White Paper -
LLM Model Benchmark I n te I ®

5th Gen Intel® Xeon® Processors

Benchmarking the Indus Language
Model on Intel® Al Hardware

Intel and Tech Mahindra conducted a joint study on measuring the
performance of Project Indus, an open source language model specifically
developed for Hindi and its dialects.

Authors: Executive Summary

Tech Mahindra This white paper presents a comprehensive benchmarking study of Project
Indus, an innovative open-source language model designed specifically for Hindi
and its dialects. Focusing on applications within the Indian linguistic landscape,
Project Indus aims to enhance natural language generation and processing

B. Nilesh
Principal Technical Architect, Tech Mahindra

S.Vinay capabilities. The benchmarking study emphasizes key performance metrics
Lead Architect, Tech Mahindra such as Time to First Token (TTFT), inter-token delay, input prompt length,

M. Satish output prompt length, and total throughput in tokens per second. By evaluating
Lead Architect, Tech Mahindra these parameters under various conditions, including varying numbers of

concurrent requests, a detailed performance profile of the Indus LLM on Intel®
Al hardware was obtained. The results highlight the model's effectiveness and

Intel scalability, offering valuable insights for optimizing its practical implementation.
Rupak Chakraborty This study aims to inform developers and researchers about the performance
PSAM, Intel SMG characteristics of the Indus LLM, facilitating its integration and utilization across

diverse computational environments.

Approach and Methodology

The introduction of Generative Al (GenAl) has marked a significant technological

advancement globally. However, in India, no one has really yet created a large

language model (LLM) from scratch, despite leading companies like OpenAl,
TECH Microsoft, Google, and Meta developing and releasing LLMs as open-source

ma Iﬁ i N d < alternatives.

Indiais a linguistically diverse country with 1,645 dialects and 27 official
languages. Hindi alone has over 600 million speakers and encompasses
numerous dialects, some spoken by more than a million people. Existing models
from top firms have struggled to effectively respond to inquiries in these various
dialects. To address thisissue, it became essential to develop a foundational
model in Hindi that comprehensively includes all its dialects.

Table of Contents Project Indus primarily aims to bridge the digital divide in India by offering

Executive Summary..........coovueenn. 1 technologically advanced solutions that cater to individuals from diverse

Approach and Methodology............ 1 linguistic backgrounds. By facilitating the preservation of critical knowledge
contained in endangered languages, it has the potential to evolve as a

Performance Testingon . X R X .
Intel® AlHardware on AWS 2 civilizational initiative. However, the reality of these large language models is

that they carry a significant carbon footprint, making them environmentally
unsustainable, whether used for training orinferencing. Thus, understanding the
process of LLM creation and devising strategies to make it more sustainable and
ethical emerged as secondary objectives.

BenchmarkingResults................. 3

Standalone Testing on 5th Gen
Intel® Xeon® Processor Server........ 4

Conclusion......cveviiiiiiiiiirainnnns 5

White Paper | Benchmarking the Indus Language Model on Intel® Al Hardware

Makers Lab, the innovation team at Tech Mahindra, built
Project Indus, a ground-up LLM from scratch. The project
kick-started with an extensive outreach initiative to gather
information about Hindi and its 37 dialects. The team
collected 100 GB of data in Hindi and its dialects, making
it the world's largest dataset for these languages. The
model, characterized by an easy-to-use user interface(Ul),
stands as the most cost-effective LLM foundational
model ever created. With 1.2 billion parameters, 22 billion
tokens, ateam of 15 people, and a budget of $150,000,

the model was trained on approximately 100 GB of news,
Wikipedia, and book corpuses. These resources were
diligently gathered, cleaned, annotated, and translated

by the Makers Lab over the initial three months. CDAC
GPUs, whichinvolved 48 powerful 40 GB GPU computers
running A100 GPU in parallel, were used to train this
colossal dataset.

A fine-tuned Indus model with 1.2 billion parameters

has beenimplemented forinference purposes on the

5th Gen Intel® Xeon® processor powered platform.

Intel collaborated with ISV partner Bud Ecosystem to
implement the concept for scalability and high throughput
serving to support alarge number of enterprises and end
users. The scope of work followed an ‘Across the Box
Scale Out’ approach, and the implementation was carried
outusing an‘In-Box Scale Out’ approach with the Sub
NUMA (Non-Uniform Memory Access) cluster.

The projectis Intel-optimized, designed specifically to
leverage platform features like Intel® Advanced Matrix
Extensions (Intel® AMX) and Intel® Advanced Vector
Extensions 512 (Intel® AV X-512) to enhance 'Inference
Serving' performance. To ensure the optimal delivery
of these optimizations, the ISV integrated all platform
variables into a containerimage (VMI).

