.018961.

Removing Unnecessary Device Initialization Times

To optimize your platform project image on an embedded device with known hardware, you
may want to remove device initializations for devices that you do not use.

In this example, you remove ATA, MD, and USB device initialization as follows:

Step 1 Edit quirks.c.

Edit build/linux-windriver-3.4-r0/linux/drivers/pci/quirks.c and comment out the following two
lines:

Wind River Linux
User's Guide, 5.0.1

324

Change:

DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82441,
 quirk_passive_release);
DECLARE_PCI_FIXUP_RESUME(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82441,
 quirk_passive_release);

to:

//DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82441,
 quirk_passive_release);
//DECLARE_PCI_FIXUP_RESUME(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82441,
 quirk_passive_release);

Step 2 Edit kernel configuration options.

Use the Workbench Kernel Configuration tool, a command-line tool such as make -C build linux-
windriver.menuconfig, or edit build/linux-windriver-version/.config directly and turn off the
following kernel config options as shown:

CONFIG_ATA is not set
CONFIG_MD is not set
CONFIG_USB is not set
CONFIG_USB_SUPPORT is not set

Step 3 Rebuild the kernel and file system:

$ make -C build linux-windriver.rebuild; make

Step 4 Add some kernel boot arguments.

An example would be turning off power management. For QEMU, run make config-target and
set the following:

TARGET0_QEMU_DEBUG_PORT=0
TARGET0_QEMU_KERNEL_OPTS="initcall_debug ftrace=initcall \
init=/sbin/bootlogger quiet acpi=off lpj=11501568"

The additional arguments keep all messages from being displayed (quiet), turn off the
advanced configuration and power interface (acpi=off), and presetting the loops per jiffy value
(lpj=11501568) turns off the loops per jiffy calibration with each boot. If, of course, you want to
see the messages, use power management, or determine your loops per jiffy, only turn off the
features that you do not need.

Step 5 Reboot the target.

Step 6 Analyze the new boot logs as you did the first time in Analyzing Early Boot Time on page 319.

For example, here is the difference in total boot time showing the improvement given by this last
set of optimizations versus the initial boot:

$ host-cross/usr/bin/analyze-boottime -c -i /tmp/initial/kernel-init.log \
|tail -3
 Total : 325 Functions
 Boottime: 13.434060 sec

$ host-cross/usr/bin/analyze-boottime -c -i /tmp/lessdevs/kernel-init.log \
| tail -3
 Total : 301 Functions
 Boottime: 2.751994 sec

33 Analyzing and Optimizing Boot Time
About Reducing Early Boot Time

325

Note the reduction in total time as well as total number of kernel functions.

Wind River Linux
User's Guide, 5.0.1

326

327

PA R T X

Target-based Networking

About Target-based Networking... 329

Setting Target and Server Host Names............................. 331

Connecting a Board... 333

Wind River Linux
User's Guide, 5.0.1

328

329

34
About Target-based Networking

When you deploy Wind River Linux on a networked board, the boot loader on the board can get a kernel
and file system from the network, providing you have a properly configured boot loader and network
server setup.

For this to work properly, you must configure your network server(s) to supply the kernel and file system
to your board through its network connection. The steps throughout this section assume that you have
previously built a file system and have either built a kernel or are using the default kernel provided when
you built your platform project.

The Network Boot Process

If you are booting your target board over the network you will typically use the following resources in
this order:

1. a bootloader—this is software on the board that you configure to access the network appropriately.
2. an IP configuration—you can configure an IP network address into your bootloader, or you may get

your IP address from the network.
3. a kernel to boot—a network server provides a kernel for download.
4. a root file system to mount—the downloaded kernel mounts the root file system from the network.

Board-specific details for the boot loaders are provided in the README files in your projectDir/
READMES directory. See README Files in the Development Environment on page 39 for instructions on
making these README files visible in your platform project.

NOTE: Boot loader and network configuration are somewhat different for boards that use the
PXE boot protocol. Refer to About Configuring PXE on page 334 for details on network booting
with PXE.

Network Servers During Boot

The typical network deployment boot process uses network servers as follows:

1. The boot loader on the board gets its IP address, either locally or from the network. If from the
network, a DHCP server supplies the IP address.

2. With its IP address, the boot loader connects to a TFTP server and downloads a compressed kernel
file.

3. The boot loader uncompresses and boots the kernel, which takes control and then mounts its root file
system from an NFS server on the network.

Wind River Linux
User's Guide, 5.0.1

330

The following image depicts these servers in an networked, embedded development environment. Note
that the DHCP, TFTP, and NFS servers that you must configure may physically reside on one machine, or
may be on different machines depending on your network environment.

Network Configuration on a Different Host

Different network servers provide different GUI and command-line tools for network service
configuration. Configuration file specifics may also vary. The information and referenced topics in this
manual can only make suggestions on how to configure the different services—refer to your server
documentation for specifics on your host and services.

NOTE: You will typically need root (superuser) privileges when configuring network services.

331

35
Setting Target and Server Host

Names

You may want to map your target and server IP addresses to host names for ease of reference.

Context for the current task

Step 1 Configure /etc/hosts file of your server to include both the host name and IP address of the target
and the server

192.168.10.1 server1.lab.org server1
192.168.10.2 target7.lab.org target7

Step 2 Add this information to the fs_final*.sh script on the target.

see Adding an Application to a Root File System with fs_final*.sh Scripts on page 141

The resulting file system will include the hosts file when downloaded from the server.

Step 3 Build the target file system.

$ make

Wind River Linux
User's Guide, 5.0.1

332

333

36
Connecting a Board

Configuring a Serial Connection to a Board 333

About Configuring PXE 334

Configuring PXE 336

Configuring DHCP 337

Configuring DHCP for PXE 338

Configuring NFS 340

Configuring TFTP 341

Configuring a Serial Connection to a Board

Setting-up cu and UUCP

Configure a cu terminal emulator to connect to the board over a serial connection.

This procedure provides access to the board so you can set boot loader parameters.

Step 1 Edit server configuration files.

The settings in these files must match the device name and baud rate of your serial port.

a) Edit the /etc/uucp/port file.

For example:

port serial0_38400
type direct
device /dev/ttyS0
speed 38400
hardflow false

b) Edit the /etc/uucp/sys file.

For example:

system S0@38400

Wind River Linux
User's Guide, 5.0.1

334

port serial0_38400
time any

You can find instructions on the serial port device name and baud rate in the README for each
board.

Step 2 Test the terminal connection.

For example:

cu S0@38400

Step 3 Disconnect the terminal.

Type the escape character (~), followed by a period (.).

Setting up the Workbench Terminal

Configure a Workbench terminal emulator to connect to the board over a serial connection

This procedure provides access to the board so you can set boot loader parameters.

Step 1 Set the port.

Within the Workbench Terminal view, click the Settings icon. Set the port number.

Step 2 Set the baud rate.

You make this change from the same screen as the port number.

Step 3 Save your changes.

About Configuring PXE

You can configure the Pre-boot Execution Environment (PXE) boot loader on most x86 boards
with Wind River Linux board support packages (BSPs).

Boot Process Overview

A PXE boot-enabled NIC supports the Bootstrap Protocol (BOOTP). This protocol, provided by a
DHCP server, allows a diskless target to obtain its own IP address, the IP address and name of a
server, and the name of the boot loader file on that server that it can download to boot.

Booting the target server follows these steps:

1. The PXE-enabled NIC of the target broadcasts its MAC address, requesting an IP address
from a BOOTP/DHCP server.

2. The DHCP/BOOTP server, configured with the MAC address of the target and other options,
returns the IP address of the target, along with the name of the TFTP server and the name of
the PXELinux boot loader file, which resides on the TFTP server.

3. The target downloads, using TFTP, the PXELinux boot loader, which provides the name of the
Linux kernel image to load. The PXELinux boot loader downloads the kernel. The target runs
the kernel, which rediscovers its IP address from the DHCP server.

4. The DHCP server provides the location for the NFS root file system; the kernel mounts it and
completes system initialization.

36 Connecting a Board
About Configuring PXE

335

To use PXE, you must copy the kernel and root file system to their download and export
directories.

The default TFTP download directory is /tftpboot. In the examples provided here, the NFS export
directory for the root file system is

/home/nfs/export

You may configure TFTP and NFS to use the same directory if you prefer.

The PXELinux Boot Loader File

The PXELinux boot loader file is pxelinux.0. This file is part of the Syslinux package. Installing
Syslinux installs pxelinux.0 into the /usr/lib/syslinux directory.

