
Order Number: 330235-002US

Intel® Quark™ SoC X1000
Software Developer’s Manual for Linux*

May 2014

Intel® Quark™ SoC X1000
Software Developer’s Manual for Linux* May 2014
2 Order Number: 330235-002US

Legal Lines and DisclaimersINFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS
OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING
TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death.
SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND
ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL
CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT
LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS
SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.
Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics
of any features or instructions marked "reserved" or "undefined". Intel reserves these for future definition and shall have no responsibility whatsoever
for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design
with this information.
The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published
specifications. Current characterized errata are available on request.
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.
Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-
4725, or go to: http://www.intel.com/design/literature.htm
Any software source code reprinted in this document is furnished for informational purposes only and may only be used or copied and no license, express
or implied, by estoppel or otherwise, to any of the reprinted source code is granted by this document.
Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across different
processor families. Go to: http://www.intel.com/products/processor_number/
Code Names are only for use by Intel to identify products, platforms, programs, services, etc. (“products”) in development by Intel that have not been
made commercially available to the public, i.e., announced, launched or shipped. They are never to be used as “commercial” names for products. Also,
they are not intended to function as trademarks.
Intel, the Intel logo, and Quark are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
Copyright © 2014, Intel Corporation. All rights reserved.

http://www.intel.com/design/literature.htm
http://www.intel.com/products/processor%5Fnumber/

Intel® Quark™ SoC X1000
May 2014 Software Developer’s Manual for Linux*
Order Number: 330235-002US 3

Revision History—Intel® Quark™ SoC X1000

Revision History

Date Revision Description

May 2014 002

Updates for software release 1.0.1 including:
• Modified Section 4.6 to change driver name from “RS232+DMA” to “UART+DMA” to be

more clear. See changebars for details.
• Updated with trademarked term: Intel® Quark™ SoC.

March 2014 001 First public release of document.

Intel® Quark™ SoC X1000—Contents

Intel® Quark™ SoC X1000
Software Developer’s Manual for Linux* May 2014
4 Order Number: 330235-002US

Contents

1.0 Introduction ... 7
1.1 About this Manual ... 7
1.2 Introduction... 7
1.3 Related Documentation ... 7
1.4 Terminology... 8
1.5 Conventions... 8

2.0 Platform Overview .. 9
2.1 Platform Synopsis ... 9
2.2 SoC Features ..10

3.0 Software Overview ..11
3.1 High-Level Software Architecture Overview ...11
3.2 Linux* Support..12

3.2.1 Standard OS Drivers ...12
3.2.2 Host Bridge OS Drivers..12
3.2.3 Bootloader Host Bridge Drivers ...12

3.3 User-Space Software Dependencies..12

4.0 Intel® Quark™ SoC X1000 Drivers..13
4.1 Overview..13
4.2 USB OHCI Controller Interface Driver ...13
4.3 USB 2.0 EHCI Controller Interface Driver ..14
4.4 USB Device Interface Driver ..14
4.5 SD/MMC Controller Interface Driver..14
4.6 UART + DMA Interface Driver ..15
4.7 SPI Interface Driver ...15
4.8 I2C* Interface Driver..16
4.9 GPIO Interface Driver...17
4.10 Ethernet Interface Driver (STMMAC)...17

4.10.1 VLAN ..18

5.0 Intel® Quark™ SoC X1000 Host Bridge Drivers...19
5.1 eSRAM Configuration Driver ..19

5.1.1 Example showing eSRAM stat usage..20
5.1.2 Example of mapping printk into eSRAM from user-space20
5.1.3 Kernel API Reference...20

5.1.3.1 intel_qrk_esram_map_range ..20
5.1.3.2 intel_qrk_esram_unmap_range...21
5.1.3.3 intel_qrk_esram_map_symbol ..21
5.1.3.4 intel_qrk_esram_unmap_symbol ...21

5.2 Isolated Memory Region Driver..21
5.2.1 IMR run-time kernel protection ...22

5.3 Thermal Driver ..22

6.0 Legacy Block Driver ...23
6.1 Legacy GPIO ...23

7.0 Expansion Drivers ..24
7.1 AD7298 Driver ..24
7.2 Bluetooth* Driver ..25

7.2.1 Device discovery...26
7.2.2 Service discovery..26
7.2.3 Establish connection..26

Intel® Quark™ SoC X1000
May 2014 Software Developer’s Manual for Linux*
Order Number: 330235-002US 5

Contents—Intel® Quark™ SoC X1000

7.2.4 Ping ... 26
7.3 Wi-Fi* Driver .. 26

7.3.1 Enable/Disable wlan radio.. 26
7.3.2 Scan for Wi-Fi networks .. 27
7.3.3 Configure a Wi-Fi device.. 27
7.3.4 Generate wpa_supplicant file ... 27
7.3.5 Connect to a Wi-Fi network.. 27
7.3.6 Disconnect from a Wi-Fi network .. 27

7.4 3G Modem Driver .. 27
7.4.1 Verify system installation and configuration ... 28
7.4.2 Send an AT command to HE910 with microcom .. 29
7.4.3 Use minicom.. 29
7.4.4 Request model identification .. 29
7.4.5 Request modem capabilities... 29
7.4.6 Check Radio Access Network registration... 29
7.4.7 Check signal strength ... 29
7.4.8 List all available networks.. 29
7.4.9 Send an SMS text message to 0871234567 ... 30
7.4.10 Receive an SMS text message.. 30
7.4.11 Place a call to 0871234567.. 30
7.4.12 Receive a call... 30
7.4.13 Hang up.. 31
7.4.14 Configure data packet connection (PPP)... 31
7.4.15 Enable data packet connection (PPP)... 31
7.4.16 Obtain GPS location.. 31

8.0 Sample Applications .. 33
8.1 Generic Buffer .. 33
8.2 Generic Buffer High Resolution Timer ... 34

9.0 Secure Boot Implementation ... 36
9.1 Overview ... 36
9.2 Isolated Memory Regions ... 36
9.3 Bootloader Security ... 37

9.3.1 Asset Verification Flow .. 38
9.3.2 Isolated Memory Region Flow... 38

9.4 OS Security .. 40
9.4.1 Early Boot IMR Support... 40
9.4.2 Run-Time IMR Support.. 40

9.4.2.1 intel_qrk_imr_alloc ... 40
9.4.2.2 intel_qrk_imr_free .. 41

9.4.3 Debug Interface ... 41

Figures
1 Intel® Quark™ SoC X1000 Block Diagram ..9
2 Software Architecture Overview .. 11
3 Multiplexing using Intel® Quark™ SoC X1000 SPI Driver ... 16
4 ADC Location in Software Stack .. 24
5 Grub Secure Boot Flow ... 39

Intel® Quark™ SoC X1000—Contents

Intel® Quark™ SoC X1000
Software Developer’s Manual for Linux* May 2014
6 Order Number: 330235-002US

Tables
1 Product Documentation .. 7
2 Terminology ... 8
3 Intel® Quark™ SoC X1000 Hardware Interfaces and Drivers...13
4 IMR Usage During Boot ...37

Intel® Quark™ SoC X1000
May 2014 Software Developer’s Manual for Linux*
Order Number: 330235-002US 7

Introduction—Intel® Quark™ SoC X1000

1.0 Introduction

1.1 About this Manual
Intel® Quark™ SoC is a next generation secure, low-power Intel Architecture (IA)
System on a Chip (SoC) for deeply embedded applications. The Intel® Quark™ SoC
X1000 integrates the Intel® Quark™ Core plus all the required hardware components
to run off-the-shelf operating systems and to leverage the vast x86 software
ecosystem.

This document describes the architecture and usage of the Intel® Quark™ SoC X1000
Software for Linux* kernel 3.8.7 with Quark modifications.

1.2 Introduction
The Intel® Quark™ SoC X1000 Software is a set of silicon enabling software that
exposes silicon features to a run-time kernel and user-space in a convenient manner.
Drivers that have been extended to enable Intel® Quark™ SoC are described in terms
of standard driver interfaces. Drivers that have been created to expose a particular
silicon feature are detailed in terms of their specific in-kernel and/or user-space API.

Intel® Quark™ SoC has standard x86 environment enumeration with legacy block and
PCI enumeration mechanisms that are highly compatible with previous silicon
configurations. Where possible, commercial off-the-shelf (COTS) drivers have been
used and/or modified to achieve maximum compatability with minimum software code
churn.

