
Implementing Real-Time System Using Intel
Time-Sensitive Networking Capable Ethernet Controller
on Linux Operating System

WHITE PAPER
Implementing Real-Time System Using Intel Time-Sensitive Networking
Capable Ethernet Controller on Linux Operating System

Table of Contents:

Overview of IEEE TSN
standards

Overview of Linux Preempt-RT
and TSN software interface in
Linux

Overview of Product offering of
Intel TSN controllers

Benefits of adopting
Linux-based Solution for
Real-Time System

Case: Phoenix Contact

Conclusion

Futures

1

4

6

6

7

7

7

Overview of IEEE TSN standards
The Internet has been around for decades and the range of applications that are
powering it has grown tremendously from simple web pages with text and pictures,
Internet Relay Chat to on-demand streaming of audio/video contents, Voice over
Internet Protocol telephony and two-way interactive video calls. The need for
networking bandwidth too has sky-rocketed from Fast Ethernet to Gigabit Ethernet
(1G), 10G, 40G, 100G and beyond in the data centers backhaul. Ethernet technology
was originally designed to provide best effort delivery for lightly loaded networks and
has over time evolved into prioritizing media streaming traffic over other traffics. The
dawn of Internet of Things and market movements such as Industry 4.0 (“Smart
Factory”) and autonomous vehicles are driving Ethernet technology to provide data
transfer in a reliable and timely manner. Such is known as Time-Sensitive Networking
and its acronym “TSN” word has been a recent buzz word in Ethernet Technology
domain.

TSN consists of multiple mechanisms specified in IEEE 802.1 covering: (a) time
synchronization, (b) bounded and low packet delivery latency, (c) network resource
management and (d) reliability. In layman’s terms, TSN enables networked applications
to interact in a deterministic fashion. The adoption of TSN is critical as TSN enables
converged network for deterministic OT and best-effort IT applications that can
co-exist without interference.

Overview of Time Synchronization
Foundational to real-time networked application is the capability to time synchronize
the local clock that drives the real-time operations within these networked devices. IEEE
Std. 802.1AS-2011, aka. generalized Precision Time Protocol (gPTP) enhances the
accuracy of time synchronization between two networked nodes from millisecond
(achievable by Network Time Protocol (NTP)) to microsecond or sub-microsecond. This
is made possible as the PTP messages are time-stamped at the network layer instead of
the software layer in the case of NTP. As the use of gPTP increases, more enhancements
such as Fine Timing Measurement for IEEE 802.11 transport, one-step processing,
faster grandmaster change over and reduction of Best Master Clock Algorithm (BMCA)
converge time are added to IEEE Std. 802.1AS-2020. In addition, the support of
multiple clock domains (wall and working clock) and redundant clock synchronization
added to IEEE Std. 802.1AS-2020 are important enhancements for mission-critical
applications.

Ong Boon Leong (Intel Corporation)
Principal Software Engineer

Gunnar Lessmann (Phoenix Contact)
Master Specialist Profinet

White Paper | Implementing Real-Time System Using Intel Time-Sensitive Networking Capable Ethernet Controller on Linux Operating System 2

Overview of Bounded and Low Packet Delivery Latency
To prioritize one traffic streams over another, IEEE Std.
802.1Q-2005 adds the capability to mark traffic streams in the
network using the Priority Code Point (PCP) field of the Virtual
Local Area Network (VLAN) header located at the start of a
network packet. As prioritized traffic flows through an
inter-connected mesh of network bridges, congestion may still
happen on heavy-loaded networks. Such a situation leads to
unbounded packet delivery latency from one end-point to
another and is not desirable for real-time networked
applications.

In networking, an Ethernet frame must be fully transmitted
together with its checksum before the next frame can be sent.

The worst-case packet delivery latency is seen if a short high
priority network packet is blocked by a very long lowest priority
network packet. To overcome such scenario, IEEE Std.
802.1Qbv-2015 adds the functionality to time-control
(time-aware shaper) which traffic streams could be selected for
transmission within an Ethernet MAC controller through the
addition of programmable transmission gate for each
transmission queue. The transmission gate operates in cyclic
fashion (synchronized to gPTP working clock), opening and
closing, according to a user-defined pattern known as gate
control list. An example of gate control list and the availability of
traffic transmission patterns (open = blue, close = red) is shown
below in Figure 1.