The PXELinux Configuration File

The PXELinux configuration file resides in the /tftpboot/pxelinux.cfg directory. There can be
separate configuration files for separate targets. To enable this, a filename convention is used that
identifies a configuration file by the hardware type and MAC address of its specific target, or its
IP address.

The following example demonstrates how the PXE bootloader searches for the correct
configuration file. The example assumes that the PXE bootloader is looking for the configuration
file for the target.lab.org of the scenario, which has been assigned an IP address of 192.168.10.2,
and which has an Ethernet card with a MAC address of 00-20-ED-6E-82-3D.

First, the bootloader will look for a configuration file corresponding to its MAC address, with the
first two digits representing its ARP code. This filename, all in lowercase, would be:

01-00-20-ed-6e-82-3d

(Note the 01- preceding the MAC address.)

If that filename cannot be found in the /tftpboot/pxelinux.cfg/ directory, the bootloader will
search for a file named after its IP address in hexadecimal. The filename for this example, all in
uppercase, would be:

C0A80A01

Not finding that, the bootloader will search for files in the following order:

C0A80A0

C0A80A

C0A80

C0A8

C0A

C0

C

Finally, not finding any of these files, it will look for a file named default.

Wind River Linux
User's Guide, 5.0.1

336

Configuring PXE

This procedure illustrates the procedure needed to configure the Pre-boot Execution
Environment (PXE) boot loader on most x86 boards with Wind River Linux board support
packages (BSPs)

The information referenced here describes a typical development example of bringing up a board
using PXE, TFTP, and NFS.

For DHCP and PXE boot, the following components are required:

• DHCP
• NFS
• TFTP
• The Syslinux package, which contains the PXELinux boot loader
• The TFTP and PXELinux packages must be installed.

Step 1 Copy the kernel and root file system to their download and export directories.

The default TFTP download directory is /tftpboot. In the examples provided here, the NFS export
directory for the root file system is

/home/nfs/export

You may configure TFTP and NFS to use the same directory if you prefer.

Step 2 Copy the PXELinux boot loader file /usr/lib/syslinux/pxelinux.0 to the TFTP download directory.

/tftpboot is the default TFTP download directory.

Step 3 Set up the PXELinux configuration file.
a) Create the directory and file.

In this example, the filename default is used.

mkdir /tftpboot/pxelinux.cfg
touch /tftpboot/pxelinux.cfg/default

b) Populate the file.

For example:

netboot
prompt 1
display
pxeboot.msg
timeout 300
label netboot
kernel bzImage
append ip=dhcp root=/dev/nfs nfsroot=/home/nfs/export

bzImage represents the kernel’s actual filename. It has been given the label netboot, which is
also the default kernel to load.

Step 4 Configure the target to use PXE boot.

36 Connecting a Board
Configuring DHCP

337

Setting up the target requires that network boot using PXE is enabled. This is generally done
within the BIOS setup routine. Configure the boot parameters and sequence in your BIOS to
enable the PXE boot loader and to boot from it first (or only).

NOTE: You may be able to find PXE boot images on the Web, for example at http://www.rom-o-
matic.net/.

When your target boots you should see the target go through the following sequence:

1. broadcast MAC address and receive IP address
2. download PXE Boot Loader and configuration file
3. download bzImage
4. boot bzImage
5. get IP address again
6. mount NFS file system

NOTE: If you cannot get through the first two steps in this sequence, verify your dhcpd.conf file
settings. If you cannot download the bzImage file, verify that your TFTP server is enabled and
xinetd has been restarted. If your bzImage boots but cannot mount the file system, verify that
the NFS daemon (nfsd) is running and that the targets root file system exists in

/usr/nfs/export

Configuring DHCP

This procedure illustrates how to configure a DHCP server to provide your board with an IP
address at boot time.

On the DHCP/BOOTP server, you must configure the dhcpd.conf configuration file, and you
must create a dhcpd.leases file if one does not already exist, as described in this section.

The DHCP configuration file is /etc/dhcpd.conf. A sample file is presented below. It provides a
basic example of this file for a DHCP server called server1.lab.org. The IP address of the server is
192.168.10.1. The configuration file identifies server1.lab.org as the TFTP server and the target is
assigned a static IP addresses.

In this example the DHCP server is version 3.0.1 from the Internet Software Consortium’s (ISC).
Refer to the documentation for your DHCP server for specific configuration file settings.

Step 1 Edit the /etc/dhcpd.conf file.

It should look similar to the following:

authoritative;

ddns-update-style ad-hoc;
default-lease-time 21600;
max-lease-time 21600;
option routers 192.168.10.1;
option subnet-mask 255.255.255.0;
option broadcast-address 192.168.10.255;
option domain-name "lab.org"; # Substitute your domain name
option domain-name-servers 192.168.10.1; # substitute your DNS server address

Subnet and range of IP addresses for dynamic clients
subnet 192.168.10.0
netmask 255.255.255.0 {

http://www.rom-o-matic.net/
http://www.rom-o-matic.net/

Wind River Linux
User's Guide, 5.0.1

338

range 192.168.10.3 192.168.10.40;
}
 host server1.lab.org { # substitute your board's host name
 hardware Ethernet XX:XX:XX:XX:XX:XX; # Substitute your board's hardware address
 fixed-address 192.168.10.1;
}
}

Notice that the static IP address of the target is within the subnet of the DHCP server, but outside
the range of the dynamic IPs.

a) Provide your board's MAC address as the value for hardware Ethernet.
b) Adjust values in the sample /etc/dhcpd.conf to match your environment.

Edits may include values for:

• domain-name
• domain-name-servers
• the board's host name and fixed-address

Step 2 Create a /var/lib/dhcp/dhcpd.leases file if needed.
a) Determine if the file exists.

ls /var/lib/dhcp/dhcpd.leases

b) Create the file if necessary.

touch /var/lib/dhcp/dhcpd.leases

Step 3 Start the dhcp server.

The command to start a service varies across Linux distribution. Consult your server's
documentation for specifics.

On Red Hat Linux, you would run:

$ service dhcpd start

Configuring DHCP for PXE

This topic describes the correct configuration changes to support DHCP for PXE

Step 1 Edit the /etc/dhcpd.conf file.
a) Add the PXE boot additions.

allow booting;
allow bootp;

b) Set up static IP booting for the target.

 host target.lab.org {
 hardware ethernet 00:20:ED:6E:82:3D;
 fixed-address 192.168.10.2;
 next-server 192.168.10.1;
 filename "pxelinux.0";
 option root-path "192.168.10.1:/home/nfs/export";

36 Connecting a Board
Configuring DHCP for PXE

339

NOTE: Substitute the correct MAC address for the sample hardware Ethernet address provided.

A correctly configured /etc/dhcpd.conf had the following contents:

authoritative;

ddns-update-style ad-hoc;
default-lease-time 21600;
max-lease-time 21600;
option routers 192.168.10.1;
option subnet-mask 255.255.255.0;
option broadcast-address 192.168.10.255;
option domain-name "lab.org";
option domain-name-servers 192.168.10.1;

Next two lines PXE boot additions

allow booting;
allow bootp;

Subnet and range of IP addresses for dynamic clients
subnet 192.168.10.0
netmask 255.255.255.0 {
range 192.168.10.3 192.168.10.40;
}
 host server1.lab.org {
 hardware Ethernet XX:XX:XX:XX:XX:XX;
 fixed-address 192.168.10.1;
}

Next section PXE boot static IPs for the target; an example MAC address
(hardware ethernet address) is provided.

 host target.lab.org {
 hardware ethernet 00:20:ED:6E:82:3D; # Replace this address as appropriate
 fixed-address 192.168.10.2;
 next-server 192.168.10.1;
 filename "pxelinux.0";
 option root-path "192.168.10.1:/home/nfs/export";
}

In this example, dhcpd.conf has been configured to support BOOTP, and the PXE target is
configured with a static IP address and supplied the following:

fixed address

The address of the PXE server.

filename

Provides the file name of the PXE file in /tftpboot to download,pxelinux.0 in this case .

next-server

The address of the NFS server.

option root-path

Provides the path on the NFS server for the exported PXE files.

Step 2 Restart the DHCP server to apply the changes.

The command to start a service varies across Linux distribution. Consult your server's
documentation for specifics.

Wind River Linux
User's Guide, 5.0.1

340

On Red Hat Linux, you would run:

$ service dhcpd start

Configuring NFS

This procedure explains how to configure NFS to provide a root file system for your board when
the target kernel boots.