1.3 Related Documentation
Table 1 lists the product documentation supporting this release.

Standard Linux* documentation can be found at: www.kernel.org/doc/

Table 1. Product Documentation

Title Number

Intel® Quark™ SoC X1000 Datasheet
[Datasheet]

329676

Intel® Quark™ SoC X1000 Secure Boot Programmer’s Reference Manual 330234

Intel® Quark™ SoC X1000 Software Developer’s Manual for Linux* (this document) 330235

Intel® Quark™ SoC X1000 Board Support Package (BSP) Build and Software User Guide
[Build & SW User Guide]

329687

Intel® Quark™ SoC X1000 Software Release Notes 330232

Intel® Quark™ SoC X1000 UEFI Firmware Writer’s Guide 330236

http://www.kernel.org/doc/

Intel® Quark™ SoC X1000—Introduction

Intel® Quark™ SoC X1000
Software Developer’s Manual for Linux* May 2014
8 Order Number: 330235-002US

1.4 Terminology

1.5 Conventions
The following conventions are used in this manual:

• Courier font - code examples, command line entries, API names, parameters,
filenames, directory paths, and executables

• Bold text - graphical user interface entries and buttons

§ §

Table 2. Terminology

Term Description

ADC Analogue to Digital Converter

BSP Board Support Package - a set of silicon enabling software which enables and
enhances a run-time operating system kernel, such as Linux*.

DMA Direct Memory Access

EHCI Enhanced Host Controller Interface

eSRAM embedded SRAM

GIP Gateway Internet Protocol

GPIO General Purpose Input/Output

I2C* I-squared-C - a type of two wire communications bus

IMR Isolated Memory Region

LAN Local Area Network

MMC Multi Media Card

OHCI Open Host Controller Interface

PCH Platform Control Hub

SD Secure Digital Flash

SoC System on Chip

SPI Serial Peripheral Interconnect

STMMAC STMicroelectronics Media Access Controller

UART Universal Asynchronous Receiver/Transmitter

USB Universal Serial Bus

VLAN Virtual LAN

Intel® Quark™ SoC X1000
May 2014 Software Developer’s Manual for Linux*
Order Number: 330235-002US 9

Platform Overview—Intel® Quark™ SoC X1000

2.0 Platform Overview

2.1 Platform Synopsis
Intel® Quark™ SoC X1000 is a next generation, secure, low-power Intel Architecture
System on Chip (SoC) for deeply embedded applications. As shown in Figure 1, Intel®
Quark™ SoC X1000 is comprised of a Intel® Quark™ Core processor with a host bridge,
PCIe expansion, a range of I/O interfaces, DDR3 controller, and an eSRAM block.

Figure 1. Intel® Quark™ SoC X1000 Block Diagram

Intel® Quark™ SoC X1000—Platform Overview

Intel® Quark™ SoC X1000
Software Developer’s Manual for Linux* May 2014
10 Order Number: 330235-002US

2.2 SoC Features
The main features relevant to the Intel® Quark™ SoC X1000 Software are as follows:

• Intel® Quark™ Core
— Intel® Pentium® compatible instruction set architecture (ISA)
— Time stamp counter register (TSC)
— Local APIC (LAPIC)
— MSR compatability CPUID family = 0x5 revision = 0x09

• Host Bridge
— 512k of fast access embedded SRAM (eSRAM)
— 8 x memory protection regions, called Isolated Memory Regions (IMRs)
— Thermal Sensor

• Legacy block
— 8254 Programmable Interval Timer (PIT)
— 2 cascaded 8259 Programmable Interrupt Controllers (PIC)
— High Precision Event Timer (HPET)
— IO-APIC
— Real Time Clock (RTC)
— GPIO x 8 - 6 in suspend well - driving NMI, SCI, or SMI
— Legacy SPI and Boot ROM

• Intel® Quark™ SoC X1000
— OCHI USB Host controller
— EHCI USB Host controller
— USB Device controller
— 2 x 16550 UART with DMA enhancements
— 2 x SPI Master interface
— I2C* Master interface
— GPIO interface (non-legacy)
— 2 x 100 Mbit Ethernet with external PHY
— eMMC/MMC controller interface

§ §

Intel® Quark™ SoC X1000
May 2014 Software Developer’s Manual for Linux*
Order Number: 330235-002US 11

Software Overview—Intel® Quark™ SoC X1000

3.0 Software Overview

3.1 High-Level Software Architecture Overview
The Intel® Quark™ SoC X1000 uses many off-the-shelf software components to enable
product features. This aim is pervasive throughout the system in terms of Intel®
Quark™ Core, Host Bridge, and SoC components.

Intel® Quark™ SoC X1000 has two key categories of software deliverables:
• Extensions to existing Linux* device drivers to enable the Intel® Quark™ SoC

X1000
• Creation of entirely new drivers for Host Bridge-related functions

Figure 2. Software Architecture Overview

Intel® Quark™ SoC X1000—Software Overview

Intel® Quark™ SoC X1000
Software Developer’s Manual for Linux* May 2014
12 Order Number: 330235-002US

3.2 Linux* Support

3.2.1 Standard OS Drivers

The software delivery supports Linux. Many of the I/O drivers, including USB, Ethernet,
UART, I2C, and SPI, are derived from existing upstream kernel components. (The
I2C/GPIO driver was created for Intel® Quark™ SoC X1000.) Driver modifications
maintain compatibility with existing software while enabling Intel® Quark™ SoC X1000
specific features.

See Table 3, “Intel® Quark™ SoC X1000 Hardware Interfaces and Drivers” on page 13
for details.

3.2.2 Host Bridge OS Drivers

Host Bridge silicon enabling software is specific to the Intel® Quark™ SoC X1000 and
as such has no formal operating system interface that exactly matches the conceptual
paradigms. For this reason, Intel® Quark™ SoC X1000 specific APIs and user-space
interfaces via sysfs and proc have been developed for the IMR and eSRAM interface.

Details on the interfaces for IMR and eSRAM configuration are provided later in this
document.

3.2.3 Bootloader Host Bridge Drivers

In order to facilitate secure boot, the reference bootloader grub v 0.97 with EFI
extensions has been modified to support setup and teardown of IMRs as appropriate to
transition from UEFI to run-time OS. Section 9.0, “Secure Boot Implementation” on
page 36 describes this flow.

3.3 User-Space Software Dependencies
To facilitate exposure of silicon features, the user-space component of the runtime
reference OS requires the following utilities:

• ethtool - customized version of ethtool updated to include registers exported by
the Intel® Quark™ SoC X1000

• ptpd - Precision Time Protocol Daemon

These utilities are included with the Intel® Quark™ SoC X1000 yocto layer.

§ §

Intel® Quark™ SoC X1000
May 2014 Software Developer’s Manual for Linux*
Order Number: 330235-002US 13

Intel® Quark™ SoC X1000 Drivers—Intel® Quark™ SoC X1000

4.0 Intel® Quark™ SoC X1000 Drivers

System on a Chip in the context of Intel® Quark™ SoC X1000 refers to peripheral
hardware south of the host bridge interface. SoC software drivers bind the hardware
interfaces into standard Linux* sub-systems. Linux* kernel baseline of 3.8.7 (or
higher) is required to ensure proper integration and compatibility of upstream reused
kernel drivers.

4.1 Overview
Table 3 lists the hardware interfaces implemented on Intel® Quark™ SoC X1000 and
identifies whether the associated driver is one of the following:

• standard (unmodified) off-the-shelf driver
• modified version of off-the-shelf driver, enhanced to enable Intel® Quark™ SoC

X1000 specific features
Note: Refer to the software sources to determine the complete list of modified or

added files as compared to the Linux* kernel baseline 3.8.7.
• created to be Intel® Quark™ SoC X1000 specific

4.2 USB OHCI Controller Interface Driver
The standard Linux* OHCI driver is 100% compatible with Intel® Quark™ SoC X1000.
This driver provides full USB host control and arbitration of the USB in EHCI mode.

To load this driver in Linux* as root, type:
modprobe ohci_hcd

Table 3. Intel® Quark™ SoC X1000 Hardware Interfaces and Drivers

Hardware Interface Standard
Linux* Driver

Modified
Linux* Driver

Intel® Quark™
SoC X1000

Specific Driver

USB OHCI Controller Interface X

USB 2.0 EHCI Controller Interface X

USB Device Interface X†

SD/MMC Controller Interface X

UART + DMA Interface X†

SPI Master Interface X

I2C Master Interface X

I2C/GPIO Interface X

Ethernet Interface X

† PCI vendor/device identifiers added for Intel® Quark™ SoC X1000.

Intel® Quark™ SoC X1000—Intel® Quark™ SoC X1000 Drivers

Intel® Quark™ SoC X1000
Software Developer’s Manual for Linux* May 2014
14 Order Number: 330235-002US

Once loaded, the OHCI driver provides access to USB 1.1 devices through either of the
USB host ports, thus enabling host controller interface with full speed and low speed
USB devices.

