
1

Background
Data can be almost anything (e.g., a cryptographic key used by the operating system,
credentials, a confidential document, wireless configuration, etc.). For data to be secure,
the environment that contains the data must behave as expected and defend the data
when that environment is attacked by an adversary who does not have rights to the data.

Typically, this environment consists of the software application handling the data and the
entire stack beneath it. Trustworthiness of this environment may be implicit, e.g., not informed
or evidence-based; or explicit, where the data owner has sufficient evidence to convince
themselves that the environment is trustworthy. In either case, the decision about the
platform’s “trustworthiness” is made when the data owner chooses to place their data in the
care of the platform. If the data owner does not trust the platform, they will not place their data
there. Put another way, it is the act of placing their data on the platform that is the actual decision
point regarding trust, regardless of whether that platform is ultimately trustworthy or not.

The question is, therefore, what evidence is available to convince the data owner that
the platform and the software are trustworthy and will defend the data as expected?
The identity and reputation of the hardware, firmware and software can be used to
assess the platform’s trustworthiness. A modern platform running modern software
provides cryptographic evidence about the platform itself and the software environment
by generating cryptographic measurements of these components. Collectively, this
measurement represents what is known as the Trusted Compute Base (TCB) for the
data in question. These measurements can be used in conjunction with access control
mechanisms for critical assets (e.g., cryptographic keys) and for proof of the platform’s
integrity to an external verifier. This facilitates verified explicit evidence-based platform
trust decisions instead of unverified implicit platform trust without precise evidence.

There are two classes of these measurements, which are static and dynamic.

•	 Static – Measurements rooted at platform reset in a component called the Static
Root of Trust for Measurement (SRTM). The static TCB includes the SRTM and the
subsequent measurement chain, including the entire boot process up to the point the
resulting software environment is self-defending. This means all BIOS/UEFI, option
ROMs, boot loader, and intermediate software are included in the TCB. The scope of
this TCB is quite large and contains many millions of lines of code. Furthermore, there is
a huge variety of platforms and operating systems used in traditional general-purpose
PCs, and therefore, even identifying what is present on any given platform is effectively
impossible. It does make it possible to observe if the environment changes from one
boot to the next, which is useful. However, informed assessment of trustworthiness
based on static measurements is impractical.

Intel® Hardware Shield: Trustworthy
SMM on the Intel vPro® Platform

Client Computing
Platform Security

Wider adoption of modern DRTM-based computing platforms necessitates
dynamically attestable isolation between OS assets and System Management Mode

Authors
Kirk Brannock

Senior Principal Engineer

Amanda Ueno
Strategic Planner

White Paper

2

White Paper | Intel® Hardware Shield: Trustworthy SMM on the Intel vPro® Platform

•	 Dynamic – Measurements are rooted in a hardware event
known as the Dynamic Root of Trust for Measurement
(DRTM). From a TCB perspective, the platform restarts after
the static boot has “completed” such that a new TCB can be
spawned without a full reboot of the platform. The hardware
event plus the DRTM isolate the subsequent dynamically
launched sequence of software from the pre- existing static
boot.

The DRTM provides an independent and separable root and
measurement chain that is small and consistent. As such, a
dynamically launched TCB is not subject to the near-infinite
variation of the static trust chain. Intel pioneered the DRTM in
2007 on the Conroe and Merom generation of Intel® Core™ 2
Duo processors with Intel® Trusted Execution Technology.

Intel provides several complementary technologies that work
together under the Intel® Hardware Shield banner to further
reduce the size of the attack surface:

•	 Intel® Trusted Execution Technology (Intel® TXT)

•	 Intel® Virtualization Technology (Intel® VT-x)

•	 Intel® Virtualization Technology for Directed I/O
(Intel® VT-d)

•	 Intel® Runtime BIOS Resilience

•	 Intel® System Security Report

•	 Intel® System Resources Defense

White Paper Scope
This paper focuses on the more recent additions: Intel® Runtime
BIOS Resilience, Intel® System Security Report, and Intel®
System Resources Defense. Together these technologies
provide a hardware-based mechanism that enforces resources
access policy on System Management Interrupt (SMI) handlers
along with an Intel® Trusted Execution Technology (Intel® TXT)
hardware rooted attestation. This makes possible a reduction
of the SMI handler's privilege and provides attestation of the
resulting SMI handler's properties and access privilege into the
system, respectively.

This paper is organized chronologically, showing the various
generational steps along the path between the Coffee Lake
generation (8th Gen Intel® Core™ processors) and the Comet
Lake generation (10th Gen Intel® Core™ processors). Figure 1.
shows a chronological timeline of the technologies.