Refer to your host documentation for details on installing and enabling NFS if it is not already
available.

You will need to have root permission and have created an export directory such as

/nfsroot/

Step 1 Make the root file system available for export.

Copy and uncompress the compressed run-time file system file to the NFS export directory.

For example, you could use the command line as root as follows:

$ su -
Password:
mkdir /nfsroot
cd /nfsroot
tar -xjvpf projectDir/export/*dist.tar.bz2

Step 2 Configure the /etc/exports file.

The NFS configuration file is a plain-text file, /etc/exports. You must configure it to export the
run-time file system to the target.

For example, if your target had the IP address of 192.168.10.2, the /etc/exports file might appear
as shown in the following example.

/nfsroot 192.168.10.2/255.255.255.0(rw,sync,no_subtree_check,no_root_squash)

This makes /nfsroot available for mounting to the machine with network address 192.168.10.2
only.

Step 3 Restart the server.

exportfs -ra

Step 4 Restart NFS.

The command to start a service varies across Linux distribution. Consult your server's
documentation for specifics.

On Red Hat Linux, you would run:

$ service nfs start

36 Connecting a Board
Configuring TFTP

341

Configuring TFTP

This procedure illustrates how to provide your board with a kernel at boot time by configuring a
TFTP server on your network. When the board boots, it downloads the kernel.

Context for the current task

Step 1 Make the kernel available for download.

The default TFTP download directory is typically /tftpboot. If a download directory for TFTP is
not already created, you must create it. Refer to your server documentation for the name of your
TFTP download directory and for instructions if you want to change the default.

For example, assuming a TFTP download directory of /tftpboot you could copy the kernel to the
TFTP download directory as follows:

cd projectDir/export
cp -L *uImage* /tftpboot/uImage

This copies the kernel from your export directory to the file with the shorter name (for
convenience) of uimage in the TFTP download directory. The -L option covers both a prebuilt
kernel and scenario a symlink to a kernel you have explicitly built.

Step 2 Enable TFTP for xinetd.

For many Linux systems, the TFTP server is automatically started upon request with inetd or
xinetd. The following provides some general instructions for enabling the TFTP server with
xinetd. Refer to your system documentation for details on how to enable TFTP.

Edit the file /etc/xinetd.d/tftp and change the setting disable=yes to disable=no.

Alternately, you can avoid manual editing by using the setup program at the command line to
enable the service.

Step 3 Restart xinetd.

The command to restart a service varies across Linux distribution. Consult your server's
documentation for specifics.

On Red Hat Linux, you would run:

$ service xinitd restart

Wind River Linux
User's Guide, 5.0.1

342

343

PA R T X I

Reference

Additional Documentation and Resources........................ 345

Common make Command Target Reference.................... 351

Build Variables... 361

Package Variable Listing... 367

Lua Scripting in Spec Files... 369

Kernel Audit Directory Contents.. 371

Wind River Linux
User's Guide, 5.0.1

344

345

37
Additional Documentation and

Resources

Document Conventions 345

Wind River Linux Documentation 346

Additional Resources 347

Open Source Documentation 348

External Documentation 350

Document Conventions

Use this information to understand the formatting used throughout Wind River Linux
documentation.

In this document, placeholders that you must substitute a value for are shown in italics. Literal
values are shown in bold.

For example, this document uses the placeholder installDir to refer to the location where
you have installed Wind River Linux. By convention, this is typically C:\WindRiver on Windows
hosts and /opt/WindRiver on Linux hosts.

The placeholder projectDir refers to the project directory in which much of your work takes
place. For example, if you maintain your project files in /home/user/workspace/qemux86-64
(qemux86-64_prj in Workbench), this manual uses projectDir to represent that file location.

Menu choices are shown in bold, for example File > New > Project means to select File, then
New, then Project.

Commands that you enter on a command line are also shown in bold and system output is
shown in typewriter text, for example:

$ pwd
/home/mary/Builds/qemux86-64_prj
$

Wind River Linux
User's Guide, 5.0.1

346

Long command lines that would normally wrap are shown using the backslash (\) followed by
ENTER, which produces a secondary prompt, at which you may continue typing. The secondary
prompts are not shown to make it easier to cut and paste from the examples.

In the following example you would enter everything literally except the $ prompt:

$

$ /opt/WindRiver/wrlinux-5/wrlinux/configure \
--enable-board=qemux86-64 \
--enable-kernel=standard \
--enable-rootfs=glibc_std

If a command requires root privileges to run, the prompt is displayed as #.

Wind River Linux Documentation

Understanding the full range of documentation available is invaluable to helping you find the
information you need to work effectively in Wind River Linux.

The following is a list of the documentation provided by Wind River that supports development
of Linux targets. Much of this documentation is available through the “start” menu of the
installation host, for example under Applications > Wind River > Documentationin the Gnome
desktop for Linux.

Product Installation and Licensing Guides

For information on installing Wind River Linux and other products from Wind River, refer
to the online product installation and licensing guides at http://www.windriver.com/licensing/
documents/

Wind River Linux User’s Guide (this document)

This guide describes Wind River Linux—how to configure it, and customize it for your
needs. It is primarily oriented toward command line usage, but it is also useful to Workbench
developers who want to understand some of the underlying design and implementation of the
build system. It provides both explanatory and procedural use case material.

Wind River Linux Getting Started

The Getting Started guide provides a few brief procedures that you can perform on the
command line or with Workbench. Its primary purpose is to orient you in the primary ways to
use Wind River Linux and point to the documentation areas that focus most on the way you
will be using the product.

Wind River Linux Migration Guide

This guide provides background information, instructions, and procedures for migrating
Wind River Linux 4.x projects to Wind River Linux 5.0.1.

Wind River Workbench User’s Guide

This guide describes how to use Workbench to develop projects, manage targets, and edit,
compile, and debug code.

Wind River Workbench by Example, Linux Version

This guide is for Linux-specific use of Workbench, and provides examples on how to
configure and build application, platform, and kernel module projects

Wind River Workbench Online Help

http://www.windriver.com/licensing/documents/
http://www.windriver.com/licensing/documents/

37 Additional Documentation and Resources
Additional Resources

347

Wind River Workbench provides context-sensitive help. To access the full help set, select Help
> Help Contents in Wind River Workbench. To see help information for a particular view or
dialog box, press the help key when in that view or dialog box. See Document Conventions on
page 345 for details on the help key.

Wind River Workbench User Interface Reference

This guide describes the Workbench user interface for all supported Wind River products.
Look here for specific information such as interface dialogs, fields and their uses.

Wind River Analysis Tools documentation

This is a set of documents that describe how to use the Wind River Analysis Tools that are
provided with Workbench. The tools include a memory use analyzer, an execution profiler,
and System Viewer, a logic analyzer for visualizing and troubleshooting complex embedded
software. The Wind River System Viewer API Reference is also included.

Wind River Workbench Host Shell User's Guide

The host shell is a host-resident shell provided with Workbench that provides a command line
interface for debugging targets.

Most of the documentation is available online as PDFs or HTML accessible through Wind
River Workbench online help. Links to the PDF files are available by selecting Wind River >
Documentation from your operating system start menu.

From a Workbench installation you can view the documentation in a Web browser locally (Help
> Help Contents) or by launching the help browser independently of Workbench with the
wrhelp.sh script as described in Wind River Workbench, By Example, Linux Version.

The documentation is also available below your installation directory (called installDir)
through the command line as follows:

• PDF Versions—To access the PDF, point your PDF reader to the *.pdf file, for example:

installDir/docs/extensions/eclipse/plugins/com.windriver.ide.doc.wr_linux_version/
wr_linux_users_guide/wr_linux_users_guide_5.pdf

• HTML Versions—To access the HTML, point your web browser to the index.html file, for
example:

installDir/docs/extensions/eclipse/plugins/com.windriver.ide.doc.wr_linux_version/
wr_linux_users_guide/html/index.html

Additional Resources

Refer to these additional resources to help facilitate your development needs.

Online Support

Wind River Online Support provides updates and enhancements to packages as they become
available, which can be downloaded and added to Wind River Linux.

Tutorials designed to illustrate Wind River integration with Workbench, as well as sample
configuration files to simplify the target board boot process, are also available.

Wind River Linux
User's Guide, 5.0.1

348

Developer Web Site

Wind River has a public web site http://developer.windriver.com that you can both monitor and
contribute to. It contains discussions, documents, and additional information of general use of
Wind River Linux.