A given USB port can be OHCI mode or EHCI mode, but not both.

4.3 USB 2.0 EHCI Controller Interface Driver
The standard Linux* EHCI driver is 100% compatible with Intel® Quark™ SoC X1000.
This driver has a prerequisite for the OHCI to be loaded before the EHCI driver is
loaded. Once loaded, the EHCI driver provides full host control and arbitration of the
USB in EHCI mode.

To load this driver in Linux* as root, type:
modprobe ohci_hcd

modprobe ehci_hcd

Once loaded, the EHCI driver provides access to High speed USB devices through either
of the Intel® Quark™ SoC X1000 host controller ports.

A given USB port can be OHCI mode or EHCI mode, but not both.

4.4 USB Device Interface Driver
The standard PCH UDC driver (with the addition of Intel® Quark™ SoC X1000 PCI
vendor/device identifiers) is 100% compatible with Intel® Quark™ SoC X1000.

Using the reference driver released in the software package, type:
modprobe pch_udc

This loads the hardware driver.

To have Intel® Quark™ SoC X1000 appear as a USB mass storage device, and
assuming a suitable file exists at
/media/mmc1/floppy.img, type:

modprobe g_mass_storage file=/media/mmc1/floppy.img

Intel® Quark™ SoC X1000 should then present to the USB host machine as a standard
USB mass storage device.

4.5 SD/MMC Controller Interface Driver
The standard Linux* MMC/SD driver (which includes SDIO support) is 100% compatible
with Intel® Quark™ SoC X1000. Once loaded, an MMC or SD storage device appears as
a standard Linux* block interface, upon which a file system can be formatted and
mounted.

This example loads the SDHCI PCI driver and MMC block device driver:
modprobe sdhci-pci

modprobe mmc_block

Once loaded, assuming the MMC card is partitioned and formatted, device entries
appear in /dev representing the partitions found on the MMC device.

Intel® Quark™ SoC X1000
May 2014 Software Developer’s Manual for Linux*
Order Number: 330235-002US 15

Intel® Quark™ SoC X1000 Drivers—Intel® Quark™ SoC X1000

4.6 UART + DMA Interface Driver

Note: In the [Datasheet], this is referred to as the high speed UART.

The standard upstream 16550 PCI UART will work with Intel® Quark™ SoC X1000, with
the addition of the relevant PCI vendor/device strings. The Intel® Quark™ SoC X1000
UART interface is 100% compatible with the standard 16550 register interface,
however, the standard driver does not support DMA.

The FIFO depth is 16 bytes and hardware flow control is included. The Intel® Quark™
SoC X1000 has two UARTs.

Note: There is no support supplied for legacy I/O port access at addresses 0x3F8, 0x2F8,
0x3E8 or 0x2E8.

Inside the PCI configuration space of each UART, a second PCI BAR exists containing
DMA registers that can be used with each of the UARTs to provide high data
throughput.

A custom driver called intel_quark_uart is provided to take advantage of these DMA
registers. The driver is built into the kernel and is used to display boot messages.

This driver registers:
/dev/ttyQRK0

/dev/ttyQRK1

DMA is enabled by default on ttyQRK0 and disabled by default on ttyQRK1.

To disable DMA, add the following kernel parameter: intel_quark_uart.use_dma=0

To enable DMA on ttyQRK1, modify the source code to remove use_dma=0

4.7 SPI Interface Driver
The Intel® Quark™ SoC X1000 SPI interface exports a standard SPI interface from
kernel-space to user-space. Two SPI master interfaces are available on Intel® Quark™
SoC X1000. To increase the number of devices that Intel® Quark™ SoC X1000 can
communicate with simultaneously, GPIOs are used to achieve multiplexing (also called
muxing) of the SPI master interface.

This muxing approach allows Intel® Quark™ SoC X1000 to communicate with up to
four SPI slave interfaces, with a maximum of two slave devices at any one time as
shown in Figure 3.

To load Intel® Quark™ SoC X1000 SPI driver, type:
modprobe spi-pxa2xx.ko

modprobe spi-pxa2xx-pci

modprobe spidev.ko

Note: For non-MSI, type: modprobe spi-pxa2xx.ko enable_msi=0

GPIO pin selection is achieved by providing board-specific data in the file:
drivers/x86/platform/qrk/boardname.c

Once loaded, the master SPI driver populates entries in /dev as follows:
/dev/spidev0.0

/dev/spidev0.1

/dev/spidev1.0

/dev/spidev1.1

Intel® Quark™ SoC X1000—Intel® Quark™ SoC X1000 Drivers

Intel® Quark™ SoC X1000
Software Developer’s Manual for Linux* May 2014
16 Order Number: 330235-002US

The format is /dev/spidevX.Y where:
• X indicates the master interface
• Y indicates the slave interface

4.8 I2C* Interface Driver
The I2C and GPIO components are contained within the same PCI function and share
resources as a consequence. The I2C register interface is 100% compatible with the
upstream i2c-designware-core driver.

This register interface is incorporated in the intel_qrk_gip driver, which provides a
standard I2C interface when loaded. The GIP interface can be loaded in either MSI or
non-MSI mode using the commands:

modprobe intel_qrk_gip

modprobe intel_qrk_gip enable_msi=0

In either case, loading this driver and using the command modprobe i2c-dev
populates:

/dev/i2c-0

Figure 3. Multiplexing using Intel® Quark™ SoC X1000 SPI Driver

Intel® Quark™ SoC X1000
May 2014 Software Developer’s Manual for Linux*
Order Number: 330235-002US 17

Intel® Quark™ SoC X1000 Drivers—Intel® Quark™ SoC X1000

Once populated, it is possible to communicate with downstream I2C devices using the
standard Linux* API to interact with the I2C bus.

To load the I2C driver in isolation (that is, without the GPIO enabling logic contained in
the GIP block), type.

modprobe intel_qrk_gip gpio=0

modprobe intel_qrk_gip gpio=0 enable_msi=0

4.9 GPIO Interface Driver

Note: This driver is different than the one described in Section 6.1, “Legacy GPIO” on
page 23.

The GPIO and I2C components are contained within the same PCI function and share
resources as a consequence. This GPIO interface is a new register interface and is
enabled by the GPIO section of the intel_qrk_gip device driver module.

In the [Datasheet], these pins are referred to as GPIO[7:0]. These GPIO pins are
interrupt-capable. They support rising/falling edge-triggered interrupts (but not both)
and high/low level-triggered interrupts.

To load the GPIO driver in isolation (that is, without the I2C enabling logic contained in
the GIP block) type:

modprobe intel_qrk_gip i2c=0

modprobe intel_qrk_gip i2c=0 enable_msi=0

Note: Enabling MSIs is recommended for improved performance.

4.10 Ethernet Interface Driver (STMMAC)
The STMMAC driver upstream in the Linux* kernel is nearly entirely compatible with
Intel® Quark™ SoC X1000, with some minor updates to the DMA component of the
STMMAC driver. This update to STMMAC is based on modification of the upstream
driver.

In addition to the necessary DMA enumerating descriptors in STMMAC, additional
Intel® Quark™ SoC X1000 specific silicon-enabling enhancements have been made to
the standard STMMAC. The enhancements include:

• VLAN
— Hardware filtering has been added
— Maximum number of hardware filtered VLAN tags is 16
— Tag ID range 0 - 15

The following commands demonstrate how to load the STMMAC in either MSI or
non-MSI mode.

modprobe stmmac

modprobe stmmac enable_msi=0

Note: MSI mode is enabled by default.

Intel® Quark™ SoC X1000—Intel® Quark™ SoC X1000 Drivers

Intel® Quark™ SoC X1000
Software Developer’s Manual for Linux* May 2014
18 Order Number: 330235-002US

4.10.1 VLAN

The standard Linux* commands ip or vconfig can be used to add or remove hardware
accelerated VLAN tag filtering entries in STMMAC.

The following commands demonstrate how to add VLAN # 5:
vconfig add eth0 5

ifconfig eth0.5 xxx.yyy.zzz.qqq

Once setup is complete, VLAN frames with tag ID 5 are processed by Intel® Quark™
SoC X1000 while other ethernet frames with different tags are not processed by
hardware and do not raise interrupts to the core.