IEEE Std. 802.1Qbv-2015 Time Aware Shaper is beneficial in
creating transmission windows solely for cyclic traffics and
other transmission window slots for best-effort traffics shown
in Figure 2. To avoid any delay in cyclic traffic transmission,
guard bands are typically set to the maximum packet size (a.k.a.

Maximum Transmission Unit (MTU)) allowed in the network to
prevent the creeping of best-effort traffic into the transmission
window belonging to cyclic traffic. However, doing such does
come with the penalty of losing network bandwidth utilization
due to the guard band.

1000 0001 0010 0100 1000 0001 0010 0100

Transmission
Quesues

Gate
pattern
by queue

Transmission
SelectionCycle Time = 1ms

0 0.1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 ms.1 .2 .3 .4 .5 .6 .7 .8 .9

Cycle Time = 1ms

10 0 0 0 0 0 0 0

0 0 1 1 1 10 00 0

0 1 0 10 00 0 0 0

1 1 00 00 0 0 0

1

0

10 0 0 0 0 0 0 0

0 0 1 1 1 10 00 0

0 1 0 10 00 0 0 0

1 1 00 00 0 0 0

1

0

1

0

TхQ-3

TхQ-2

TхQ-1

TхQ-0

A B D E F G HC

Priority Transm
ission Scheduler

Each time interval has a pattern
saying which queue is open or closed
during that interval:

Open/closed patterns
A. 1000 (0x8) for first 0.1ms
B. 0001 (0x1) for next 0.1ms
C. 0010 (0x2) for next 0.1ms
D. 0100 (0x4) for next 0.2ms
E. 1000 (0x8) for next 0.1ms
F. 0001 (0x8) for next 0.1ms
G. 0010 (0x2) for next 0.1ms
H. 0100 (0x4) for next 0.2ms

Gate control list (GCL)
SetGates 0x8 100000
SetGates 0x1 100000
SetGates 0x2 100000
SetGates 0x4 200000
SetGates 0x8 100000
SetGates 0x1 100000
SetGates 0x2 100000
SetGates 0x4 200000

Each pattern + interval becomes an entry
in the gate control list on board A and the
switch, with intervals in nanoseconds:

The traffic schedule defined by the GCL is
repeated every 1ms. In each time
interval, traffic for a queue is allowed
through based on whether the gate for
that queue is configured to be open or
closed during the interval.

Open (1) Closed (0)

Figure-1: An Example of Gate Control List for IEEE 802.1Qbv Time-Aware Shaper

Figure-2: An Example of Gate Control List for IEEE 802.1Qbv Time-Aware Shaper

time

cycle n+1

Pri = 7 Guard band Guard bandPri = 6,5,4,3,2,1,0 Pri = 7 Pri = 6,5,4,3,2,1,0

Cycle traffic
(protected)

Best Effort
(Not protected)

Guard band = MTU = no
frame transmission

cycle n

3

Bandwidth loss in guard band could be reduced by applying
frame preemption technology defined by IEEE Std.
802.3br-2016 whereby the transmission of best effort traffic
(aka preemptable frame) is paused momentarily to give way for
high priority cyclic traffic (aka express frame). The transmission
of the remaining packet of the preemptable frame is resumed
immediately after the transmission of the express frame. To

ensure preemptable packet fragments are not seen as
corrupted Ethernet frames, IEEE Std. 802.3br-2016 adds new
start frame delimiter (SMD) definitions (SMD-Sx and SMD-Cx) to
the original Ethernet frame format as shown in Figure-3 below.
In addition, each of the Ethernet fragments (of the preemptable
frame) has its own check-sum (aka mCRC) for frame integrity
purposes.