Workbench Tutorials

Detailed Workbench tutorials are available in the Wind River Workbench User’s Guide and Wind
River Workbench by Example, Linux Version.

Open Source Documentation

Use the links and information in this section to learn about Linux open source development.

The main source for information referenced throughout this section is the Linux Documentation
Project (http://tldp.org). As with all documentation, proprietary or otherwise, open source
documentation, while valuable, must always be scrutinized for relevance. It is sometimes written
specifically for a certain Linux distribution (which may not always be obvious), and sometimes
even for a specific version. It is often out-of-date. It is a good idea to compliment, where possible,
the provided resources with resources from vendors, mailing lists, and from the maintainers
themselves.

Linux Standards Base

Wind River Linux 5 has been designed to support the Linux Standards Base, allowing you to
more easily use applications from other LSB-conforming distributions to Wind River Linux.

See http://www.linuxfoundation.org/collaborate/workgroups/lsb for details on the Linux Foundation
LSB workgroup and related documentation.

Carrier Grade Linux

The Carrier Grade Linux page on the Linux Foundation website is a repository for articles, white
papers and projects devoted to developing Carrier Grade-compliant Linux distributions and
applications.

See http://www.linuxfoundation.org/collaborate/workgroups/cgl.

Linux Development

Reference Title Link

Building and Installing Software Packages for
Linux

http://www.tldp.org/HOWTO/Software-Building-
HOWTO.html

Program Library HOWTO http://www.tldp.org/HOWTO/Program-Library-
HOWTO/index.html

Linux Loadable Kernel Module HOWTO http://www.tldp.org/HOWTO/Module-HOWTO/
index.html

Linux Parallel Processing HOWTO http://www.tldp.org/HOWTO/Parallel-Processing-
HOWTO.html

http://developer.windriver.com
http://tldp.org
http://www.linuxfoundation.org/collaborate/workgroups/lsb
http://www.linuxfoundation.org/collaborate/workgroups/cgl
http://www.tldp.org/HOWTO/Software-Building-HOWTO.html
http://www.tldp.org/HOWTO/Software-Building-HOWTO.html
http://www.tldp.org/HOWTO/Program-Library-HOWTO/index.html
http://www.tldp.org/HOWTO/Program-Library-HOWTO/index.html
http://www.tldp.org/HOWTO/Module-HOWTO/index.html
http://www.tldp.org/HOWTO/Module-HOWTO/index.html
http://www.tldp.org/HOWTO/Parallel-Processing-HOWTO.html
http://www.tldp.org/HOWTO/Parallel-Processing-HOWTO.html

37 Additional Documentation and Resources
Open Source Documentation

349

Reference Title Link

Secure Programming for Linux HOWTO http://www.tldp.org/HOWTO/Secure-Programs-
HOWTO/index.html

RPM HOWTO http://www.tldp.org/HOWTO/RPM-HOWTO/
index.html

Maximum RPM

Additional, useful information on using RPMs

http://www.rpm.org/max-rpm/

Networking

Reference Title Link

The Linux Networking Overview HOWTO http://www.tldp.org/HOWTO/Networking-
Overview-HOWTO.html

The Linux Networking HOWTO http://www.tldp.org/HOWTO/NET3-4-
HOWTO.html

The PPP HOWTO http://www.tldp.org/HOWTO/PPP-HOWTO/
index.html

ADSL Bandwidth Management HOWTO http://www.tldp.org/HOWTO/ADSL-Bandwidth-
Management- HOWTO/index.html

Traffic Control HOWTO http://www.tldp.org/HOWTO/Traffic-Control-
HOWTO/

Netfilter/Iptables HOWTO

This includes a good deal of documentation on
packet filtering, NAT, and tutorials.

http://www.netfilter.org/documentation

VPN HOWTO http://www.tldp.org/HOWTO/VPN-HOWTO/
index.html

Security

Reference Title Link

Netfilter/Iptables HOWTO

This includes a good deal of documentation on
packet filtering, NAT, and tutorials.

http://www.netfilter.org/documentation

SSL Certificates HOWTO http://www.tldp.org/HOWTO/SSL-Certificates-
HOWTO/index.html

OpenSSH http://www.openssh.com

http://www.tldp.org/HOWTO/Secure-Programs-HOWTO/index.html
http://www.tldp.org/HOWTO/Secure-Programs-HOWTO/index.html
http://www.tldp.org/HOWTO/RPM-HOWTO/index.html
http://www.tldp.org/HOWTO/RPM-HOWTO/index.html
http://www.rpm.org/max-rpm/
http://www.tldp.org/HOWTO/Networking-Overview-HOWTO.html
http://www.tldp.org/HOWTO/Networking-Overview-HOWTO.html
http://www.tldp.org/HOWTO/NET3-4-HOWTO.html
http://www.tldp.org/HOWTO/NET3-4-HOWTO.html
http://www.tldp.org/HOWTO/PPP-HOWTO/index.html
http://www.tldp.org/HOWTO/PPP-HOWTO/index.html
http://www.tldp.org/HOWTO/ADSL-Bandwidth-Management- HOWTO/index.html
http://www.tldp.org/HOWTO/ADSL-Bandwidth-Management- HOWTO/index.html
http://www.tldp.org/HOWTO/Traffic-Control-HOWTO/
http://www.tldp.org/HOWTO/Traffic-Control-HOWTO/
http://www.netfilter.org/documentation
http://www.tldp.org/HOWTO/VPN-HOWTO/index.html
http://www.tldp.org/HOWTO/VPN-HOWTO/index.html
http://www.netfilter.org/documentation
http://www.tldp.org/HOWTO/SSL-Certificates-HOWTO/index.html
http://www.tldp.org/HOWTO/SSL-Certificates-HOWTO/index.html
http://www.openssh.com

Wind River Linux
User's Guide, 5.0.1

350

External Documentation

Use external documentation to enhance your developer knowledge and capabilities. The
following table lists open source documentation related to the Yocto Project and Wind River
Linux:

Table 10 Wind River Linux External Documentation

External Information source Location

The Yocto Project Online: http://www.yoctoproject.org

OpenEmbedded Core (OE-
Core)

Online: http://www.openembedded.org/wiki/OpenEmbedded-Core

QEMU Online: http://wiki.qemu.org

GNU Toolchain Documentation A full set of GNU compiler-related development
documentation is included with every Wind River Linux 5
installation in the following installed locations, based on your
target architecture:
installDir/wrlinux-5/layers/wr-toolchain/4.6a-99/share/
doc/wrs-linux-arm-wrs-linux-gnueabi—for ARM-based
target systems
installDir/wrlinux-5/layers/wr-toolchain/4.6a-99/share/
doc/wrs-linux-i686-wrs-linux-gnu—for x86-based target
systems
installDir/wrlinux-5/layers/wr-toolchain/4.6a-99/share/
doc/wrs-linux-mips-wrs-linux-gnu—for MIPS-based target
systems
installDir/wrlinux-5/layers/wr-toolchain/4.6a-99/share/
doc/wrs-linux-powerpc-wrs-linux-gnu—for PowerPC-based
target systems

http://www.yoctoproject.org
http://www.openembedded.org/wiki/OpenEmbedded-Core
http://wiki.qemu.org

351

38
Common make Command Target

Reference

This section provides a summary of common build arguments for the make command from the
command-line and with Workbench.

Platform Project Development

make Command in projectDir Workbench Build Target Description

make

make fs

make all

fs Each of these commands builds
a new file system from RPMs
where available, use source
otherwise. Note that there is no
difference and the commands are
interchangeable.

For information on using make,
see About the make Command on
page 72.

make build-all build-all Performs the same action as
make. For information on forcing
a source build, see About the make
Command on page 72.

Wind River Linux
User's Guide, 5.0.1

352

make Command in projectDir Workbench Build Target Description

make fs-debug fs-debug This produces an additional
file system image in the
projectDir/export directory
named similarly to the file
system image but with -
debuginfo.tar.bz2 at the end.
This additional image contains
only debug information and
source. This file can be used
for cross-debugging with
Workbench, or gdb-server, or
alternately deployed on with the
file system for on-target debug
with gdb. This build target is
only supported with production
builds; all other build types
include debug information in the
default file system image.

make help View command-line help
information for the make
command

delete Remove the project_prj
contents and folder.

make reconfig reconfig Re-process templates and layers.
Recreates list files and makefiles
but does not support changes to
config.sh (which require a new
configuration).

Once run, this command locks
the platform project to the latest
product update (RCPL) available
and saves the release number
to the projectDir/config.log
file as a reference if you need
to recreate the project at a later
date.