To remove a hardware filtered VLAN interface, enter the command:
vconfig rem eth0.5

§ §

Intel® Quark™ SoC X1000
May 2014 Software Developer’s Manual for Linux*
Order Number: 330235-002US 19

Intel® Quark™ SoC X1000 Host Bridge Drivers—Intel® Quark™ SoC X1000

5.0 Intel® Quark™ SoC X1000 Host Bridge Drivers

Host Bridge Drivers in the context of Intel® Quark™ SoC X1000 refer to drivers for
silicon functionality that are part of the Host Bridge interface on Intel® Quark™ SoC
X1000. This functionality is exposed via a side-band driver that arbitrates access to the
various components using the Host Bridge interface.

The side-band driver provides access to the following blocks of functionality:
• eSRAM
• Isolated Memory Regions
• Thermal

5.1 eSRAM Configuration Driver
Intel® Quark™ SoC X1000 contains a set of embedded SRAM (eSRAM). There is 512
kilobytes of eSRAM sub-divided into 128 pages of four kilobytes each. eSRAM can be
configured in “block” mode or in a per-page manner, and eSRAM can exist in an overlay
or as a contiguous chunk of memory in the address space.

eSRAM is a fast access low-latency memory that has been measured on Intel® Quark™
SoC X1000 to be approximately 3x faster than DDR, in terms of CPU wait-states and
access times.

For Linux* enabling purposes, eSRAM has been configured in a per-page overlay mode.
This approach allows overlay of specific regions of memory. For example, the interrupt
descriptor table or arbitrary interrupt service routines (ISRs) can be locked into eSRAM.

Any kernel symbol visible in /proc/kallsyms can be mapped into eSRAM. The
minimum granularity for any map operation is 4 kilobytes, hence any other data within
the same 4 kilobyte address range is also mapped.

A sysfs interface has been provided to configure eSRAM mappings.
• /sys/devices/platform/intel-qrk-esram/map

— Allows mapping of a given kernel symbol
— Allows unmapping of a given kernel symbol
— Allows viewing of all current eSRAM mappings

• /sys/devices/platform/intel-qrk-esram/stats
— Gives a status overview of current eSRAM state
— Number of free pages
— Next eSRAM ECC scrub
— Other miscellaneous data

Intel® Quark™ SoC X1000—Intel® Quark™ SoC X1000 Host Bridge Drivers

Intel® Quark™ SoC X1000
Software Developer’s Manual for Linux* May 2014
20 Order Number: 330235-002US

5.1.1 Example showing eSRAM stat usage

root@clanton:~# cat /sys/devices/platform/intel-qrk-esram/stats

esram-pgpool : 0x19f8fc00

esram-pgpool.free : 127

esram-pgpool.flushing : 127

esram-ctrl : 0x047f3f91

esram-ctrl.ecc : enabled

esram-ctrl.ecc-theshold : 63

esram-ctrl.pages : 128

esram-ctrl.dram-flush-priorityi : 2

esram-block : 0x00000000

free page : 127

used page : 1

refresh : 675000ms

page enable retries : 0

page disable retries : 0

ecc next page : 126

5.1.2 Example of mapping printk into eSRAM from user-space

root@clanton:~# echo printk on > /sys/devices/platform/intel-qrk-esram/map

root@clanton:~# cat /sys/devices/platform/intel-qrk-esram/map

printk+0x0/0x3a

 Page virt 0xc12ab000 phys 0x012ab000

 Refcount 1

We can easily verify the mapping is correct by viewing /proc/kallsyms

root@clanton:~# cat /proc/kallsyms | grep printk

c1004ea0 T printk_address

c101cd00 T early_printk

c12ab110 T printk

5.1.3 Kernel API Reference

An API to map known kernel symbols and arbitrary kernel address ranges is available.

Note: Unmapping is neither supported nor advised due to potential coherency issues when
flushing eSRAM back to DRAM. Unmap code is provided for reference purposes only.
Unmapping an eSRAM overlay is not guaranteed to be cache coherent.

5.1.3.1 intel_qrk_esram_map_range

Map 4k increments at given address to eSRAM. Maps any arbitrary virtual address from
vaddr to vaddr + size bytes. This mapping is then named mapname.

int intel_qrk_esram_map_range(void * vaddr, u32 size, char * mapname);

• vaddr: Virtual address to start mapping (must be 4k aligned)
• size: Size to map from - aligned to a 4 kilobyte boundary
• mapname: Mapping name - must be a valid kernel symbol name
• return 0 success < 0 failure

Intel® Quark™ SoC X1000
May 2014 Software Developer’s Manual for Linux*
Order Number: 330235-002US 21

Intel® Quark™ SoC X1000 Host Bridge Drivers—Intel® Quark™ SoC X1000

5.1.3.2 intel_qrk_esram_unmap_range

Unmaps an address range from a given base address vaddr to vaddr+size.

int intel_qrk_esram_unmap_range(void * vaddr, u32 size, char * mapname);

• vaddr: Virtual address to start mapping (must be 4k aligned)
• size: Size to map from
• mapname: Mapping name - must be a valid kernel symbol name
• return 0 success < 0 failure

5.1.3.3 intel_qrk_esram_map_symbol

Maps a series of 4k chunks starting at vaddr&0xFFFFF000. vaddr shall be a kernel text
section symbol (kernel or loaded module).

Symbol size is obtained from /proc/kallsyms. The entire size of the symbol plus
whatever padding is necessary to get alignment to eSRAM_PAGE_SIZE is guaranteed to
be mapped. Other code/data inside the mapped pages will get a performance boost for
free.

int intel_qrk_esram_map_symbol(void * vaddr);

• vaddr: Virtual address of the symbol
• return 0 success < 0 failure

5.1.3.4 intel_qrk_esram_unmap_symbol

Logical corollary to intel_qrk_esram_map_symbol. Removes mapping of pages starting
at the address of the symbol vaddr. Reference counting for individual pages means that
an eSRAM page can only become unmapped once all mapping references have been
removed. If printk() and malloc() both live in the same four kilobyte physical
address range and both have been mapped into eSRAM, then only when both mapping
references have been removed, will the physical mapping reference also be removed.

int intel_qrk_esram_unmap_symbol(void * vaddr);

• vaddr: Virtual address of the symbol
• return 0 success < 0 failure

5.2 Isolated Memory Region Driver
Isolated Memory Region (IMR) allocation and assignments are detailed in the Intel®
Quark™ SoC X1000 Secure Boot Programmer’s Reference Manual. In Linux* a run-time
interface provides an convienient method to view IMR allocations.

This interface shows the IMR allocations provided as part of the secure boot reference
code on the Intel® Quark™ SoC X1000.

Intel® Quark™ SoC X1000—Intel® Quark™ SoC X1000 Host Bridge Drivers

Intel® Quark™ SoC X1000
Software Developer’s Manual for Linux* May 2014
22 Order Number: 330235-002US

5.2.1 IMR run-time kernel protection

root@clanton:~# cat /proc/driver/imr/status

imr - id : 0

info : System Reserved Region

occupied : yes

locked : yes

size : 4344 kb

hi addr (phy): 0x0143dc00

lo addr (phy): 0x01000000

hi addr (vir): 0xc143dc00

lo addr (vir): 0xc1000000

read mask : 0x80000001

write mask : 0xc0000001

5.3 Thermal Driver
Linux* provides a standard thermal driver interface. Intel® Quark™ SoC X1000 hooks
its particular thermal silicon into this Linux* sub-system. Since Intel® Quark™ SoC
X1000 does not require external cooling, the thermal driver is minimalistic in design,
with no associated thermal cooling device attached to the one and only thermal zone.

Intel® Quark™ SoC X1000 hardware is set up to automatically shutdown on critical
temperature detection. The trip points described below are set in the driver and cannot
be changed.

Linux* provides an entire sub-system dedicated to triggering events based on hot and
critical events. The task of the thermal driver is to provide the minimum level of silicon
support to drive these events.

• Hot trip point: 95 degrees Celsius
The thermal driver incrementally polls the thermal sensor and when this theshold is
exceeded, a hot trip event is propagated into the thermal sub-system.

• Critical trip point: 104 degrees Celsius
The Linux* thermal sub-system triggers a graceful system shutdown if the critical
trip threshold is reached.

• Hardware failover critical temperature: 105 degrees Celsius
As a precautionary measure, Intel® Quark™ SoC X1000 silicon is configured to
drive a shutdown signal at 105 degrees Celsius. Assumption is that software polling
should catch an over-temperature situation when temperature meets or exceeds
the critical trip point (104 degrees Celsius). A one degree over-limit from the
maximum specified critical temperature forces embedded hardware to take
preventative action and drive a shutdown signal directly.