IEEE Std. 802.1Qbu-2016 adds frame preemption fine-tuning
control to the IEEE 802.1Qbv-2015 gate control list commands,
i.e. hold or release the transmission of preemptable frames
within a transmission window. In addition, the mapping of
application traffic streams to either express frame or
preemptable frame transmission queue is also added by IEEE

Std. 802.1Qbu-2016. Figure 4 shows the effect of express
frames (E1 to E5) that preempt best-effort preemptable frames
into fragments that continue their transmission on the next
cycle time. Clearly, there is no loss of network bandwidth during
the guard band as the interval are filled with fragments from
best-effort preemptable frame.

Preamble7

CRC4

SFD1

MAC (D)6

MAC (S)6

Type2

Data
(max 1500)

2

Original message

Preamble6

SMD-Cx1

1 Frag Count

4 mCRC

Data

Fragment 2..n-1

Preamble

Last fragment

6

SMD-Cx1

1 Frag Count

4 CRC

Data

Preamble7

SMD-Sx1

mCRC4

MAC (D)

MAC (S)

Type

First fragment

Data

Figure-4: Preempted frame that is broken into numerous fragments under IEEE Std. 802.3br

Figure-3: Preempted frame that is broken into numerous fragments under IEEE Std. 802.3br

Cycle 4 E1 E2 E3 E4 E5 SMD-S2

Cycle 3 E1 E2 E3 E4 E5 SMD-C1

Cycle 2 E1 E2 E3 E4 E5 SMD-S1SMD-S0

Cycle 1 E1 E2 E3 E4 E5

Guard BandTime

Ti
m

e

SMD-S0

White Paper | Implementing Real-Time System Using Intel Time-Sensitive Networking Capable Ethernet Controller on Linux Operating System

4

Output transfer time
before next network cycle4Deterministic control

function execution3
Input transfer
time with safety
margin

2
Application cycle
time in-sync with
network cycle time

1

Control FunctionControl Function

En
d

of
Ap

p

St
ar

t o
f

Ap
p

En
d

of
Ap

p

St
ar

t o
f

Ap
p

Application
Time

Application
Time

Tx

Rx

Network Cycle TimeNetwork Cycle Time

Best EffortReal TimeBest EffortReal Time

Transfer
Time

Application Cycle TimeApplication Cycle Time

43

1

2

1

Transfer
Time

Figure 5: Isochronous Real-Time Control Loop Application

Preempt real-time (PREEMPT_RT) patches that transform Linux
from general-purpose operating system (OS) to real-time OS
has been around for decades. In recent years, significant
advancement has been made in merging these patches as part
of the Linux kernel project making the adoption of Linux-based
real-time systems easier than before. With Linux preempt-RT
support, process scheduling has become bounded and low in
latency, often in lower 2-digit micro-seconds range, enabling
real-time applications to be supported on Linux kernel. Low and
bounded process scheduling determinism is important in
fulfilling real-time application processing as shown in Figure-5.
In an actual real-time system, numerous real-time
applications/processes are running concurrently with
independent real-time traffic streams flowing through the same
Ethernet controller. Therefore, in a Linux-based system running
on multiple processing CPU cores, it is important to assign
dedicated CPU cores for real-time workloads. Figure 6 shows an
example of two CPU cores that are solely used for real-time
processing.
The Linux PTP project offers two important utilities, namely
ptp4l and phc2sys. To synchronize network time between two
stations with bounded two digit nano-seconds accuracy, ptp4l
utility calculates the path delay, rate ratio and correction time
using hardware time-stamping of PTP messages that are
exchanged between them. The phc2sys utility is used to
synchronize OS system clock to network clock and could
achieve similar two digit nano-seconds accuracy if the

underlying network controller is capable of cross
time-stamping its PTP hardware clock and the CPU local clock.
Traffic shapers such as Time Aware Shaper and Frame
Preemption are hardware capabilities inside Ethernet
controllers used to ensure network traffic entering the TSN
network in a time-coordinated and deterministics manner.
Since 2017, intel has been working closely with Linux
community to drive standardized application programming
interface (API) in Linux mainline for configuring TSN-related
traffic shapers through Linux traffic control/queue discipline
(QDisc) interfaces as listed below:

• CBS QDisc for IEEE 802.1Qav Credit Based Shaper.

• TAPRIO QDisc for IEEE 802.1Qbv Time Aware Shaper.