38 Common make Command Target Reference

353

make Command in projectDir Workbench Build Target Description

make upgrade Upgrades the platform project
build to the latest product
update. Each time you update
Wind River Linux, run this
command in the projectDir
to ensure your platform project
is built with the latest available
features.

Once this command is run, the
projectDir/config.log file
will indicate the RCPL (product
update) in use, and automatically
select the latest RCPL with the
highest number.

make -C build
busybox.menuconfig

Menu-based tool to configure
busybox

This is the equivalent of bitbake
-c menuconfig busybox within
the BitBake environment.

make export-dist Configures the projectDir/
export/dist directory and builds
the file system when necessary.

make host-tools Builds all the native sstate
packages required to build glibc-
small, core, std and std-sato file
systems and saves them to an
exportable projectDir/export/
host-tools.tar.bz2 archive.

Wind River Linux
User's Guide, 5.0.1

354

make Command in projectDir Workbench Build Target Description

make bbs Sets up the BitBake environment,
such as the variables required,
before you can run BitBake
commands.

This command executes a
new shell environment and
configures the environment
settings, including the working
directory and PATH.

To return to the previous
environment, simply type exit to
close the shell.

NOTE: This command is
the equivalent of source
layers/oe-core/oe-init-
buildenv bitbake_build.

Image Deployment

make Command in projectDir Workbench Build Target Description

make start-qemu Start a QEMU simulation. Use
make start-target TOPTS="--
help" for a list of options.

make start-target Start a QEMU simulation. Use
make start-target TOPTS="--
help" for a list of options.

make usb-image Use to create a bootable USB
image from any existing platform
project image. The image
includes two partitions:

16 FAT

The first is a small 16 FAT
file system for syslinux, the
kernel, and a static BusyBox
initrd

ext2

The second is an ext2 file
system to mount the root
partition for the operating
system

https://www.yoctoproject.org/docs/1.5/ref-manual/ref-manual.html#structure-core-script
https://www.yoctoproject.org/docs/1.5/ref-manual/ref-manual.html#structure-core-script

38 Common make Command Target Reference

355

make Command in projectDir Workbench Build Target Description

make usb-image-burn Use to create a bootable USB
image from any existing platform
project image, and burn the
image directly to a USB drive.

Application Deveopment

make Command in projectDir Workbench Build Target Description

make export-sdk export-sdk Creates a SDK suitable for
application development in the
export/ directory, which can be
used for providing build specs in
Workbench.

This option first builds the root
file system, then populates the
SDK.

This includes the sysroot and
toolchain, and is the preferred
method to use to set up the
envirnment for application
development.

make export-toolchain export-toolchain Performs the same tasks as make
export-sdk.

make sysroot Forces the sysroot population in
the projectDir.

If the contents of your platform
project build originates from the
sstate-cache, the system knows
that the sysroot is not necessary
for any activities and never
populates it. Run make sysroot
to populate the sysroot if you
require it.

make export-sysroot export-sysroot This performs the same action as
make export-sdk above, but does
not export the toolchain.

This is designed to simplify
application development
overhead, for when updates
occur for the sysroot, but not
the (generally unchanging)
toolchain.

Wind River Linux
User's Guide, 5.0.1

356

make Command in projectDir Workbench Build Target Description

make host-tools Builds all the native sstate
packages required to build glibc-
small, core, std and std-sato
filesystems and saves them to an
exportable projectDir/export/
host-tools.tar.bz2 archive.

make populate-sdk Same as make sysroot, above.

make populate-sysroot Same as make export-sysroot,
above.

This is the equivalent of bitbake
-c populate_sdk imageName
within the BitBake environment.

Package and Recipe Management

make Command in projectDir Workbench Build Target Description

make -C build recipeName Build the recipe recipeName

This is the equivalent of bitbake
recipeName within the BitBake
environment.

make -C build
recipeName.addpkg

Add a recipe's package and any
packages it is known to require,
and reconfigure the Makefiles as
appropriate.

See Yocto Project Equivalent make
Commands on page 73 for a
Yocto Project equivalent to this
command.

38 Common make Command Target Reference

357

make Command in projectDir Workbench Build Target Description

make -C build
recipeName.clean

Clean the package identified by
recipeName

Using this command will undo
any source file changes made
in your package directory,
consistent with Yocto Project and
OpenEmbedded package build
target rules.

Note that this behavior differs
from Wind River Linux 4.x,
which ran the package's Makefile
clean rule and typically did not
remove source files from the
project directory.

This is the equivalent of bitbake
-c clean recipeName within the
BitBake environment.

make -C build
recipeName.compile

This will only do the compile.
If you just specify recipeName
(with no .compile suffix), the top
level dependency of .sysroot will
trigger and the build system will
compile the package, generate an
RPM, and install it to the sysroot.

This is the equivalent of bitbake
-c compile recipeName within
the BitBake environment.

make -C build
recipeName.distclean

Clean the package identified in
the recipe and the package patch
list. This deletes the existing
build directory of the package as
well as .stamp files.

This is the equivalent of bitbake
-c distclean recipeName within
the BitBake environment.

make -C build
recipeName.install

This is the equivalent of bitbake
-c install recipeName within
the BitBake environment.

make -C build
recipeName.patch

Copy package source into the
build area and apply patches.

This is the equivalent of bitbake
-c patch recipeName within the
BitBake environment.

Wind River Linux
User's Guide, 5.0.1

358

make Command in projectDir Workbench Build Target Description

make -C build
recipeName.rebuild

Clean, then build a package.

This is the equivalent of bitbake
-c rebuild recipeName within
the BitBake environment.

make -C build
recipeName.rebuild_nodep

Rebuild recipeName
without rebuilding dependent
packages. For example,
enter make -C build linux-
windriver.rebuild_nodep to
rebuild the kernel without
rebuilding dependent userspace
packages.

This is the equivalent of bitbake
-c rebuild_nodep recipeName
within the BitBake environment.

make -C build
packageName.rmpkg

Remove a package and any
packages it is known to require,
and reconfigure the makefiles as
appropriate.

This command only removes
packages that were added
with the make -C build
packageName.addpkg
command. It does not remove
packages added using templates
or the inclusion of layers as part
of your platform project image
build.

See Yocto Project Equivalent make
Commands on page 73 for a
Yocto Project equivalent to this
command.

make -C build
recipeName.unpack

Unpack the packages source but
stop before patching phases.

This is the equivalent of bitbake
-c unpack recipeName within
the BitBake environment.

make import-package import-package Starts a GUI applet that assists
the developer in adding external
packages to a project

38 Common make Command Target Reference

359

make Command in projectDir Workbench Build Target Description

make package-manager package-manager Starts a GUI applet for
managing packages and package
dependencies.

Kernel Development

make Command in projectDir Workbench Build Target Description

Kernel Configuration Wind River Workbench tool for
kernel configuration

make -C build linux-windriver kernel_build Build the Wind River Linux
kernel recipe

make -C build linux-
windriver.build

kernel_build Build the Linux kernel recipe.
If you have made changes to
the kernel in your project (for
example with make -C build
linux-windriver.menuconfig),
run the linux-windriver.rebuild
target, not this one, to get those
changes to take effect.

This is the equivalent of bitbake
linux-windriver within the
BitBake environment.

make -C build linux-
windriver.clean

Clean the kernel build

make -C build linux-
windriver.config

kernel_config Extract and patch kernel source
for kernel configuration.

This is the equivalent of bitbake
-c config linux-windriver within
the bitbake environment.

make -C build linux-
windriver.menuconfig

kernel_menuconfig Extract and patch kernel source
and launch menu-based tool for
kernel configuration.

This is the equivalent of bitbake
-c menuconfig linux-windriver
within the bitbake environment.

Wind River Linux
User's Guide, 5.0.1

360

make Command in projectDir Workbench Build Target Description

make -C build linux-
windriver.reconfig

Regenerates the kernel
configuration by reassembling
the config fragments.

This is the equivalent of bitbake
-c reconfig linux-windriver
within the bitbake environment.

make -C build linux-
windriver.xconfig

kernel_xconfig Extract and patch kernel source
and launch X Window tool for
kernel configuration.

This is the equivalent of bitbake
-c xconfig linux-windriver
within the bitbake environment.

make DTSbasename.dtb This supersedes
make -C build linux-
windriver.DTSbaseName.dtb. It
must be run from a kds shell.

PR Server Usage

361

39
Build Variables

The list and description of config.sh build variables shown in the following table is provided for
informational purposes only—you would not typically change config.sh files directly. These are
constructed and inherited during the configure process from the templates.