§ §

Intel® Quark™ SoC X1000
May 2014 Software Developer’s Manual for Linux*
Order Number: 330235-002US 23

Legacy Block Driver—Intel® Quark™ SoC X1000

6.0 Legacy Block Driver

The LPC address space contained within Intel® Quark™ SoC X1000 legacy block has
the following component that has been enabled in the Linux* run-time:

• Legacy GPIO

In order to enable this silicon functionality, a small modification is necessary to LPC
enabling software in Linux, adding appropriate PCI vendor/device.

6.1 Legacy GPIO

Note: This driver is different than the one described in Section 4.9, “GPIO Interface Driver”
on page 17.

Intel® Quark™ SoC X1000 contains eight GPIOs within the legacy bridge. These GPIO
pins are interrupt-capable. They support rising/falling/both edge-triggered interrupts.

These legacy GPIOs provide the ability to drive GPE events and hence to remove a
Intel® Quark™ SoC X1000 device in a low-power state.

There are:
• 6 GPIO pins in the resume power well

In the [Datasheet], these pins are referred to as GPIO_SUS[5:0].
The GPIOs in the resume well can be used to drive a General Purpose Event (GPE)
through the ACPI sub-system that subsequently takes the Intel® Quark™ SoC
X1000 out of a low-power state.

• 2 GPIO pins in the core well
In the [Datasheet], these pins are referred to as GPIO[9:8].

The eight legacy GPIO are indexed in the range [0,7] and can be accessed from user-
space through sysfs interface.

The commands below demonstrate how to drive a signal to the first legacy GPIO:
root@clanton# echo 0 > /sys/class/gpio/export # Reserve first legacy GPIO

root@clanton# echo "out" > /sys/class/gpio/gpio0/direction # Set as output

root@clanton# echo "1" > /sys/class/gpio/gpio0/value # Drive logical one

§ §

Intel® Quark™ SoC X1000—Expansion Drivers

Intel® Quark™ SoC X1000
Software Developer’s Manual for Linux* May 2014
24 Order Number: 330235-002US

7.0 Expansion Drivers

This section describes drivers that are included with the Intel® Quark™ SoC X1000
Software package to enable board-specific functionality.

• AD7298 Driver
• Bluetooth* Driver (requires mini-PCIe card)
• Wi-Fi* Driver (requires mini-PCIe card)
• 3G Modem Driver (requires mini-PCIe card)

7.1 AD7298 Driver
The Analog Devices* AD7298 is a 12-bit, low power, 8-channel, successive
approximation ADC with an internal temperature sensor. The LS-ADC does not provide
a user-space interface directly, it is provided by the IIO subsystem in the Linux* kernel.
The ADC registers with the IIO subsystem as an IIO ADC device driver. As such, it
makes calls to functions on the IIO kernel API and provides callbacks which can be
used by the IIO subsystem to invoke driver operations.

To load the drivers for the AD7298, perform the following sequence:
• Enable GPIO driver:

modprobe intel_qrk_gip

modprobe gpio_sch

• Enable IIO support:
modprobe industrialio

Figure 4. ADC Location in Software Stack

Intel® Quark™ SoC X1000
May 2014 Software Developer’s Manual for Linux*
Order Number: 330235-002US 25

Expansion Drivers—Intel® Quark™ SoC X1000

• Enable SPI driver:
modprobe spi-pxa2xx

• Enable AD7298 driver:
modprobe ad7298

After the driver loading sequence is complete, the AD7298 driver enables the following
data points via the Industrial I/O (IIO) kernel API directly read from the ADC chip.

• Provide the RAW voltage at the input in the range 0 - 4095 representing the
voltage range 0 to +5 Volts
/sys/bus/iio/devices/iio:device0/in_voltage[0-7]_raw

/sys/bus/iio/devices/iio:device0/in_voltage0_raw

/sys/bus/iio/devices/iio:device0/in_voltage1_raw

etc

• Scaling value to apply to the raw voltage input
/sys/bus/iio/devices/iio:device0/in_voltage_scale

• Temperature offset
/sys/bus/iio/devices/iio:device0/in_temp0_offset

• Raw instantaneous temperature of the ADC die
/sys/bus/iio/devices/iio:device0/in_temp0_raw

• Temperature scaling factor
/sys/bus/iio/devices/iio:device0/in_temp0_scale

Other data points are provided by the Linux* IIO API but are out of scope for this
document.

Using the above values, it is possible to calculate the real instantaneous voltage in
milli-Volts at a given voltage input using the following formula:

(Raw value * scale value) / 1000 = Vin0 actual input voltage in mV

Using the above values, it is possible to calculate the internal die temperature on the
AD7298, in milli-degrees Celsius using the following formula:

((in_temp0_offset + in_temp0_raw) * in_temp0_scale) = Tdie

7.2 Bluetooth* Driver
Bluetooth functionality is provided by a mini-PCIe card connected to the mini-PCIe slot
on the platform. The following cards have been validated with the Intel® Quark™ SoC
X1000 Software:

• Intel® Centrino® Wireless-N 135 card
• Intel® Centrino® Advanced-N 6205 Wi-Fi Radio Module (Dual Band Wi-Fi, 2.4 and

5 GHz)

A requirement exists to include the firmware for the card in the root filesystem at the
following path:

/lib/firmware/iwlwifi-135-6.ucode (Intel® Centrino® Wireless-N 135)
or
/lib/firmware/iwlwifi-6000g2a-6.ucode (Intel® Centrino® Advanced-N 6205)

The following drivers must be loaded to enable USB-bluetooth components:
modprobe ehci-hcd

modprobe ohci-hcd

modprobe ehci-pci

modprobe btusbl

Intel® Quark™ SoC X1000—Expansion Drivers

Intel® Quark™ SoC X1000
Software Developer’s Manual for Linux* May 2014
26 Order Number: 330235-002US

Once loaded, the sysfs entry below should appear:
/sys/module/bluetooth

The following user-space components are required:
bluetoothd

hciconfig

hcitool

7.2.1 Device discovery

hciconfig <BT DEVICE NAME> noscan

hciconfig <BT DEVICE NAME>

Expected UP_RUNNING

hcitool scan --flush

hciconfig <BT DEVICE NAME> piscan

7.2.2 Service discovery

sdptool browse <BT_2_BD_ADDR>

7.2.3 Establish connection

hcitool dc <BT_ADDR>

hcitool cc <BT_ADDR>

hcitool con

hcitool dc <BT_ADDR>

7.2.4 Ping

l2ping -c 5 <BT_ADDR>

7.3 Wi-Fi* Driver
Wi-Fi functionality is provided by a mini-PCIe card connected to the mini-PCIe slot. The
Intel® Centrino® Advanced-N 6205 Wi-Fi Radio Module (Dual Band Wi-Fi, 2.4 and
5 GHz) has been validated with the Intel® Quark™ SoC X1000 Software.

A requirement exists to include the firmware for the Intel® Centrino® Advanced-N
6205 Wi-Fi Radio Module in the root filesystem at the following path:

/lib/firmware/iwlwifi-6000g2a-6.ucode

Latest firmware for this card can be downloaded from:
http://wireless.kernel.org/en/users/Drivers/iwlwifi/?n=downloads#Firmware

To load a driver for the Intel® Centrino® Advanced-N 6205 Wi-Fi Radio Module, type
the following command:

modprobe iwlwifi

After a successful load of this driver, the following sysfs path is available:
/sys/class/net/wlan0

7.3.1 Enable/Disable wlan radio

• Get the index of the device
rfkill list

• Disable radio

http://wireless.kernel.org/en/users/Drivers/iwlwifi/?n=downloads#Firmware

Intel® Quark™ SoC X1000
May 2014 Software Developer’s Manual for Linux*
Order Number: 330235-002US 27

Expansion Drivers—Intel® Quark™ SoC X1000

rfkill block 0

• Enable radio
rfkill unblock 0

7.3.2 Scan for Wi-Fi networks

wlist wlan0 scan

7.3.3 Configure a Wi-Fi device

Enter the command:
edit /etc/network/interfaces

Add the following:
auto wlan0

iface wlan0 inet static

address <IP ADDRESS>

netmask <NETMASK>

wireless_mode managed

wireless_essid <SSID_NAME>

wpa-driver wext

wpa-conf /etc/wpa_supplicant.conf

7.3.4 Generate wpa_supplicant file

This file is used to configure a protected Wi-Fi network.

Generate the WPA Passphrase:
wpa_passphrase essid <PassPhrase>

Generate the wpa_supplicant.conf file:
network={

ssid="essid"

#psk=<PassPhrase>

psk=<Result from last command>

}

7.3.5 Connect to a Wi-Fi network

ifup wlan0

7.3.6 Disconnect from a Wi-Fi network

ifdown wlan0

7.4 3G Modem Driver
GSM/3G communications functionality can be provided by a mini-PCIe card connected
to the mini-PCIe slot. The Telit* HE910 mini-PCIe module (specifically, the functionality
for GSM Voice and SMS communications, and HSPA+ data communications) has been
validated with the Intel® Quark™ SoC X1000 Software.