• ETF QDisc for ensuring transmit packets from multiple
streams are reordered in correct chronological order.

The QDisc configuration is set through user-space traffic
control (tc) utility. Tunable parameters related to Ethernet
controllers such as number of DMA channels and RX/TX
interrupt coalesce controls are configured using a user-space
utility called ethtool. Both tc and ethtool utilities encapsulate
and pass configuration parameters into Linux kernel via
AF_NETLINK socket (not shown in Figure-6 for simplicity
reason).

Overview of Linux Preempt-RT and
TSN software interface in Linux
Figure 5 shows a real-time application model where a control
function has to be executed and completed at a specific time
within the application cycle-time reliably. As application cycle
time is aligned to network cycle time, the application is
categorized as isochronous real-time application. The control
function processes the input data that arrives at the start of the

cycle time (within the transfer time with safety margin) and the
output of the computation is transmitted at the start of the next
network cycle. At the network level, cyclic real-time traffics are
allocated network bandwidth slots in cyclic fashion using TSN
technologies discussed above. Best effort traffics are
exchanged after control function execution has started in the
application processor and the exchange of best effort traffic
must end before the start of the next network cycle.

White Paper | Implementing Real-Time System Using Intel Time-Sensitive Networking Capable Ethernet Controller on Linux Operating System

5

CPU #3

Real Time
App

Real Time
App

CPU #2

Real Time
App

Real Time
App

CPU #1

Time Sync
Service

Best Effort
App

CPU #0

Best Effort
App

Best Effort
App

Time-coordinated & Deterministic Network Traffics Exchange

Kernel
Network Stack

Queue Discipline Queuing & Forwarding

IP

TCP/UDP

AF_INET AF_RAW

AF
_X

D
P

AF
_X

D
P

AF
_R

AW

AF_INET

Ethernet
Driver TX Frame Processing

Time Aware Shaper

Ethernet PHY

Express MAC Preemptable MAC

Ethernet
Adapter

TX DMA
Ch#7

TX DMA
Ch#0

RX Steering

L2/L3/L4 Filter

RX DMA
Ch#7

RX DMA
Ch#0

RX Frame Processing
Build sk_buff XDP

CPU/IRQ/Data Path Assigned per Real-Time Requirements

Preempt
Real-Time

Kernel
Core Features

namespace

control
groups

Misc

Figure 6: Mixed Criticality Applications in Linux preempt-RT based Kernel Serviced by Time-Sensitive Networking Capable,
Multi-queue Ethernet Network Controller.

In Linux systems, networked IT applications send and receive
network packets through socket interfaces such as AF_INET,
AF_INET6 and AF_PACKET that offer feature-rich transport and
network layer processing inside the kernel. Traffic that flows
through the network stack is subject to a traffic throttling
mechanism called traffic control/queue discipline subsystem
that presents between network stack and network driver as
shown in Figure-6. In gist, Linux network stack enables sharing
of network link for multiple applications at the same time and
by nature does not focus on achieving real-timeness in the
packet processing.
In recent years, Intel has been closely working with the Linux
community to advance a new type of high-performance packet
processing framework that adds a hook in network driver
known as Express Data Path (XDP). The hook allows an early
packet parsing program (using eBPF technology) on arriving
packets before the packets are passed to the network stack. The
verdict of the packet processing is of one of the following
options:-

• XDP_PASS: Pass the packet to Linux network stack. This
involves building a new socket buffer (sk_buff) to store the
received packet.

• XDP_DROP: Drop the packet

• XDP_TX: Re-transmit the packet on the same network
driver

• XDP_REDIRECT: Redirect the packet to another CPU,
network driver or socket.

The ability to by-pass network stack and redirect packets
directly to application socket reduces time spent inside Linux
kernel and is very much desirable for both high throughput and
real-time applications. This class of socket is known as AF_XDP
(Express Data Path) socket interface with Zero-Copy (XDP ZC)
mode. Under zero-copy mode, application-level frame buffers
are pinned to a specific RX DMA channel of the underlying
network controller for receiving incoming packet directly
without involving extra data copy when the packet moves from
kernel space to user space.