Note that many of the items are also copied into the config.properties file which is used to initialize
Workbench with it is project information, and a few of the fields are also copied into the toolchain
wrappers. Therefore, even if you modify config.sh, your modifications may not be carried forward to
other components using the fields.

Table 11 Build Variables and Descriptions

Variable Description

BANNER Informational message printed when configure
completes. Can be used in any template.

TARGET_TOOLCHAIN_ARCH Specifies the generic toolchain architecture: arm,
i586, mips, powerpc. Must match toolchain.
Generally specified in the templates/arch/... item.
Only set in an arch template.

AVAILABLE_CPU_VARIANTS These are all of the available CPU variants for a
configuration. For example, in a Power PC 32-
bit/64-bit install, both ppc and ppc64 would be
listed. A value from this variable is substituted for
the VARIANT prefix in the following variables.

The following items should be prefixed with the VARIANT name as specified in
AVAILABLE_CPU_VARIANTS. VARIANT is replaced with the specific variant, for example
VARIANT_TARGET_ARCH=powerpc becomes ppc_TARGET_ARCH=powerpc.

VARIANT_COMPATIBLE_CPU_VARIANT Specifies all of the CPU variants that are
compatible with the specific variant.
For example ppc is compatible with ppc_750.

VARIANT_TARGET_ARCH The architecture used by GNU configure to specify
that variant.

VARIANT_TARGET_COMMON_CFLAGS CFLAGS that are beneficial to pass to an
application but not required to optimize for

Wind River Linux
User's Guide, 5.0.1

362

Variable Description

a multilib. Equivalent of CFLAGS=... in the
environment or in a makefile.

VARIANT_TARGET_CPU_VARIANT Name of a variant. Also used as the RPM
architecture.

VARIANT_TARGET_ENDIAN BIG or LITTLE

VARIANT_TARGET_FUNDAMENTAL_ASFLAGS Flags to be passed to the assembler when using the
toolchain wrapper to assemble with a given user
space. These are hidden from applications.

VARIANT_TARGET_FUNDAMENTAL_CFLAGS lags to be passed to the compiler when using the
toolchain wrapper to compile for a given user
space. These are hidden from applications.

VARIANT_TARGET_FUNDAMENTAL_LDFLAGS Flags to be passed to the linker when using the
toolchain wrapper. These are hidden.

VARIANT_TARGET_LIB_DIR The name of the library directory for the ABI - lib,
lib32, lib64.

VARIANT_TARGET_OS linux-gnu or linux-gnueabi

VARIANT_TARGET_RPM_PREFER_COLOR The preferred color when installing RPM packages
to the architecture:

• 0—No preference
• 1—ELF32
• 2—ELF64
• 4—MIPS ELF32_n32

"Color” is RPM terminology for a bitmask used in
resolving conflicts. If RPM is going to install two
files, and they have conflicting md5sum or sha1, it
uses the color to decide if it can resolve the conflict.
Two files of color 0 cause a conflict and the install
fails. Otherwise, the system's “preferred” color
takes precedence for the install. If the file is outside
of the permitted colors, then again it is an error (if
it causes a conflict).

VARIANT_TARGET_RPM_TRANSACTION_COLORThe colors that are allowed when installing RPM
packages to that architecture. A bitmask of the
above. For example, on a 32-bit system, generally 1.
On a 64/32 bit system, 3. On a mips64 system, 7.

VARIANT_TARGET_RPM_SYSROOT_DIR The internal gcc directory prefix to get to the
sysroot information.

VARIANT_TARGET_USERSPACE_BITS Bitsize of a word, 32 or 64.

BSP-Specific Variables

BOOTIMAGE_JFFS2_ARGS For targets that support JFFS2 booting, these values
will be passed when creating the JFFS2 image.

39 Build Variables

363

Variable Description

Endianess (-b/-l), erase block size (-e), and image
padding (-p) are commonly passed.

KERNEL_FEATURES Features to be implicitly patched into the kernel
independent of the configure command line and
options.

LINUX_BOOT_IMAGE Name of the image used to boot the board, used to
create the export default image symlink.

TARGET_BOARD BSP name as recognized by the build system.

TARGET_LINUX_LINKS List of images is created by the kernel build.

TARGET_PLATFORMS Mainly used for compatibility reasons. Indicates
which platform(s) a particular board supports.

TARGET_PROCFAM Internal Wind River use only.

TARGET_SUPPORTED_KERNEL The list of kernels supported by a particular board.

TARGET_SUPPORTED_ROOTFS List of root file systems supported by a particular
board.

TARGET_TOOLS_SUBDIRS Additional host tools that should be built to
support this board.

QEMU-related variables
Refer to the release notes for details on QEMU-supported targets. Enter make config-target in
projectDir for additional information.

TARGET_QEMU_BIN The QEMU host tool binary to use, if this BSP can
be simulated by QEMU.

TARGET_QEMU_BOOT_CONSOLE The console port the target uses. This is BSP
specific. For example, for qemux86-64 it is ttyS0.

TARGET_QEMU_ENET_MODEL Some BSPs such as the qemux86 and qemux86-64
use a different Ethernet type. This parameter
can be used to select a different Ethernet type
to override the default that is hard coded in the
QEMU host binary.

TARGET_QEMU_KERNEL The “short” name of the boot image to search for
in the export directory inside the BUILD_DIR. For
qemux86-64 it would be set to bzImage or for the
arm_versatile_926ejs it would be set to zImage.
The specific image that is used is based on the boot
loader that is hard-coded into the QEMU binary.
This image is different than the boot image the real
target might use in some cases. If you specify a full
path to a binary kernel image it will not search the
export directory and will instead use the image
you specified.

Wind River Linux
User's Guide, 5.0.1

364

Variable Description

TARGET_QEMU_KERNEL_OPTS These are any extra options you might want to pass
to the kernel boot line to override the defaults.

TARGET_QEMU_OPTS These are any additional options you need to
pass to the QEMU binary to get it to run correctly.
In the case of the ARM Versatile and MTI Malta
boards, the -M argument is passed so that the
QEMU host binary will be configured with the
correct simulation model since each host binary
supports multiple simulation models within the
same architecture.

Feature or Root File System Specific Items

TARGET_LIBC Value should be glibc or uclibc. No value defers to
the default value glibc.

TARGET_LIBC_CFLAGS Additional flag to add to the fundamental cflags
(in the toolchain wrapper) for the libc being used.
Normally this is blank except for the uclibc case
where it is -muclibc.This is hidden from the
application space.

TARGET_ROOTFS_CFLAGS An additional CFLAG that needs to be used when
a feature or rootfs is specified. Again hidden from
the application space

TARGET_ROOTFS Name of the configured ROOTFS.

Generic Optimizations

TARGET_COPT_LEVEL

TARGET_COMMON_COPT

TARGET_COMMON_CXXOPT

These are all optional optimizations that override
defaults in configure. Generally you use these if
you want to change the optimizations for -Os and
not -O2. See the glibc_small rootfs for an example.

Additional Notes on Build Variables

multilib templates are designed to match the multilibs as defined by the compiler and libcs. The cpu
templates are expected to include a multilib template and either use it “as-is” or augment it with
additional optimizations.

Only multilib templates are allowed to specify TARGET_FUNDAMENTAL_* flags. cpu templates can
only specify:

• TARGET_COMMON_CFLAGS
• TARGET_CPU_VARIANT
• AVAILABLE_CPU_VARIANTS
• COMPATIBLE_CPU_VARIANTS

Everything else is expected to be inherited from multilib templates.

For all of the items in the multilib/cpu templates, they should be prefixed with the variant name. The
following items are required to be prefixed with a variant:

• TARGET_COMMON_CFLAGS

39 Build Variables

365

• TARGET_CPU_VARIANT
• TARGET_ARCH
• TARGET_OS
• TARGET_FUNDAMENTAL_CFLAGS
• TARGET_FUNDAMENTAL_ASFLAGS
• TARGET_FUNDAMENTAL_LDFLAGS
• TARGET_SYSROOT_DIR
• TARGET_LIB_DIR
• TARGET_USERSPACE_BITS
• TARGET_ENDIAN
• TARGET_RPM_TRANSACTION_COLOR
• TARGET_RPM_PREFER_COLOR COMPATIBLE_CPU_VARIANTS
• TARGET_ROOTFS—only specify in a ROOTFS template
• TARGET_COPT_LEVEL, TARGET_COMMON_COPT, TARGET_COMMON_CXXOPT - specify

either ROOTFS or board template, do not specify CPU or Multilib.