Intel® Quark™ SoC X1000—Expansion Drivers

Intel® Quark™ SoC X1000
Software Developer’s Manual for Linux* May 2014
28 Order Number: 330235-002US

Driver Requirements:
• Telit* HE910 requires USB2.0 support in kernel
• Telit* HE910 requires PPP (point-to-point protocol) support in kernel
• Use of active GPS antenna needs external circuit for powering antenna's amplifier

Software tool requirements:
• minicom - for running scripts

Can be compiled as ipk package
• microcom - handy for executing simple AT commands

Microcom is a part of busybox package.
If it is not installed, it can be enabled in yocto using the command:
bitbake busybox -c menuconfig

then re-installed as ipk package.
• pppd - Point-to-point protocol

ppp is used for data packet connection. It can be enabled in yocto as an image
feature "ppp"

To load the drivers, perform the following sequence:
• Enable USB controllers:

modprobe ehci-hcd

modprobe ohci-hcd

modprobe ehci-pci

• Enable Communication Device Class Abstract Control Model interface:
modprobe cdc-acm

References

1. HE910/UE910 AT Commands Reference Guide
http://www.telit.com/module/infopool/download.php?id=4092

2. GPS Application Note
http://www.telit.com/module/infopool/download.php?id=5442

3. DVI Application Note - I2S communication with Maxim 9867 codec
http://www.telit.com/module/infopool/download.php?id=4094

4. Hardware guide
http://www.telit.com/module/infopool/download.php?id=4119
http://www.telit.com/module/infopool/download.php?id=5200

5. Minicom manual
http://linux.die.net/man/1/minicom
http://platformx.sourceforge.net/Documents/nuts/Minicom.html

7.4.1 Verify system installation and configuration

dmesg | grep ttyACM

/dev/ttyACM<X>

- list of port devices created by cdc-acm driver

The serial port used for communicating with the 3G modem is /dev/ttyACM0

http://www.telit.com/module/infopool/download.php?id=4092
http://www.telit.com/module/infopool/download.php?id=5442
http://www.telit.com/module/infopool/download.php?id=4094
http://www.telit.com/module/infopool/download.php?id=4119
http://www.telit.com/module/infopool/download.php?id=5200
http://linux.die.net/man/1/minicom
http://platformx.sourceforge.net/Documents/nuts/Minicom.html

Intel® Quark™ SoC X1000
May 2014 Software Developer’s Manual for Linux*
Order Number: 330235-002US 29

Expansion Drivers—Intel® Quark™ SoC X1000

7.4.2 Send an AT command to HE910 with microcom

echo -ne "ATE1\r" | microcom -X -t 500 /dev/ttyACM0

7.4.3 Use minicom

Starting minicom:
minicom -D /dev/ttyACM0

AT commands can be sent to the modem from minicom's console by typing.

For HE910 AT commands reference guide, see: References [1]

For detailed minicom guide, see: References [5]

7.4.4 Request model identification

AT+GMM

Expected:
HE910

OK

7.4.5 Request modem capabilities

AT+GCAP

Expected:
+GCAP: +CGSM,+DS,+FCLASS,+MS,+ES

OK

7.4.6 Check Radio Access Network registration

AT+CREG?

Expected sample:
0,1

- registered to home network

Note: Result may vary, depending on condition. For details / see: references [1]

7.4.7 Check signal strength

AT+CSQ

Expected sample:
+CSQ: 11,2

OK

7.4.8 List all available networks

AT+COPS=?

Expected sample:
+COPS: (2,"Vodafone IRL",,"27201",2),(2,"Vodafone IRL",,"27201",0),

(3,"O2 - IRL",,"27202",2),(3,"IRL 05",,"27205",2),

(3,"IRL-METEOR",,"27203",2),(3,"O2 - IRL",,"27202",0),

(3,"IRL-METEOR",,"27203",0),,(0-4),(0,2)

Intel® Quark™ SoC X1000—Expansion Drivers

Intel® Quark™ SoC X1000
Software Developer’s Manual for Linux* May 2014
30 Order Number: 330235-002US

7.4.9 Send an SMS text message to 0871234567

Set the message format 1=Text
AT+CMGF=1

Expected:
OK

Start sending the text message, specifying the number to send to.
AT+CMGS="0871234567"

The modem returns a > prompt. Type the message and press Ctrl-z.
> Hello World

After the Ctrl-z, the modem pauses for a few seconds and the following response is
returned:

+CMGS: <n>

OK

7.4.10 Receive an SMS text message

Set the message format 1=Text
AT+CMGF=1

Expected:
OK

Select SIM card memory as SMS storage
AT+CPMS="SM"

Expected:
OK

After entering the following command, all messages are printed:
AT+CMGL="ALL"

7.4.11 Place a call to 0871234567

Switch to voice mode
AT+FCLASS=8

Expected:
OK

Dial the number
ATD0871234567

Expected:
OK

7.4.12 Receive a call

Switch to voice mode
AT+FCLASS=8

Once modem is called
RING

Intel® Quark™ SoC X1000
May 2014 Software Developer’s Manual for Linux*
Order Number: 330235-002US 31

Expansion Drivers—Intel® Quark™ SoC X1000

Message is printed on console.

Call can be answered with following command
ATS0=1

7.4.13 Hang up

AT+CHUP

Expected:
OK

7.4.14 Configure data packet connection (PPP)

There are many PPP configuration guides available in the internet.

Configuration may vary depending on service provider.

Example guide:

 https://wiki.archlinux.org/index.php/3G_and_GPRS_modems_with_pppd

7.4.15 Enable data packet connection (PPP)

Once ppp is configured, ppp connection can be established with the command:
pon

Connection can be tested with:
ping www.google.com

Release the connection with:
poff

7.4.16 Obtain GPS location

Make sure that GPS antenna is connected to the Telit* HE910 mini-PCIe module.

Initialize GPS module:
AT$GPSNVRAM=15,0

Expected:
OK

Enable GPS:
AT$GPSP=1

Expected:
OK

The GPS location is updated after a certain amount of time (a few seconds up to a few
minutes), depending on GPS signal strength and previously stored GPS data.

GPS location can be obtained with:
AT$GPSACP

https://wiki.archlinux.org/index.php/3G_and_GPRS_modems_with_pppd
http://www.google.com

Intel® Quark™ SoC X1000—Expansion Drivers

Intel® Quark™ SoC X1000
Software Developer’s Manual for Linux* May 2014
32 Order Number: 330235-002US

Expected sample:
$GPSACP:

152324.000,5267.1849N,00854.8107W,3.00,310.0,3,000.00,0.00,0.00,200412,05

OK

§ §

Intel® Quark™ SoC X1000
May 2014 Software Developer’s Manual for Linux*
Order Number: 330235-002US 33

Sample Applications—Intel® Quark™ SoC X1000

8.0 Sample Applications

This section describes sample applications that can be used with the Intel® Quark™
SoC drivers.

8.1 Generic Buffer
generic_buffer is a sample application that demonstrates how to retrieve buffered
samples from an ADC driver via the Industrial I/O (IIO) sysfs interface.

This particular example uses the AD7298 ADC driver (see Section 7.1), however, other
IIO ADC drivers may also be used.

This example uses the IIO sysfs trigger option, which allows an application or script to
explicitly trigger each sampling event, by writing a dedicated file under sysfs. This
gives the application control over the timing and quantity of samples collected from the
ADC. However, as each trigger incurs the overhead of a system call, this method is not
recommended where maximum sampling rates are needed.