In Linux, network packets are processed in batch fashion
through a packet processing technique called NAPI (New API) to
reduce context switching due to packet arrival interruption.
Interruption from the network controller (often per DMA
channel) is disabled when the 1st packet arrives and all
subsequent packets from the same RX queue are processed in
kernel process (polling mode). At the end of batch packet
processing, the interrupt from the network controller is

White Paper | Implementing Real-Time System Using Intel Time-Sensitive Networking Capable Ethernet Controller on Linux Operating System

6

reenabled. Inside the NAPI framework, there are techniques
used to keep the polling mode as long as possible (busy polling
with limit control) and improve polling process scheduling
timeliness by running the NAPI polling process as kernel thread
instead of soft interrupt context. To tie up loose ends, these
techniques are important in our discussion here because the
redirection of packets to AF_XDP socket is done by network
driver during the NAPI polling process.

To summarize, as an industry we have made really good stride
in standardizing API to configure TSN-related traffic shapers,
inclusion of high performance XDP framework, extension of
AF_XDP socket with Zero-Copy capability and the fine-tuning of

NAPI polling to keep packet processing as deterministic as
possible. These are important capabilities much sought after by
real-time developers for implementing Linux-based real-time
system.

Overview of Product offering of
Intel TSN controllers
Intel offers TSN-capable Ethernet controller in two forms,
namely discrete PCIe based Ethernet Adapter card or integrated
Ethernet controller on selected processors as shown in below
table.

Benefits of adopting Linux-based
Solution for Real-Time System
Linux kernel being a corner-stone of successful open-source
software project enjoys a lot of innovative design and imple-
mentation from a vibrant developers community. With Linux
preempt Real-Time functionality capable of achieving low and
bounded 2-digit microseconds process scheduling determin-
ism, a wide variety of real-time appliances can be implemented

by product makers on Linux-based system. We have seen in
chapter 2, there is standardized API for TSN-related traffic
shaper configuration too and high performant low latency
packet processing capabilities are already in the Linux kernel
today. The benefit of adopting Linux-based solution to
implement real-time system are listed below:
• Easier product maintenance and faster security update due

to source code availability

• [1] https://ark.intel.com/content/www/us/en/ark/products/184681/intel-ethernet-controller-i225it.html

• [2] https://ark.intel.com/content/www/us/en/ark/products/184675/intel-ethernet-controller-i225lm.html

• [3] https://www.intel.com/content/www/us/en/products/platforms/details/elkhart-lake.html

• [4] https://www.intel.com/content/www/us/en/products/platforms/details/tiger-lake-up3.html

• [5] https://www.intel.com/content/www/us/en/products/platforms/details/tiger-lake-h.html

• [6] https://www.intel.com/content/www/us/en/products/platforms/details/alder-lake-s.html

Intel® Ethernet Controller
I225-IT/LM [1][2]

• 4 RX and 4 TX DMA Channels
• PCIe 3.1
• 10/100/1000/2500-Mbps
• IEEE 802.1AS
• IEEE 802.1Qav
• IEEE 802.1Qbv
• IEEE 802.1Qbu
• IEEE 802.3br
• Precision Time Measurement (PTM)

for cross time-stamping between
network clock and CPU clock (subject
to CPU PTM capability)

• Other Ethernet functionalities, e.g.
EEE, Jumbo frame, L2/L3/L4 filtering
and VLAN support

Integrated TSN MAC Controller Available in below processor:
• Intel Atom® x6000 Processor, formerly

Elkhart Lake [3] has three integrated
controllers each with 8 RX and 8 TX
DMA channels.

• 11th Gen Intel® Core™ Processor,
formerly Tiger Lake UP3 [4] has one
integrated controller with 6 RX and 4
TX DMA channels.

• 11th Gen Intel® Core™ Processor,
formerly Tiger Lake H [5] has two
integrated controllers each with 6 RX
and 4 TX DMA channels.

• 12th Gen Intel® Core™ Processor,
formerly Alder Lake S [6] has two
integrated controllers each with 6 RX
and 4 TX DMA channels.