This paper is intended to be sufficiently technical to facilitate
understanding of how these technologies operate without being
so deeply technical as to make it long and unreadable; however,
it does assume the reader has a general understanding of Intel
TXT, System Management Mode (SMM), and BIOS/UEFI
architecture. This paper should not in any way be considered a
specification.

8th Gen Intel® Core™ vPro® Processor (CFL):
Intel® Runtime BIOS Resilience

Intel contributed SMM Paging Enhancements to
Open Source
Intel Runtime BIOS Resilience was introduced in the Coffee Lake
generation of the Intel vPro platform, launched in 2018. Earlier,
in 2016, Intel developed and published enhancements to the
UEFI SMI handler's implementation to EDK II, an open-source
implementation of Unified Extensible Firmware Interface (UEFI),
to take advantage of the inherent security properties memory
paging can provide.

With these changes, rather than allow runtime SMM page table
edits as was typical in contemporary BIOS implementations, the
SMM page table is constructed such that it is static and once
established does not change over the course of a boot cycle. All
pages are identity mapped, as is typically the case for SMM.

Furthermore, the page table is constructed defensively in order to
grant no more memory privilege than is necessary, e.g.:

•	 Pages that reference the page table itself are marked as
Read-Only as a first-order defense to prevent runtime
modification of the page table.

•	 Code pages are marked Read-Only and are only permitted
within System Management memory (SMRAM). This helps
prevent SMM code injection.

Figure 1. Intel Hardware Shield Historical Timeline

3

White Paper | Intel® Hardware Shield: Trustworthy SMM on the Intel vPro® Platform

•	 All data pages are marked with the Execute Disable (XD) bit
to prevent execution of data pages. This also helps prevent
SMM code injection.

•	 Data pages that are not intended to be modified at runtime
are marked Read-Only.

•	 In general, memory outside of SMRAM that is not needed
by the SMI handler is not mapped. Typically, all OS owned
memory can be removed from SMM’s view. If this is done, the
potential for meaningful exploit of a latent SMM vulnerability
to exploit user data is greatly reduced.

Intel implemented and contributed this portion of Intel Runtime
BIOS Resilience functionality to the UEFI open source, driving
improvement of SMM security for the whole industry.

Hardware Augmentation with Intel Core vPro
Processors
While the paging implementation described above is a big step
in the right direction, the protections it enables could theoretically
be defeated if an SMM vulnerability allowed a bypass of these
paging properties. E.g., loading a different page table in place of
the one provided by the BIOS, or relocating the SMI handler base
somewhere else in memory, etc.

To reduce the risk of such a bypass, Intel Runtime BIOS Resilience
also includes new SMM specific hardware capabilities in the Intel
Core vPro processors. These hardware enhancements include
several new locks and related changes to architectural behavior
when the locks are used, e.g., CR0 lock, CR3 lock, SMBASE
lock, etc. This hardware augmentation eliminates several
otherwise permitted CPL0 operations while in SMM to help resist
exploitation even if there exists a vulnerability in SMM CPL0 code.
This “deprivileging” of SMM CPL0 hardens the software portion
of the Intel Runtime BIOS Resilience solution without incurring
performance or functional deficits in SMM operation and doesn’t
require rewriting large pieces of SMM code.

9th Gen Intel® Core™ vPro® Processor (WHL):
Intel System Security Report
The improvements made to SMM security in the Coffee Lake
generation of the Intel vPro platform (2018) were impossible
to objectively assess, since they were completely contained in
SMRAM and not visible to the OS. This meant that there was no
practical opportunity to factor the presence of Intel Runtime BIOS
Resilience into OS or IT policies, e.g., network conditional access

policy. Given the theoretical possibility of a subverted/rogue SMI
handler, it is not particularly useful to directly ask the SMI handler
about itself. This information needs to be made available in a
verifiable way that is not easily tampered, even in the presence of a
subverted/rogue SMI handler. Therefore, a separate mechanism
is required.

Intel System Security Report was introduced in the Whisky Lake
and Coffee Lake Refresh generation (9th Gen Intel Core vPro
processors) of the Intel vPro platform to satisfy these attestation
requirements. To facilitate robust and correct attestation, some
minor changes were made to the implementation of Intel Runtime
BIOS Resilience. They are:

1.	 The SMM entry code was delivered as an Intel signed binary
rather than as source code to be compiled as part of the
platform’s BIOS build. The SMM entry code is the first bit
of code in the SMI handler that runs when an SMI occurs.
It is responsible for enabling Intel Runtime BIOS Resilience,
e.g., loading the page table (which was constructed by BIOS
POST code) and configuring Intel Runtime BIOS Resilience
hardware enhancements. The integrity of the SMM entry
code must be provable and attestable as it is within the TCB
of Intel Runtime BIOS Resilience.