Perform the steps below to use generic_buffer for gathering buffered samples from
the desired ADC driver:
1. Load the necessary kernel modules:

modprobe ad7298

modprobe iio-trig-sysfs

2. Enable a sysfs trigger that allows us to trigger the driver from user-space to
collect a new set of samples from the selected ADC channels:
echo 0 > /sys/bus/iio/devices/iio_sysfs_trigger/add_trigger

3. Select the ADC channels that you want to sample. Here's a suggested list:
echo 1 > /sys/bus/iio/devices/iio\:device1/scan_elements/in_timestamp_en

echo 1 > /sys/bus/iio/devices/iio\:device1/scan_elements/in_current0_rms_en

echo 1 > /sys/bus/iio/devices/iio\:device1/scan_elements/in_current1_rms_en

echo 1 > /sys/bus/iio/devices/iio\:device1/scan_elements/
in_power0_apparent_en

echo 1 > /sys/bus/iio/devices/iio\:device1/scan_elements/
in_power0_avg_act_en

echo 1 > /sys/bus/iio/devices/iio\:device1/scan_elements/
in_power0_avg_react_en

echo 1 > /sys/bus/iio/devices/iio\:device1/scan_elements/in_power0_factor_en

echo 1 > /sys/bus/iio/devices/iio\:device1/scan_elements/
in_power1_apparent_en

echo 1 > /sys/bus/iio/devices/iio\:device1/scan_elements/
in_power1_avg_act_en

echo 1 > /sys/bus/iio/devices/iio\:device1/scan_elements/
in_power1_avg_react_en

echo 1 > /sys/bus/iio/devices/iio\:device1/scan_elements/in_power1_factor_en

echo 1 > /sys/bus/iio/devices/iio\:device1/scan_elements/in_voltage0_rms_en

echo 1 > /sys/bus/iio/devices/iio\:device1/scan_elements/in_voltage1_rms_en

Intel® Quark™ SoC X1000—Sample Applications

Intel® Quark™ SoC X1000
Software Developer’s Manual for Linux* May 2014
34 Order Number: 330235-002US

4. Run the data collection sample application with the following parameters:
./generic_buffer -s -w 2000 -c 1 -n ad7298 -t sysfstrig0 -l 2000 -o
output.csv

where:

The expected result is an output file with header line and 2000 lines of samples. One
column contains a timestamp value, expressed in nanoseconds, which should show that
the samples are approximately 3300 microseconds apart on average (which translates
into a sample rate of approximately 300 Hz). This 3300 microsecond interval is
comprised of the 2000 microsecond delay specified, as well as the overhead incurred in
the execution of the trigger via sysfs.

8.2 Generic Buffer High Resolution Timer
This application is similar to the generic_buffer application described in Section 8.1,
however, it uses a different IIO trigger option, called the High-Resolution Timer trigger.
When configured and enabled, this trigger operates at kernel level, using a
high-resolution timer interrupt source (if available) to trigger IIO sampling at a desired
frequency.

The trigger frequency is set via sysfs. The trigger is associated with the IIO ADC driver
and, when buffered sampling is enabled for that driver, the trigger automatically starts
firing at the desired frequency and runs until the buffered sampling is later disabled.
1. Load the necessary kernel module:

modprobe iio-trig-hrtimer

2. Instantiate the hrtimer trigger:
echo 0 > /sys/bus/iio/devices/iio_hrtimer_trigger/add_trigger

3. Enable the set of ADC channels to be sampled as described in Section 8.1, step 3.
4. Run the data collection sample application with the following parameters:

./generic_buffer_hrtimer -f 100 -p 10 -c 1 -n ad7298 -t hrtimer_trig0 -o
output.csv

where:

-s Use a sysfs-type trigger.

-w 2000 Delay for 2000 microseconds between each invocation of the trigger.

-c 1 Collect 1 set of samples. Buffered samples are output after each set.

-n ad7298 Name of the IIO device to use.

-t sysfstrig0 Name of the IIO trigger to use.

-l 2000 Number of samples to collect in each set.

-o output.csv Name of output file to save buffered samples to in CSV format.

-f 100 Sampling frequency - number of samples to collect per second

-p 10 Sampling duration in seconds

-c 1 Collect 1 set of samples. Buffered samples are output after each set.

-n ad7298 Name of the IIO device to use.

-t hrtimer_trig0 Name of the IIO trigger to use.

-o output.csv Name of output file to save buffered samples to in CSV format.

Intel® Quark™ SoC X1000
May 2014 Software Developer’s Manual for Linux*
Order Number: 330235-002US 35

Sample Applications—Intel® Quark™ SoC X1000

The expected result is an output file with header line and approximately 1000 lines of
samples. One column contains a timestamp value, expressed in nanoseconds, which
should show that the samples are approximately 10000 microseconds apart on
average.

§ §

Intel® Quark™ SoC X1000—Secure Boot Implementation

Intel® Quark™ SoC X1000
Software Developer’s Manual for Linux* May 2014
36 Order Number: 330235-002US

9.0 Secure Boot Implementation

9.1 Overview
A key feature of the Intel® Quark™ SoC X1000 is the concept of secure boot. Secure
boot means that only authenticated software that has been cryptographically verified
can be run on a Intel® Quark™ SoC X1000 system.

The concept is predicated on a root-of-trust (RoT) from the reset vector, through to the
run-time kernel. Each phase of the boot verifies the next phase of the boot, before
handing off to that phase.

In this way, Intel® Quark™ SoC X1000 reference software stack provides a mechanism
to ensure only authenticated software can be booted on a Intel® Quark™ SoC X1000
system.

There are two variants of Intel® Quark™ SoC X1000:
• Secure boot enabled (called secure SKU)
• Non-secure boot enabled (called base SKU or non-secure SKU)

Both variants enable Isolated Memory Regions (IMRs) during boot, through bootloader
and kernel. However, only the secure SKU of Intel® Quark™ SoC X1000 requires
cryptographic authentication of images in order to boot.

9.2 Isolated Memory Regions
IMRs are used extensively by grub and Linux* to provide extra security during boot.
IMRs can be used to define fine-grained access masks to defined memory regions.
These access masks prevent bus masters, from accessing particular memory regions
based on the definitions of access rights for a given memory region associated with an
IMR.

The following table shows the usage of IMRs throughout the boot.

Intel® Quark™ SoC X1000
May 2014 Software Developer’s Manual for Linux*
Order Number: 330235-002US 37

Secure Boot Implementation—Intel® Quark™ SoC X1000

9.3 Bootloader Security
The reference second stage bootloader solution carries out two important functions in
terms of secure boot:

• Asset verification
— Kernel
— Bootloader config file - grub.conf
— InitRD

• IMR setup/teardown
— IMR setup for kernel boot params
— IMR setup for compressed kernel image

This reference solution maintains a chain of trust through bootloader into kernel by
ensuring that all assets executed have been validated and encapsulated within an IMR.

Table 4. IMR Usage During Boot

IMR ROM Stage 1 Stage 2 Grub Linux* Boot Linux* Run-time

0

Compressed
EDKII stage 2
Uncompressed
EDKII stage2
Boot time services
Grub Image
Stack/Data area

Compressed
EDKII stage 2
Uncompressed
EDKII stage2
Boot time services
Grub Image
Stack/Data area

Compressed
EDKII stage 2
Uncompressed
EDKII stage2
Boot time services
Grub Image
Stack/Data area

Compressed
EDKII stage 2
Uncompressed
EDKII stage2
Boot time services
Grub Image
Stack/Data area

Uncompressed
Kernel
Read only &
initialized data
section

1 AP Startup vector AP Startup vector Boot Params Boot Params

2 UNUSED in BIOS - locked in kernel

3 Low SMRAM Low SMRAM Entire Memory
(4G)

4 UNUSED in BIOS - locked in kernel

5 Legacy S3
memory

Legacy S3
memory

Legacy S3
memory

Legacy S3
memory

6

ACPI NVS
Runtime Code
Runtime Data
Reserved memory
ACPI Reclaim
memory

ACPI NVS
Runtime Code
Runtime Data
Reserved memory
ACPI Reclaim
memory

ACPI NVS
Runtime Code
Runtime Data
Reserved memory
ACPI Reclaim
memory

ACPI NVS
Runtime Code
Runtime Data
Reserved memory
ACPI Reclaim
memory

7
eSRAM protection
during ROM phase
(EDKII Stage 1)

eSRAM protection
during ROM phase
(EDKII Stage 1)

Compressed
Kernel
OS Image

Compressed
Kernel
OS Image

Intel® Quark™ SoC X1000—Secure Boot Implementation

Intel® Quark™ SoC X1000
Software Developer’s Manual for Linux* May 2014
38 Order Number: 330235-002US

9.3.1 Asset Verification Flow

Grub verifies any kernel, init-ramdisk or grub configuration file, it relies upon in secure
boot mode.

Grub executes the boot logic given to it in grub.conf. The grub.conf file specifies
which boot assets are signed and which are not. The grub.conf file also specifies
where to find boot assets. Supported locations are:

• SPI Flash
• SD/USB mass storage device

In secure boot mode, grub will:
• Parse the master flash header to identify the location of grub.conf
• Read in the contents of grub.conf
• Verify grub.conf against a cryptographic signature
• For each item marked as secure in the grub.conf file

— Search for an asset signature
— Verify the asset against the asset signature

For any of the previous steps, a failure to find an asset or an asset signature, or a
failure to verify an asset against an asset signature, will result in grub executing an
EDK callback to initiate the EDKII recovery mechanism.