The best way to determine what to do in a custom template is use wrll-wrlinux as an example, with the
information provided here in order to create custom templates.

Wind River Linux
User's Guide, 5.0.1

366

367

40
Package Variable Listing

The tables in this section provide a list of the package variables in Wind River Linux.

The following variables are fixed, and identify specific information about the package:

Variable Description

pkg_RPM_DEFAULT Lists all of the produced binary packages that
should be installed on the target file system
(usually excludes development packages.)

pkg_RPM_ALL Lists all of the packages produced (does not inherit
from any other list.) This is used as a validation
that the package is being produced properly. If this
(and RPM_IGNORE) do not match what RPM
tells the build system will be produced, a warning
message is generated telling you that you should
update your makefile.

pkg_TYPE= For an SRPM package, this must be set to SRPM.
For classic packages (ordinary compressed source
files) for which you have added a spec file, it must
be set to spec. For adding a classic package without
a spec file, leave this field empty.

pkg_VERSION= Version-release of the src.rpm package

pkg_ARCHIVE= Complete file name of the src.rpm package

pkg_MD5SUM= The MD5 checksum of the src.rpm package

pkg_UPSTREAM= The download site of the src.rpm package

The following variables may be defined, if necessary:

Wind River Linux
User's Guide, 5.0.1

368

Variable Description

pkg_RPM_NAME= Necessary if the produced RPM name is different
from pkg_NAME, or if more than one binary is
produced.

pkg_DEPENDS A list of dependencies which must be built before
this package is built.

pkg_RPM_DEVEL Lists all of the development packages. These
plus the pkg_RPM_DEFAULT list are installed
into the sysroot for development purposes.
This is only required if the package produces
development RPMs, that is, binary RPMs that
contain information that must be installed into the
sysroot for other programs to build properly

NOTE: The sysroot is populated by
installing both pkg_RPM_DEFAULT and
pkg_RPM_DEVEL.

pkg_RPM_IGNORE In a few cases, the RPM program reports it
will generate a package, that it doesn't actually
generate. This is a way to capture those situations.

369

41
Lua Scripting in Spec Files

Lua is a scripting language with an interpreter built into rpm. This allows you to write %pre and %post
lua scripts to be run at pre- and post-installation.

The wrs library is included in the lua interpreter from Wind River. It consists of three functions:

• wrs.groupadd()
• wrs.useradd()
• wrs.chkconfig()

The following provides an example of a post-install section that creates a group and user named named:

%wrs_post -p <lua>
wrs.groupadd('-g 25 named')
wrs.useradd('-c "Named" -u 25 -g named -s /sbin/nologin -r -d /var/named named')

Each function takes one argument, which is the string you would enter at the shell prompt if you were
running the Linux command of the same name.

Spec file macros are expanded within the string, so the following works as expected:

%wrs_pre -p <lua>
wrs.groupadd('-g %{uid} -r %{gname}')
wrs.useradd('-u %{uid} -r -s /sbin/nologin -d /var/lib/heartbeat/cores/hacluster -M -c
 "heartbeat user" -g %{gname} %{uname}')

As can be seen from the file names, when the lua script executes, the “root” directory is the root of the
target file system.

The base, table, io, string, debug, loadlib, posix, rex, and rpm libraries are also built-in to the lua
interpreter. Their use, and general lua programming is not covered here. For more information on the Lua
scripting language, see http://www.lua.org.

http://www.lua.org

Wind River Linux
User's Guide, 5.0.1

370

371

42
Kernel Audit Directory Contents

Audit data is stored in the projectDir/build/linux-windriver/linux/meta/
cfg/kernel_type/BSP_alias/ directory. The contents of this directory are refreshed for every linux-
windriver.config or linux-windriver.reconfig.

The table below describes the contents of the files that appear in the audit data directory.

For more information on kernel auditing, see Kernel Configuration Fragment Auditing on page 189.

File Description

all.kcf Alphabetical listing of all Kconfig files found in
this kernel.

known_current.kcf List of previously categorized Kconfig files present
in the patched linux tree about to be used for
compilation.

known.kcf List of Kconfig files for which the build system has
already information on whether to be classified as
hardware or not

non-hardware.kcf List of Kconfig files known to contain non-
hardware related items.

hardware.kcf Kconfig files that are to be treated as containing
hardware options.

unknown.kcf List of Kconfig files present in the about-to-be-used
linux tree that are not known by the build system
to be either hardware or non-hardware items.

all.cfg Alphabetical listing of all the CONFIG_ items
found in this kernel

always_hardware.cfg CONFIG_ items that are to be treated as always
hardware, regardless of what Kconfig file they are
in.

Wind River Linux
User's Guide, 5.0.1

372

File Description

always_nonhardware.cfg As above, but non-hardware.

avail_hardware.cfg All the options from all the hardware-related
Kconfig files, less those options found in

always_nonhardware.cfg

specified.cfg List of the CONFIG_ items specified by the BSP.

specified_hdw.cfg List of the CONFIG_ items specified by the BSP
which are hardware (ideally this should be almost
all of them).

specified_non_hdw.cfg List of the CONFIG_ items specified by the BSP
which are non-hardware (ideally this should be
almost always empty).

fragment_errors.txt Settings which are specified multiple times within
a single fragment.

redefinition.txt List of options that are set in one fragment and
then reset in another later on.

invalid.cfg Configuration options specified in the BSP that
do not match any known valid option, that is, this
item is not in any Kconfig file.

BSP-kernel_type-kernel_version A concatenation of all the file fragments. The file of
the same name in projectDir is a symlink to this
file.

config.log The output of the LKC processing as it creates the
final .config file.

	Contents
	Introduction
	Overview
	Wind River Linux Overview
	Kernel and File System Components
	Supported Run-time Boards
	Optional Add-on Products
	Product Updates
	Updating Wind River Linux
	Installing the Experimental Feature Layer
	Adding Packages from the Experimental Feature Layer

	Run-time Software Configuration and Deployment Workflow
	Development Environment
	Directory Structure
	Metadata
	Configuration Files and Platform Projects
	Assigning Empty Values in BitBake Configuration Files

	README Files in the Development Environment
	Viewing a Specific README File in the Installation
	Cloning a Layer to View Installation README Files
	Viewing All Installation README Files in a Web Browser

	Build Environment
	About the Project Directory
	Creating a Project Directory
	Directory Structure for Platform Projects
	Feature Templates in the Project Directory
	Kernel Configuration Fragments in the Project Directory
	Viewing Template Descriptions
	About the layers/local Directory

	About README Files in the Build Environment
	Adding a Layer to a Platform Project to View README Files
	Adding All Layers to a Platform Project to View All README Files

	Platform Project Image Development
	Configuration and Build
	Introduction
	About Creating the Platform Project Build Directory
	About Configuring a Platform Project Image
	Initializing the Wind River Linux Environment
	About the Configure Script
	Specifying a Standard Configuration
	About Configure Options
	Configure Options Reference

	About Building Platform Project Images
	About the make Command
	Yocto Project Equivalent make Commands
	About Build Logs

	Build-Time Optimizations
	Examples of Configuring and Building
	Configuring and Building a Complete Run-time
	Commands for Building a Kernel Only
	Configuring and Building a Flash-capable Run-time
	Configuring and Building a Debug-capable Run-time
	Building a Target Package

	About Creating Custom Configurations Using rootfs.cfg
	About the rootfs.cfg File
	About New Custom rootfs Configuration

	EGLIBC File Systems
	Creating and Customizing EGLIBC Platform Project Images
	EGLIBC Option Mapping Reference

	Localization
	About Localization
	Determining which Locales are Available
	Setting Localization

	Portability
	About Platform Project Portability
	Copying or Moving a Platform Project
	Updating a Platform Project to a New Wind River Linux Installation Location

	Layers
	About Layers
	Layers Included in a Standard Installation
	Installed Layers vs. Custom Layers
	Layer Structure by Layer Type
	About Layer Processing and Configuration
	About Processing a Project Configuration
	Creating a New Layer
	Enabling a Layer
	Disabling a Layer

	Recipes
	About Recipes
	A Sample Application Recipe File
	About Recipe Files and Kernel Modules
	Extending Recipes with .bbappend Files

	Creating a Recipe File
	Identifying the LIC_FILES_CHKSUM Value

	Templates
	About Templates
	Adding Feature Templates
	Adding Kernel Configuration Fragments