2.	 A component designed to assess and report the security
properties of the SMI handler (including the entry
code) is known as the Platform Properties Assessment
Module (PPAM). The PPAM resides in the BIOS System
Management RAM (SMRAM). The PPAM can inspect the
SMM entry code to verify its integrity and inspect the page
table to determine the SMM memory access properties
implemented on the platform.

3.	 A PKCS7 certificate providing a digital signature for the
PPAM. This is used by an Intel TXT-based measured
launched environment (MLE) to verify the integrity of the
PPAM.

Microsoft Windows v1809: Windows Defender
System Guard

In sync with the capabilities added to the Coffee Lake
Intel vPro platform, Microsoft added requirements for
Windows Defender System Guard in Windows 10 version
1809, including DRTM support using Intel TXT along with
specific SMM page table properties and SMM page tables
are locked on every SMM entry that Intel Runtime BIOS
Resilience supports; though, at this point there existed
no software mechanism to verify that Intel Runtime BIOS
Resilience implementation was configured as per Microsoft
Windows Defender System Guard requirements.

Resides in
MSEG
portion of
SMRAM

One for
each
CPU
thread

Sets up paging for Intel® Runtime BIOS Resilience
 and ring separation for Intel® System Resources Defense

Platform Properties
Assessment Module

(PPAM)

SMM Entry Code
PKCS7 certificate

with PPAM
digital signature

Figure 2. Intel System Security Report components

4

White Paper | Intel® Hardware Shield: Trustworthy SMM on the Intel vPro® Platform

SMM Entry Code Binary
The SMM Entry Code is the first bit of code in the SMI handler
in response to an SMI. It is responsible for enabling Intel Runtime
BIOS Resilience, e.g., loading the page table and configuring Intel
Runtime BIOS Resilience hardware enhancements.

Before the inclusion of Intel System Security Report, this code
at the entry to the SMI handler was assembled from the source
as part of the platform’s BIOS build. For systems supporting Intel
System Security Report, Intel supplies this SMM entry code to
platform manufacturers as a binary.

The BIOS boot process overlays this binary at the SMI entry point
in SMRAM for each CPU. This early code within the SMI handler is
within the TCB of Intel Runtime BIOS Resilience (and Intel System
Resources Defense, which was introduced in later platforms and
described on page 5). By including the SMM entry code as a
binary, it is possible to normalize its cryptographic hash of this bit
of the TCB such that it can be verified by the PPAM (more on this
in Trust Relationship: PKCS7 PPAM Certificate section below).

When an SMI occurs, each CPU hardware thread enters SMM
at the entry point established by BIOS during POST. This entry
point is, by convention, set within SMRAM to make sure the SMI
handler is isolated from other software. The SMM Entry code will
transition to protected mode, turn on paging, and transition to
long mode (64-bit mode). It will then configure the Intel Runtime
BIOS Resilience hardware feature before passing control to the
platform manufacturer’s BIOS’s SMI rendezvous code where
each hardware thread is coordinated and SMIs are processed.

Intel TXT handling of SMM
Before exploring the PPAM in detail, it is necessary to understand
how Intel TXT handles SMM, and the inclusion/exclusion of
the SMI handler in the Intel TXT Measured and Launched
Environment (MLE). Because SMM code is within the trust
boundary of an Intel TXT launched software environment,
a dynamically attestable mechanism is required to describe
SMM and its access privilege reach into the platform. The Intel
TXT architecture for SMM was designed to satisfy three basic
requirements:

1.	 SMM bounding policy establishment/negotiation between
BIOS and MLE

2.	 Enforcement of this policy at runtime

3.	 Attestation of both the policy enforcement mechanism and
the policy itself

Because of the complexity involved, a dynamically attested
platform opt in/out for these capabilities was also included.

History: SMI Transfer Monitor

Client Intel® TXT2 and Intel® VT-x architectures were originally
designed to allow for encapsulation and virtualization of the
platform SMI handler using an SMRAM resident peer monitor.
This peer monitor was known as an SMI Transfer Monitor (STM).
This is part of the instruction set that implements the Intel VT-x
architecture, which is known as VMX.