Physical Server

Memory Bind -3

Memory Bind -1

0 64-9

Inference Engine-1 Inference Engine-3

Memory Bind -0 l Memory Bind -2

Inference Engine-0 Inference Engine-2

[

Load Balancer

Client Application - REST API

Figure 1. Inferencing Serving Architecture

Performance Testing on Intel® Al Hardware
on AWS

NUMA is a shared memory architecture that describes
how main memory modules are positioned relative to
processorsin amulti-processor system. Ignoring NUMA
can lead to suboptimal application memory performance.
However, by taking specific steps, NUMA-related
performanceissues can be mitigated or even leverage
NUMA architecture to enhance parallel applications'
performance. Key considerations include processor affinity,
memory allocation through implicit operating system
policies, and the use of system APlIs for explicit memory
page assignment and migration.

The Indus LLM was validated and benchmarked using the
LLMPerflibrary. This benchmarking involved load tests
that initiated multiple concurrent queries to the LLM APl to
quantify inter-token delay and generation throughput, both
perrequest and across concurrent requests.

Below set of prompts were used for Performance
testing with LLMPerf:

T G & A1 §H ST HIa131] ol e i Tehd & ¢

B 37U H &l el ol Wi H S Tg e dahd & ¢

T TSI & Ggol FA T HBA &2

TH UROTT o Tt e Tkl & 2

Sa# adl vk Fae?

3o sl o ST gaTg 7 He 8 fgmraad €

g ag?

B 37U 3THel WE &l il Uga qohd 2

BH 3T R, AfEs 3R Sn1fciens e ol 8 Ggfoia Ta gaha 2

Frg?

e e, SRS g T SR ITeTd S are S TS Hehd & ¢

aﬁg;ué@wmaémwmﬁw,wﬁﬁmaﬁimﬁm
?

G o HIH T & g 3TU ST ohl UR ek 18 S dl hl o U 8¢

T FheAd & fr T g, g, &R e vad easas ald ¢

G, gAY, 3R R e b Teh @ qoherdl I A ggraah gl & ¢

GheTdl U el o T Q e e 3fik gerd i srrawara & ¢

GheTdl &l G2 H gATd eraretl & ge 1 UR e TR e ST s g

3T A&} ol e H e e 3R G fhg TR A gArl A g a6 ¢

TG TR GRIE Siad & folq i v, GaY, 3iR §HIvr a1 anTg g
TR SATARIF 2

IR el ST 7 STfear &t e A R e

W GHTST H 0] e & S e TR & gH 31Ts] i Sifd gt
BLEES KL

R g e H AfRensti & i o o dd gam?

T YA IR ol GTfeies 3T Tieplies fafded sua shie & ffga et
FUROTAE?

TRt meRwoT A Wi TrATfSieh- Titghhieh @ 7 ol gRac fha
TS & T 3T STed &l G Sl WG Sdierdll GUTH &l STTe g |
HGGTMRLGI?

White Paper | Benchmarking the Indus Language Model on Intel® Al Hardware

TITCT | o ST ohefl 311 Gl oh TheT-Tet el A WK STTeTfetanar 37T
< A fh e TR wTfaa foar?

Y U W fareral Sl Aerey ST qeriRien = 51 & e’ & anTgr faa,
iRz e faea @ Aearg?

W YeTd ol YT A 3 &t 3TTRIeh 37 SrHTiotes Seaial | fand T &
qRedA fhu?

foife=r e ohrer & IR et 3R TR H ST TSR 0T bl e oA
ﬂwlg{%awé WA Yg 3R eTe-sTfeafad l are i Aeg
HLAR?

SIS YT & G RIS ToTell H g T GRereiml & Sreientieieh SrHTISieh-
R g T 8 ?

RS TaTerdl o UT MRS Tt B SRTaTg oA 363 oh MR elrehdiet
% e fgidl RuA Iorang?

T I fRig sromferal # 1pe-fRver uiuwr it e 31t & Qifeyes da H
fFE TR A AR S ST 82

R T H o ot ifeer v @it anfR Q2 o o SR Aot ol gl e
T e ST Hehar g?

Wéﬁ?ﬁﬁa@wqumm%? TR g, A 38 8 Gfera faar T
Hehdllg?

T YA TR TS H TS 3 STl o g e 62

T e o forq ToT e FRRaT e &2

A ArehIel forth TgHd ol Qe g e q a1 38 fafaerar ofi sreqdread
TR Agd g R T?