	Finalizing the File System Layout with changelist.xml
	About File System Layout XML Files
	About File and Directory Management with XML
	Device Options Reference
	Directory Options Reference
	File Options Reference
	Pipe Options Reference
	Symlink Options Reference
	The Touched/Accessed touch.xml Database File

	Userspace Development
	Developing Userspace Applications
	Introduction
	About Application Development
	Cross Development Tools and Toolchain
	About Sysroots and Multilibs
	Enabling Multilib Support in Platform Projects
	Adding Multilib Packages
	Adding Multilib Support for All Libraries to the SDK
	Adding Static Library Support to the SDK

	Creating a Sample Application
	Exporting the SDK
	Exporting the SDK
	Exporting the SDK for Windows Application Development

	Adding Applications to a Platform Project Image
	Options for Adding an Application to a Platform Project Image
	Adding New Application Packages to an Existing Project
	Adding an Application to a Root File System Using changelist.xml
	Adding an Application to a Root File System with fs_final*.sh Scripts
	Configuring a New Project to Add Application Packages
	Verifying the Project Includes the New Application Package

	Importing Packages
	About the Package Importer Tool (import-package)
	Importing a Sample Application Project as a Package
	Importing a Source Package from the Web (wget)
	Importing a SRPM Package from the Web

	Listing Package Interdependencies

	Understanding the User Space and Kernel Patch Model
	Patch Principles and Workflow
	Patching Principles
	Kernel Patching with scc

	Patching Userspace Packages
	Introduction to Patching Userspace Packages
	Patching with Quilt
	Create an Alias to exportPatches.tcl to save time
	Preparing the Development Host for Patching
	Patching and Exporting a Package to a Layer
	Verifying an Exported Patch
	Incorporating a Patch into a Platform Project Image

	Modifying Package Lists
	About the Package Manager
	Launching the Package Manager
	Removing Packages

	About Modifying Package Lists
	Adding a Package
	About Adding Templates
	Removing a Package

	Kernel Development
	Patching and Configuring the Kernel
	About Kernel Configuration and Patching
	Configuration
	The Initial Creation of the Kernel Configuration File
	Kernel Module Configuration and Patching with Fragments
	Populate the Local Layer with the Required Subdirectories
	Create the Kernel's BitBake Append (.bbappend) File
	Create the Kernel's Configuration Fragment
	Clean up the Linux Kernel Package and Optionally Configure the Package
	Rebuild the Linux Kernel Package and File System
	Run the Emulated Target

	Configuring Kernel Modules With Make Rules
	Configuring the Linux Kernel with menuconfig

	Patching
	Kernel Configuration Fragment Auditing
	Patching the Kernel With SCC Files
	Patching the Kernel

	Creating Alternate Kernels from kernel.org Source
	Exporting Custom Kernel Headers
	About Exporting Custom Kernel Headers for Cross-compile
	Adding a File or Directory to be Exported when Rebuilding a Kernel
	Exporting Custom Kernel Headers

	Using the preempt-rt Kernel Type
	Introduction to Using the preempt-rt Kernel Type
	Enabling Real-time
	Configuring preempt-rt Preemption Level

	Debugging and Enabling Analysis Tools Support
	Kernel Debugging
	Kernel Debugging
	Debugging with KGDB Using an Ethernet Port (KGDBOE)
	Debugging with KGDB Using the Serial Console (KGDBOC)
	Disabling KGDB in the Kernel
	Kernel Debugging with QEMU

	Userspace Debugging
	Adding Debugging Symbols to a Platform Project
	Adding Debugging Symbols for a Specific Package
	Dynamic Instrumentation of User Applications with uprobes
	Configuring uprobes with perf
	Dynamically Obtain User Application Data with uprobes
	Dynamically Obtain Object Data with uprobes

	Debugging Individual Packages
	Debugging Packages on the Target Using gdb
	Debugging Packages on the Target Using gdbserver

	Analysis Tools Support
	About Analysis Tools Support
	Using Dynamic Probes with ftrace
	Preparing to use a kprobe
	Setting up a kprobe
	Enabling and Using a kprobe
	Disabling a kprobe

	Analysis Tools Support Examples
	Adding Analysis Tools Support for MIPS Targets
	Adding Analysis Tools Support for Non-MIPS Targets

	Using Simulated Target Platforms for Development
	QEMU Targets
	QEMU Targets
	QEMU Target Deployment Options
	Setting QEMU Configuration Options
	Accessing the QEMU Monitor
	Viewing QEMU Command Line Options

	QEMU Targets
	Starting a QEMU Session
	Resolving QEMU Start Errors
	Running Multiple QEMU Sessions
	Starting a QEMU Session From a .iso File
	Starting a QEMU Session From a Disk Image
	Starting a QEMU Session With a Graphics Console
	Passing Boot Options to QEMU
	Using Multiple QEMU Options
	Port Mappings for Accessing the QEMU Target Simulation
	Ending a QEMU Session

	TUN/TAP Networking with QEMU
	Configure TUN/TAP in the Wind River Workbench New Target Wizard
	Configure TUN/TAP settings for an existing target connection
	Configure TUN/TAP from the Command Line

	Wind River Simics Targets
	Wind River Simics Targets
	Using Simics from the Command Line
	Meeting Simics Prerequisites
	Launching the Simics Basic Target Console
	Launching the Simics Graphics Target Console
	Enabling Simics Acceleration for x86 BSPs
	Configuring a Simics Target

	Deployment
	Managing Target Platforms
	Customizing Password and Group Files
	Using an fs_final.sh Script to Edit the Password and Group File
	Using an fs_final_sh Script to Overwrite the Password and Group File

	About ldconfig
	Enabling ldconfig Support

	Connecting to a LAN
	Adding an RPM Package to a Running Target
	Adding Reference Manual Page Support to a Target
	Using Pseudo
	About Using Pseudo (fakestart.sh)
	Examining Files using Pseudo
	Navigating the Target File System with Pseudo

	Deploying Flash or Disk Target Platforms
	About Configuring and Building Bootable Targets
	About Configuring a Boot Disk with a USB/ISO Image (Two Build Directories)
	Host-Based Installation of Wind River Linux Images
	Booting and Installing from a USB or ISO Device
	Booting and Installing with QEMU
	Configuring and Building the Host Install (Self-Contained Option)
	Configuring and Building the Host Install (Two Build Directories Option)
	Creating Bootable USB Images
	Creating ubifs Bootable Flash Images
	Enforcing Read-only Root Target File Systems
	Installing a Bootable Image to a Disk
	Installing or Updating bzImage

	Deploying initramfs System Images
	About initramfs System Images
	Creating initramfs Images
	Adding Packages to initramfs Images

	Deploying KVM System Images
	About Creating and Deploying KVM Guest Images
	Create the Host and Guest Systems
	Deploying a KVM Host and Guest

	Testing
	Running Linux Standard Base (LSB) Tests
	About the LSB Tests
	Testing LSB on Previously Configured and Built Target Platforms
	Disabling Grsecurity Kernel Configurations on CGL Kernels
	Running LSB Distribution Tests
	Running LSB Application Tests

	Optimization
	About Optimization
	Analyzing and Optimizing Runtime Footprint
	Analyzing and Optimizing Runtime Footprint
	Collecting Platform Project Footprint Data
	Footprint (fetch-footprint.sh) Command Option Reference

	Reducing the Footprint
	About BusyBox
	Configuring a Platform Project Image to Use BusyBox
	About devshell
	About Static Linking
	About the Library Optimization Option

	Analyzing and Optimizing Boot Time
	Analyzing and Optimizing Boot Time
	Creating a Project to Collect Boot Time Data
	Analyzing Early Boot Time
	About Reducing Early Boot Time
	Reducing Network Initialization Time with Sleep Statements
	Reducing Device Initialization Time
	Removing Unnecessary Device Initialization Times

	Target-based Networking
	About Target-based Networking
	Setting Target and Server Host Names
	Connecting a Board
	Configuring a Serial Connection to a Board
	Setting-up cu and UUCP
	Setting up the Workbench Terminal

	About Configuring PXE
	Configuring PXE
	Configuring DHCP
	Configuring DHCP for PXE
	Configuring NFS
	Configuring TFTP

	Reference
	Additional Documentation and Resources
	Document Conventions
	Wind River Linux Documentation
	Additional Resources
	Open Source Documentation
	External Documentation

	Common make Command Target Reference
	Build Variables
	Package Variable Listing
	Lua Scripting in Spec Files
	Kernel Audit Directory Contents