9.3.2 Isolated Memory Region Flow

Grub is booted by EDK with IMRs already configured around a number of assets as
indicated by Figure 5.

As part of the reference secure boot solution, grub will read a Linux* kernel image from
SPI flash or from USB/MMC mass storage.

IMRs are used in the following fashion:
• IMR1 used to protect kernel boot params structure
• IMR7 used to protect the compressed bzImage in memory

Grub subsequently verifies bzImage against the cryptographic key for bzImage once
the compressed image is placed within the IMR protection region.

Finally, assuming verification succeeds, control is handed from grub to the compressed
kernel image with IMRs active for IMR1 and IMR7, restricting access to CPU read/write
only.

Intel® Quark™ SoC X1000
May 2014 Software Developer’s Manual for Linux*
Order Number: 330235-002US 39

Secure Boot Implementation—Intel® Quark™ SoC X1000

Note: On secure SKUs, grub requires an accompanying signature file in order to
successfully boot. For details, see the [Build & SW User Guide].

Figure 5. Grub Secure Boot Flow

Intel® Quark™ SoC X1000—Secure Boot Implementation

Intel® Quark™ SoC X1000
Software Developer’s Manual for Linux* May 2014
40 Order Number: 330235-002US

9.4 OS Security
The reference OS solution for Intel® Quark™ SoC X1000 adds IMR protection to the
uncompressed kernel as well as bringing the system to a final state in terms of IMR
protection.

Specifically, the reference OS solution:
• Places an IMR around executable sections of the kernel image.
• Tears down any IMRs that are not required for the run-time system.
• Locks any unlocked IMRs.
• Provides a convenient debug interface to view the size, extent, and state of each

IMR.

9.4.1 Early Boot IMR Support

Early in the kernel boot process, before decompression takes place, an IMR is placed
around the base physical address of the kernel image to the maximum memory
address range, that is, 4 gigabytes.

This is necessary to ensure that the decompressed kernel runs inside of an IMR
protected region.

Later phases of the kernel boot set up a smaller IMR around the run-time kernel when
the necessary data to derive the correct address range becomes available.

After setting up the initial run-time kernel IMR, the early kernel boot code removes the
following IMRs:

• grub - IMR0
• boot params - IMR1
• bzImage - IMR7

9.4.2 Run-Time IMR Support

The IMR run-time code, is distinct from the IMR “early” code. Early code on Linux* is
typically defined as code that emulates a more advanced run-time functionality with
diminished features.

The reference IMR run-time solution on Intel® Quark™ SoC X1000 locks all IMRs by
default.

An option is provided by the IMR run-time driver not to lock all IMRs by default. The
module parameter to unlock the pre-locked IMRs may only be passed in grub.

intel_qrk_imr.imr_lock=0

With IMRs unlocked, it is possible for a user of the IMR driver to allocate and free IMRs
using the following in-kernel API.

9.4.2.1 intel_qrk_imr_alloc

int intel_qrk_imr_alloc(u32 high, u32 low, u32 read, u32 write,

 unsigned char *info, bool lock);

• high: the end of physical memory address
• low: the start of physical memory address
• read: IMR read mask value

Intel® Quark™ SoC X1000
May 2014 Software Developer’s Manual for Linux*
Order Number: 330235-002US 41

Secure Boot Implementation—Intel® Quark™ SoC X1000

• write: IMR write mass value
• imr: information a descriptive name for the IMR
• lock: Boolean to indicate whether to lock the IMR

This routine allows allocation of an IMR with any of the access rights given below for
reading and writing individually. It is possible to lock this IMR upon allocation. If locked,
an IMR cannot be torn down without a reset of the system.

Access mask bits associated with read and write are:
#define IMR_ESRAM_FLUSH_INIT 0x80000000 /* esram flush */

#define IMR_SNOOP_ENABLE 0x40000000 /* core snoops */

#define IMR_PUNIT_ENABLE 0x20000000 /* PMU snoops */

#define IMR_SMM_ENABLE 0x02 /* core SMM access */

#define IMR_NON_SMM_ENABLE 0x01 /* core non-SMM access */

For convienience, a default access mask is defined:
/* snoop + Non SMM write mask */

#define IMR_DEFAULT_MASK (IMR_SNOOP_ENABLE \

 + IMR_ESRAM_FLUSH_INIT \

 + IMR_NON_SMM_ENABLE)

9.4.2.2 intel_qrk_imr_free

int intel_qrk_imr_free(u32 high, u32 low);

• high: high boundary of memory address
• low: low boundary of memory address

This function removes an IMR based on input memory region specified at high and low.

9.4.3 Debug Interface

For the purposes of system debug, an interface is provided in /sys to view the setup of
the IMRs on a booted reference Intel® Quark™ SoC X1000 system.

Read data from /sys/devices/platform/intel-qrk-imr to view the address
range of each IMR[0-7] and its state, in the run-time system.

§ §

	Contents
	Figures
	Tables

	1.0 Introduction
	1.1 About this Manual
	1.2 Introduction
	1.3 Related Documentation
	1.4 Terminology
	1.5 Conventions

	2.0 Platform Overview
	2.1 Platform Synopsis
	2.2 SoC Features

	3.0 Software Overview
	3.1 High-Level Software Architecture Overview
	3.2 Linux* Support
	3.2.1 Standard OS Drivers
	3.2.2 Host Bridge OS Drivers
	3.2.3 Bootloader Host Bridge Drivers

	3.3 User-Space Software Dependencies

	4.0 Intel® Quark™ SoC X1000 Drivers
	4.1 Overview
	4.2 USB OHCI Controller Interface Driver
	4.3 USB 2.0 EHCI Controller Interface Driver
	4.4 USB Device Interface Driver
	4.5 SD/MMC Controller Interface Driver
	4.6 UART + DMA Interface Driver
	4.7 SPI Interface Driver
	4.8 I2C* Interface Driver
	4.9 GPIO Interface Driver
	4.10 Ethernet Interface Driver (STMMAC)
	4.10.1 VLAN

	5.0 Intel® Quark™ SoC X1000 Host Bridge Drivers
	5.1 eSRAM Configuration Driver
	5.1.1 Example showing eSRAM stat usage
	5.1.2 Example of mapping printk into eSRAM from user-space
	5.1.3 Kernel API Reference
	5.1.3.1 intel_qrk_esram_map_range
	5.1.3.2 intel_qrk_esram_unmap_range
	5.1.3.3 intel_qrk_esram_map_symbol
	5.1.3.4 intel_qrk_esram_unmap_symbol

	5.2 Isolated Memory Region Driver
	5.2.1 IMR run-time kernel protection

	5.3 Thermal Driver

	6.0 Legacy Block Driver
	6.1 Legacy GPIO

	7.0 Expansion Drivers
	7.1 AD7298 Driver
	7.2 Bluetooth* Driver
	7.2.1 Device discovery
	7.2.2 Service discovery
	7.2.3 Establish connection
	7.2.4 Ping

	7.3 Wi-Fi* Driver
	7.3.1 Enable/Disable wlan radio
	7.3.2 Scan for Wi-Fi networks
	7.3.3 Configure a Wi-Fi device
	7.3.4 Generate wpa_supplicant file
	7.3.5 Connect to a Wi-Fi network
	7.3.6 Disconnect from a Wi-Fi network

	7.4 3G Modem Driver
	7.4.1 Verify system installation and configuration
	7.4.2 Send an AT command to HE910 with microcom
	7.4.3 Use minicom
	7.4.4 Request model identification
	7.4.5 Request modem capabilities
	7.4.6 Check Radio Access Network registration
	7.4.7 Check signal strength
	7.4.8 List all available networks
	7.4.9 Send an SMS text message to 0871234567
	7.4.10 Receive an SMS text message
	7.4.11 Place a call to 0871234567
	7.4.12 Receive a call
	7.4.13 Hang up
	7.4.14 Configure data packet connection (PPP)
	7.4.15 Enable data packet connection (PPP)
	7.4.16 Obtain GPS location

	8.0 Sample Applications
	8.1 Generic Buffer
	8.2 Generic Buffer High Resolution Timer

	9.0 Secure Boot Implementation
	9.1 Overview
	9.2 Isolated Memory Regions
	9.3 Bootloader Security
	9.3.1 Asset Verification Flow
	9.3.2 Isolated Memory Region Flow

	9.4 OS Security
	9.4.1 Early Boot IMR Support
	9.4.2 Run-Time IMR Support
	9.4.2.1 intel_qrk_imr_alloc
	9.4.2.2 intel_qrk_imr_free

	9.4.3 Debug Interface