Measurement of the STM was to be done by Intel TXT SINIT
Authenticated Code Module (ACM). Subsequent configuration
of the STM was to be done by an Intel TXT launched MLE using
special behavior of the VMX VMCALL instruction when executed
from the hypervisor root mode. This configuration process would

be done with SMI masked and would establish bounds for the
BIOS SMI guest that the STM would enforce once the STM
hypervisor was “switched on.” Once fully configured, the STM
would intercept all SMI events and transfer control to the SMI
handler code running within a VT guest, enforcing established
bounding policies accordingly.

While architecturally complete regarding the three requirements
listed above, the STM faced many implementation and
deployment challenges stemming from its inherent complexity.

Platform Properties Assessment Module
(PPAM)
While the PPAM superficially resembles a traditional STM, it is
different in function and is conceptually a subset of an STM.

A PPAM and an STM share the same binary header format and
VMCALL invocation mechanism. Additionally, when the platform
and MLE have both opted into PPAM (or STM) support, Intel®
TXT will launch the MLE with the SMI masked to facilitate the
evaluation of SMI access policy without interference from SMM.

However, unlike an STM, a PPAM does not function as a peer
monitor or hypervisor within SMM. Instead, it is entirely transient
around the VMCALL functions and plays no role in policy
establishment or enforcement. Policy establishment is performed
by the BIOS POST, and policy enforcement by the SMM Entry
Code. SMI delivery and handling are executed using legacy SMI
delivery mechanisms once the SMI event is re-enabled by the
MLE.

Like the SMM entry code binary, the Platform Properties
Assessment Module (PPAM) is a binary that is embedded into
the BIOS SMRAM; specifically, in the MSEG portion of SMRAM
originally designed to contain an STM. The purpose of the PPAM
is to report the integrity of the SMM entry code as well as the
details of the platform defined SMM access policies to an Intel
TXT launched MLE.

A PPAM obtains the platform’s SMI handler required access
policy directly from inspection of the SMM Entry Code. Like an
STM, a PPAM provides a report describing this access policy to
the MLE via VMCALL. However, unlike an STM, the PPAM plays
no direct role in the enforcement of this policy, nor does it ever
install a virtualization layer into SMM. With a PPAM, the BIOS SMI
handler runs without virtualization, just as it always has.

Enforcement of SMI Access Policy
Enforcement of the SMI access policy is done using the SMM
Entry Code. The SMM Entry Code stands up all the enforcement
needed to support Intel Runtime BIOS Resilience based memory
policy at each SMI entry. The SMM entry code is designed to be
self-contained and has no external references before it completes
and hands control to the BIOS SMI handler. Code within the SMI
handler that runs after the SMM Entry Code is constrained by the
environment set up by the SMM Entry Code and enforced by Intel
Runtime BIOS Resilience hardware extensions.

PPAM Reporting Function
Like an STM, the PPAM supports reporting of the SMI access
policy via a VMCALL mapped function. The MLE must invoke the
PPAM on each thread following the Intel TXT launch when SMI is
masked. This must be done on every hardware thread to ensure
consistency between threads. The PPAM will compute the
hash of the SMM entry code and compare it to a reference hash

5

White Paper | Intel® Hardware Shield: Trustworthy SMM on the Intel vPro® Platform

embedded in the PPAM image itself. By way of this cryptographic
binding, the SMM entry code is effectively an extension of the
PPAM.

After verifying that the correct SMM entry code is installed, the
PPAM parses out certain configuration data embedded within
the entry code that has been fixed up by BIOS POST code, e.g.,
the physical address of the SMM page table. Using this data, it
can perform consistency checks on them and then derive the
totality of the policy established by the SMM entry code. These
configuration data are normalized when calculating the entry
code hash, facilitating a common SMM entry code solution for all
platforms of the same generation.

After verifying the SMM entry code hash, the PPAM then uses the
embedded configuration data within the entry code to derive the
rest of the security properties of the SMI handler. For example, the
PPAM uses the CR3 base address within the entry code to locate
and then walk the SMM page table. The footprint and access
rules for all memory visible to SMM are therefore, known to the
PPAM. This memory map is reported back to the calling MLE as a
set of memory descriptors where further OS policy decisions can
be made based on the contents of the PPAM report.

Trust Relationship: PKCS7 PPAM Certificate
An Intel TXT launched MLE trust chain begins with the CPU
hardware via execution of the GETSEC[SENTER] instruction.
The CPU first verifies a cryptographic signature over the SINIT
ACM. It then then initializes the DRTM PCRs in the TPM and
begins the dynamic measurement chain by extending the hash
of the SINIT ACM. SINIT operations verify relevant platform
configuration parameters and perform a set of prescribed extend
operations to dynamic PCRs.