• 10/100/1000/2500-Mbps
• IEEE 802.1AS
• IEEE 802.1Qav
• IEEE 802.1Qbv
• IEEE 802.1Qbu
• IEEE 802.3br
• Cross time-stamping between

network clock and CPU clock
• Other Ethernet functionalities, e.g.

EEE, Jumbo frame, L2/L3/L4 filtering
and VLAN support

• Paired with 3rd Ethernet PHY through
RGMII or SGMII

RemarksCapabilities

White Paper | Implementing Real-Time System Using Intel Time-Sensitive Networking Capable Ethernet Controller on Linux Operating System

• Modern and future-proof approach where new kernel
capabilities (e.g. eBPF) can be integrated into product.

• No hardware vendor lock-in as Linux framework often
abstracts out architecture and hardware IP differences.

• Legacy workloads consolidation (e.g. Windows-based HMI)
into the same box through hypervisor-based solution such
as KVM-based hypervisor.

Case: Phoenix Contact
Phoenix Contact with its PLCnext technology is a manufacturer
of industrial automation appliances that uses Real Time Linux
with PROFINET and OPC UA based industrial Ethernet
communication. With the publication of PROFINET specification
v2.4 that integrates TSN functionality, validating technology
readiness of TSN-capable network adapters and their Linux
network drivers from supplier such Intel Corporation is critical
to Phoenix Contact to ensure smooth adoption of new
technology on existing real-time use-cases and “custom of the
shelf” hardware.

Being ingredient provider, Intel enables its TSN product through
Linux-based building blocks ranging from network driver to
configuration utilities (ethtool and tc) to TSN/AF_XDP-based
reference application showcasing how real-time applications
could be developed and perform for Intel’s silicon as shown in
Figure 6. As it is important to ensure Intel’s TSN hardware
capability and the software interface is right for actual industrial
automation equipment makers like Phoenix Contact, both Intel
and Phoenix Contact have been collaborating to ensure
technological requirements are well-understood and
enhancements are iteratively contributed back to Linux
community over the course of TSN technology validation by
Phoenix Contact.

“A major advantage of TSN and Real Time Linux is the use of
Ethernet in time critical applications, without special fieldbus
systems, Ethernet drivers and real time operating-systems. This
enables us to offer competitive and open automation products
with "Custom of the shelf" technology. It has been shown that a
high implementation quality and performance of the integrated
TSN hardware and software is necessary. Through the
cooperation with Intel, this quality could be proven by means of
PROFINET over TSN. Our Linux-based PLCnext controllers will
therefore implement TSN on Intel platforms without special
hardware extensions like e.g., additional FPGAs.

We expect, that the combination of Real Time Linux and
integrated Ethernet TSN interfaces is the best fit for todays and
future automation solutions.”,

explained Gunnar Lessmann, PROFINET Master Specialist,
Phoenix Contact.

Conclusion
Time-Sensitive Networking standards are driven by IEEE
community and undergo iterative enhancements over years as
companies start to adopt and contribute learning back to the
community. To accelerate adoption of TSN technologies, a
matured open source software implementation where
developers could adopt directly and further improve is critical. It
is of such belief, intel invested in working with Linux open
source community to add standardized interfaces in the area of
TSN-related traffic shaper configuration, optimize fast packet
processing capability called Express Data Path (XDP) and
enhance time synchronization accuracy through
hardware-based time-stamping capability. In recent years, Linux
community has made big progress in integrating Linux preempt
real-time support into Linux mainline and together with the
support of TSN and XDP capabilities in the kernel, development
industrial automation product based on Linux mainline
interface is becoming a reality.

7

Intel technologies may require enabled hardware, software or service activation. No product or component can be absolute secure.
Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy. All versions of the Intel vPro® platform require an eligible Intel® Core
™ processor, a supported operating system, Intel LAN and/or WLAN silicon, firmware enhancements, and other hardware and software necessary to deliver the manageability
use cases, security features, system performance and stability that define the platform. See intel.com/performance-vpro for details. Your costs and results may vary.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries.
Other names and brands may be claimed as the property of others. 0822/OBL/In2/PDF

White Paper | Implementing Real-Time System Using Intel Time-Sensitive Networking Capable Ethernet Controller on Linux Operating System