SR ATl H g ¥efed ot SRl a1l Hgequt 62

TR T H Hfar s vora g gg de sRia ¢ s i@ s aerifae
TG clieheld & [Q @imeries ol Sepdl 82

TR TSI 5 S TR AT o & & ¢ ST SR ToTifa &
SreepIieieh TG ST Hehd 6 ¢

TR AR oh Al ol SR HSTa ST oh foQ gl oAl 311R 31feeh e of
ST arfgu?

AT I ol ST fereh Tl & Afgene & fififie aem & fav s e
frarSTHEag?

I SR Gl T el O & FTEIR oAl L ¥ & W fohall o Fehell 62

The below LLMperf command was used for Performance Benchmarking Indus LLM on AWS Servers having Intel®
Al hardware: python token_benchmark_ray.py --model "Indus_SFT2" --mean-input-tokens 350 --stddev-input-tokens
50 --mean-output-tokens 350 --stddev-output-tokens 50 --max-num-completed-requests 25 --timeout 1800 --num-
concurrent-requests 25 --results-dir "result_outputs" --llm-api openai --additional-sampling-params '§ 3’

Benchmarking Results

gL Standard | Output Standard | MaxNumber | Numberof IR oL 8&?;;?12
NUMA E;?]?tlit Deviation | Prompt Deviation | of Prompt g?onrﬁg;rent I(z:c;g;:y_s ttft_s (p90) Throughout
(Tokens/s)
100 10 0.090 2.571 154
200 20 0.119 5.528 224
300 30 0.207 8.575 259
400 40 0.236 11.530 267
o 250 0 250 50 500 50 0.277 13.637 261
600 60 0.310 17.558 267
700 70 0.461 20.684 274
800 80 0.436 22.331 294
900 90 0.561 26.027 301
1000 100 0.567 29.736 303
100 10 0.055 1.385 161
200 20 0.063 3.216 270
300 30 0.1038 4.854 332
400 40 0.134 6.415 387
ol 350 0 250 50 500 50 0.170 8.036 414
600 60 0.186 10.341 446
700 70 0.264 11.575 463
800 80 0.286 13.608 455
900 90 0.283 15.169 432
1000 100 0.258 17.189 446

White Paper | Benchmarking the Indus Language Model on Intel® Al Hardware

Standalone Testing on 5th Gen Intel® Xeon®
Processor Server

The Indus model was also tested on 5th Gen Intel® Xeon®
Processor Server having the below configuration:

= CPU:Intel® Xeon® Platinum 8580 Processor — 60 Cores
per Socket: Total 120 Cores per Server

= Memory:512GB
= Storage:1TBx1(0S),1.7TB x4 (Data)
= NUMA:4 NUMA node(s)

A custom script was built to send prompts to model and
generate response. Metrics like TTFT, Avg. tokens per
second and E2E latency. Intel provided specific libraries were
installed in python virtual environment to enable optimal use
of underlying Intel® Al hardware. Below is an example:

Below command is used to set environmental variables and run benchmarking:
CPU_ISA=amxONEDNN_MAX_CPU_ISA="AVX512_CORE_AMX"NUM_PARALLEL_EXEC_UNITS=240
OMP_NUM_THREADS=196 numactl --physcpubind=0-29,120-149,30-59,150-179,60-89,180-209,90-119,210-239

