

Achieving high-impact Al

without the high environmental cost

Seven tips to help you

execute AI more sustainably

Remember:

less is more

can run more efficiently than generalist 'frontier' models. With fewer parameters, you can save energy from training to inference, as well as with ongoing updates.

Smaller, domain-specific models

And wherever possible, prune or compress your neural network to

help reduce both compute requirements and energy consumption throughout the training and inference cycles.

Studies show that many

of the parameters within a

trained neural network can

be pruned by as much as

yielding much smaller,

more sparse networks1

Consider

accuracy

Based on your use case,

techniques, rather than

Establish

carbon-aware

computing

environment

Controlling when and where Al execution takes place can have a significant impact on the carbon intensity of your initiative, allowing you to take advantage of available renewable energy and optimize for

lower grid carbon intensity.

a more

compute-intensive FP32

calculations, you can drive

significant energy savings.

determine your tolerance for "accurate enough." With lower precision and mixed-precision

your level of

Be judicious about your Al

Evaluate potential Al projects against your business strategy and technology roadmap to focus efforts on the highest value challenges, and critically examine whether Al is necessary or if other probabilistic methods can suffice.

Don't reinvent the wheel Take advantage of repeatability

and scale with pre-trained models, packaged solutions, and/or shared and federated learnings to avoid duplicating energy-intensive training. Open APIs, like Intel® oneAPI,

allow you to deploy cross-architecture solutions more efficiently, with tools, frameworks, and models helping you build once and deploy everywhere while still optimizing performance.

your hardware By creating a more heterogeneous architecture, you can select the combination of

Optimize

application needs, while helping save energy across networking, storage, and compute. Taking advantage of software optimization libraries can help ensure you're getting the best performance from your chosen

hardware and chipsets to suit your

technologies can drive significant performance/watt improvements and energy savings.

hardware and applications.

Using built-in acceleration

performance/watt improvement on AI

Up to

workloads with Intel® AMX built-in acceleration vs. no acceleration²

Improve your cooling Implement liquid cooling to help as increase hardware lifespan,

reduce energy consumption, as well across your compute environments: on the edge or in your data center.

Liquid cooling can offer: Up to

reduction in coolingrelated power use³

hardware lifespan⁴

increase in

Up to

Contact your Intel representative to learn more about how Intel can help you execute Al more sustainably

Notices and disclaimers Performance varies by use, configuration, and other factors. Learn more on the Performance Index site. Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See backup for configuration details. No product or component can be absolutely secure. Your costs and results may vary, Intel technologies may require enabled hardware, software or service activation

reduction and improve our global environmental impact. Where applicable, environmental attributes of a product family or specific SKU will be stated with specificity. Refer to the 2022 Corporate Responsibility Report (p. 64) for further information. \circledcirc Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others. Understanding deep learning requires rethinking generalization (arxiv.org)
5th Gen Intel Xeon Scalable processors using built-in Intel AMX accelerator engine deliver up to 10.2X better performance and 9.95X performance/watt improvement compared to a baseline 5th Gen Intel Xeon processor without acceleration on Image Classification with ResNet50 workloads. Performance

Intel is committed to the continued development of more sustainable products, processes, and supply chain as we strive to prioritize greenhouse gas

varies by use, configuration and other factors. Results may vary. 8592+: 1-node, 2x INTEL(R) XEON(R) PLATINUM 8592+, 64 cores, HT On, Turbo On, NUMA 2, Total Memory 1024GB (16x64GB DDR5 5600 MT/s [5600 MT/s]), BIOS 2.0, microcode 0x21000161, 2x Ethernet Controller X710 for 10GBASE-T, 1x Ethernet interface, 1x 1.7T SAMSUNG MZQL21T9HCJR-00A07, Ubuntu 22.04.2 LTS, 5.15.0-78-generic, Test by Intel as of 10/10/23. Software configuration: ResNet50_v1.5, Intel Model Zoo: https://github.com/IntelAl/models, gcc=11.4, OneDNN3.2, Python 3.9, Conda 4.12.0, Intel TF 2.13 Immersion Cooling for Data Centers | ICErag | GRC (groooling.com) Immersion Cooling Solutions - Lower Your OPEX and CAPEX | Hypertec