During the Intel TXT launch process, the SINIT module will
extend the hash of the PPAM to PCR17. On Intel vPro platform-
based systems1, the SINIT ACM ensures that the PPAM is
configured identically across all hardware CPU threads, so there
is no risk of PPAM differing between threads. The MLE can
verify the TPM log with the final PCR value to determine the “as
measured” PPAM hash.

The reference measurement for this “as measured” PPAM hash is
provided by the platform via a PKCS7 certificate with a well-known
signing key. This certificate provides the cryptographic anchor
for the PPAM. Since the PPAM image contains the hash of the
SMM entry code, the hash of the SMM Entry code is part of the
PPAM measurement in PCR17. Therefore, the SMM entry code is
rooted to the PKCS7 certificate also.

The MLE can establish trust in the PPAM based on trust in the
PPAM PKCS7 certificate. This trust can therefore be extended
to the report generated by the PPAM regarding the SMM entry
code properties and the platform SMM access policy.

10th Gen Intel® Core™ vPro® Processor (CML):
Intel System Resources Defense
While maintaining all the properties of Intel Runtime BIOS
Resilience, the Comet Lake Intel vPro platform (launched 2020)
added privilege ring separation between the SMM entry code
and the SMI handler code. The SMM entry code is extended to
become a CPL02 access policy enforcement shim, and the rest
of the SMI handler is run at CPL3. This ring separation within
SMM provides the necessary mechanism to create and enforce
policies for MSRs, I/O ports, and other registers, in addition to the
memory restrictions provided by the paging described above.

Continuing the theme of running SMI handlers with “least
privilege,” with the ring separation in place, the page table remains
immutable, even to the CPL0 code. Like the memory policy
contained within the page table, the new SMM access policies
included in Intel System Resources Defense are configured
during BIOS POST and locked in place using the immutable
page table. Since CPL0 cannot modify the page table, neither
can it modify the declared policies.

Therefore, the overall architecture and trust model remains the
same as it was in the Whiskey Lake (9th Gen Intel Core vPro
processors) platform. As logically follows, Intel System Security
Report was extended to include the new resource types
supported by Intel System Resources Defense in its report of
SMI access policy. PPAM simply checks a few more things and
includes more information in its report.

Microsoft Windows v1903: Windows Defender
System Guard

In step with the capabilities that Intel System Security
Report added to the platform, Windows 10 version 1903
updated Windows Defender System Guard support to
include SMM Firmware Measurement.

For the first time, visibility of the SMI handler’s reach (and
its limits) was made possible facilitating a more informed
understanding of risk posed by the scope of the TCB.

SMM Entry
Code Hash

PKCS7 PPAM
Certificate

TPM

Platform Properties
Assessment Module

(PPAM)

PPAM
hash

SINIT
ACM

measures
PPAM

Figure 3. Trust relationship: PKCS7 Certification

6

White Paper | Intel® Hardware Shield: Trustworthy SMM on the Intel vPro® Platform

1 Might not apply to all workstation systems using server-based CPUs.
2 CPL is the current privilege level of the currently executing task on the processor. CPL0 is CPL at Level 0, the most privileged level and CPL3 is at CPL Level 3, the least privileged level.

All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel product specifications and roadmaps. Performance varies by use, configuration, and
other factors. Learn more at www.Intel.com/PerformanceIndex.
Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See Performance Index for configuration details. Intel provides these materials
as-is, with no express or implied warranties.
No product or component can be absolutely secure. Your costs and results may vary.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.

0521/KBAU/INTEL/PDF

Microsoft Windows v2004: Windows Defender
System Guard

Given the additional platform security capabilities
and visibility in the Comet Lake Intel vPro platform,
commensurate changes were made to the OS requirements
for Windows Defender System Guard in Windows 10
version 2004.

Concluding Observations
Over the course of three platform generations, by refactoring
SMM implementation and adding Intel-specific hardware
features, the Intel vPro platform has reduced the exploitation
potential of SMM, even if the SMI handler contains vulnerable
code.

Unique to Intel, these changes are fully attestable via an Intel
TXT DRTM launch in a manner that is designed to be free
from interference from potentially exploitable SMM or pre-
boot firmware. These technologies enable the OS to explicitly
verify the isolation between OS assets and SMM rather than
implicitly trusting the platform without strong evidence.

The net consequence of this evolution is that the
contemporary Intel vPro platform delivers state-of-the-art
platform security and enhanced isolation of user data from
SMM while preserving the required platform utility which SMM
provides.