--membind=0,1,2,3 python benchmarking.py

Below are the results:
user_prompt | text_generated o AlEeEL time_per_to- ;Zl:e:esc_-
- - kens time ken .
ond
"SR
RIS STE S AR A el
FESmE AR e 7 4.279255152 003657483 27.34120679
EECIE] TIRTE, T, MRS A g d TERUT AT 4, i gt 2 i RS ECIRIEIER AL 2 a3 Rt gaerE))
Frafareg e s e v T LR 7 sikeEh afm ST g
U I EE A Sl qE e o TR A i ® w ISR e R S EcEIERibC
cgincac
HiEEECcEaEE
RicCEccEIE b EeeEd 77 2.365980864 0.030727024 32.54464192
gy TS T ccepl] GERIETE A e, AT T I e s qeat e 8 et qe A a et 3 stef e, g, svefan st g @ afgeaTSTaT
e S I, T AT ST e
"SR
TETHIAH 0T T E
TETHRAE FTHT \TGTW‘ N .
wwfwi‘; 0T Uredl Fagg A af e A g A @ w379 S SR e Rikz ai i SiegH R ol g o1& qguta iR aeez 4, 16 3737437487 0.032219289 31.03730843
A) S R ERERIRE b ETEaT] Fud e A afarar oA wmfag:
2. Tortaf F SR g aaf Far 1@ Sael gehel et afag:
& @Ra iR arEagH qongTS Al
cgincac
AR AT - o
EEREEECE L] T AT Fferd? 28 0.367489576 0.013124628 761926373
FarsaE? b
o e e & FArrSE
ST
T AT R e
T A H ERAT e . N - N N N
s Wﬁqmﬁwmwﬁﬁwémeﬁw,mmamw%w%aﬁimé\m@maﬂzm e Sitgas gaf grf ic i [EskicEied 16 3.728867531 0.03214541 3110864064
ATl I T, S e] o Ferd W Aol ST i g e o I R A ATTATE g | T ST e RITIIG] S e & ar st
EEERICE R SRR
2, T AT $a i aflas g stafrasikat
EeRuecying 7 g itare ar A damf g st |
FARA daf i EEeed 78 2225232363 0.02852862 35.05251915
Elecan] faelg uEd FUEETREE I G s 70 S e o e et ot © @l gyl arsiag | i srepd © g Al ot wrawE
Fel1E 19l g Ul wapurei A ROTIe1E, SRS SETaH(h af e SR R e & AT W S@rsne |
Eecaal
SaTAETeH A 47 S F A
a0 e N no 3719863415 0.031259356 3199042189
EcREzIERI HREIECERIRER GG TG STerTEaf i SREER RIEEE R ARSI o1, 51 6 0TS 9 % 3 1a W Hea@ Eorae st A §
R R RIE LA E R EIEE R EC RIL RIS S W SR, T8 3 SR (S S d a7 | gt eh, 37 R T HFATSITATE i
T 4,000 T A SHaT 678 ARTTEI Gl a1 e gl qal i vgeraf ot a1, S i wiee, ="
SR
At Eg
B e e A , ,
b = AfeEfad, ag agaastaf wd ¢ N n7 3718673944 0.031783538 3146282835
N 2, 3T IS @ A 30 e A1 g, Fa e e agadiarat T ars e qaRT ar A gt datarar o gE g st uTdl & e A
g™y R af a1 U R Tee 6, 37 i RSt RicEEakl
22t efted s waf i AT
kSincac
FERFAAT
SHTBAAL e R , n5 3.699928045 0.032173287 3108168553
S TATRIE 9 S TG {61 RITag 1 HRA RRTET 7 i 2 e TRIE S WA FRAFA TSR " HRA S G 3"l areh e v el e 3 § g i
ST | SQiCiE T FEIAT T, A SHEHID A Sy 5 G0, I A ATl o s v At afteaf wfaf ararad s e,
f . e T, ST T A At BT, SR et gataad
Observations:

33.9984

Avg. tokens per second

0.249-4.27 seconds

Total response time for 22 to 167 tokens

3.07

Avg. end-to-end latency

White Paper | Benchmarking the Indus Language Model on Intel® Al Hardware

Conclusion

The Indus Language Model has undergone extensive benchmarking on the Intel platform, demonstrating robust performance
across several critical areas. These include TTFT inter-token latency, input prompt length, output prompt length, and overall
throughput (measured in tokens per second) at varying concurrent request levels.

During the LLMPerfload testing, the TTFT was found to be 8.03s for2 NUMA nodes and 100 concurrent requests, and 17.18s for
90 percentile requests for 200 concurrent requests. Interestingly, this performance appears to be on par with GPU inference.
The test also reveals that performance scales proportionately with the number of NUMA nodes.

Our findings highlight the impressive responsiveness of the Indus LLM for real-time natural language processing
applications. The model reliably delivers low TTFT on the Intel platform with negligible inter-token latency. Its versatility is
evidentinits ability to handle a variety of linguistic tasks, effectively maintaining processing capabilities across a range of
input and output prompt lengths.

Furthermore, the throughput analysis indicates excellent scalability and efficiency of the Indus LLM. This is evident asit
continues to maintain high output rates even when the number of concurrent requestsincreases. Therefore, the Indus LLM
emerges as a robust, versatile, and efficient model for various linguistic tasks.

intel.

Performance varies by use, configuration and other factors. Learn more at https://intel.com/benchmarks

Performanceresults are based on testing as of dates shown in configurations and may notreflect all publicly available updates. See
backup for configuration details.

No productorcomponent canbe absolutely secure.

Your costsandresults may vary.

Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.

Intel technologies may require enabled hardware, software or service activation.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation orits subsidiaries.
Othernamesand brands may be claimed as the property of others.

