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Abstract 
New I/O usage models have emerged recently. There is a trend towards offloading compute-
intensive applications to specialized engines/accelerators. Many such applications today are  
in the high performance computing domain, examples of such are financial options modeling, 
seismic exploration, game physics, and bio-informatics. This paper illustrates the need  
for synchronization primitives for I/O accelerators to help these emerging usage models.  
It shows examples from real-world applications and the associated performance  
benefits of such primitives. 
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Introduction
In recent years there has been a trend towards offloading computing-intensive workloads to specialized I/O devices 
(example: math acceleration and physics acceleration). Two notable changes have contributed to this trend. First, the 
accelerators have benefited from Moore’s Law which has given rise to extremely powerful engines which are increasingly 
multi-core/multi-thread/multi-card devices. Second, the accelerators are becoming increasingly programmable. Another 
trend emerging today is that of a collaborative execution-model where by both CPU and accelerator resources are 
combined to achieve minimum execution time (for example, double precision units, branch prediction hardware).

Many such applications today are in high performance computing domain for example, options modeling, seismic 
exploration, and game physics. These applications and associated libraries such as the Intel® Math Kernel Library (Intel® 
MKL) have traditionally been run in multi-threaded environments (over multiple cores/CPUs) and hence make extensive 
use of synchronization primitives such as semaphores, mutexes, and barriers. The challenges involved in porting existing 
applications to accelerators are reduced if existing algorithms and their associated interactions could be relocated to the 
accelerator(s). Because of the prevalence of synchronization primitives like semaphores, barriers, etc. in these algorithms, 
it is natural that these primitives be extended to the accelerators. In this paper, we examine some use cases for such 
primitives. In section two we define what Read Modify Write (RMW) primitives are. In section three we examine the 
usage of I/O device side RMWs for traditional (single-threaded) I/O devices and in section four we show their usage 
in multi-accelerator environments. 
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2. What are Read Modify Writes?
Read Modify Write (RMW) operations are hardware-assisted operations 

that atomically update a variable at its memory location. These operations 

have a long history and their usage in a wide range of synchronization 

algorithms is well published. The operations are required for efficient 

implementation of synchronization primitives such as semaphores, 

mutexes, and barriers. Examples of RMWs that we have referred to  

in this paper are:

1.	�Compare and Exchange (addr, value1, value2): Read the value  

at addr and compare it with value1, write value2 to addr if value1  

is equal to the value obtained at addr.

2.	�Atomic_Add (addr, value): Atomically increment (or decrement)  

the variable at memory location addr.

In this paper we have examined the need and benefit of having  

these primitives available on the I/O device(s).

3. Synchronization Primitives for  
Traditional CPU-I/O Device1 Interactions 
In this section we examine the use of RMWs for traditional I/O devices. 

One can partition the interaction between host/CPU and I/O device 

into two categories:

1. Bulk data transfer 

2. Control information exchange 

In the next two sections we examine the key characteristics of these 

exchanges and also what role RMWs play in each of these categories. 

3.1. Bulk Data Transfer 

Bulk data transfer can be further divided into two subcategories based 

on direction of transfer. The first subcategory is bulk data transfer from 

Host/CPU to the I/O device. This primarily depends on the bandwidth 

available to the I/O device. Since a large proportion of algorithms being 

executed on I/O devices are data-parallel, programmers have been able 

to hide I/O device data access latencies with great success through 

techniques such as double buffering. A programmer can improve per-

formance of this data flow by a number of optimization techniques such 

as pipelining data transfers, maximizing transfer sizes to achieve higher 

link efficiencies, and by placing data structures to improve memory 

page efficiency. 

For the other direction of bulk-data transfer (I/O device to Host/CPU), 

data access latency, and not bandwidth alone, is critical to performance. 

The code executing on the host is dominated by control (branches) and 

thus has very high sensitivity to latency for data accesses. In applications 

where the I/O device serves as the producer of data that would be con-

sumed by the Host/CPU (example: where accelerator collaborates with 

Host to utilize its double precision units) the access to system-

memory can be a performance limitation. 

Another example is that of high-speed network links where small net-

work packets arrive at about the rate of memory access time. Host/

CPU caches have been traditionally utilized to improve the perfor-

mance of CPU latency. Another paper (Merits of Data Reuse Hints) 

examines the extension of CPU caches for use by accelerators to im-

prove performance of this data flow. I/O device side RMWs are focused 

on improving synchronization rather than improving raw bandwidth or 

latency, and are thus not critical to performance of bulk data transfer.

3.1.1 Control Flow Between Host/CPU and I/O Device 

Control between Host/CPU and the I/O device is required for a wide 

range of uses such as:

• Setting up application parameters 

• �Initiating computation on the I/O device. Often generically known  
as “Do Work”

• Checking on the status bits on the accelerator

• Sending done signal to the Host/CPU, that is, Work complete indications

• To indicate error conditions from the I/O device to the Host/CPU

In traditional-I/O usage scenarios the existing mechanisms such as 

Memory Mapped I/O (MMIO) writes (doorbells), interrupts, and polling, 

etc. are utilized to exchange control information and facilitate  

synchronization between the Host/CPU and I/O device.

These mechanisms typically provide for a pre-defined number of discrete 

communications mechanisms between the I/O device and the CPU 

complex. For example a network interface card might be designed to 

have a separate descriptor ring per CPU core to facilitate TCP/IP flow 

to processor core affinity. The trend to facilitate direct use of an I/O 

device by user space applications brings with it scalability concerns 

with the existing mechanisms, as the product designer must predefine 

the number of resources dedicated to Host/CPU communications. Some 

platform architectures provide architecture enhancements such as 

Monitors, but these capabilities are also typically limited in availability. 

However, I/O device side RMWs address some of the limits in scaling 

mentioned above and also allow development of new usage models 

which can improve the Host CPU-I/O interaction. For example, having 

RMWs available to the I/O device facilitates the creation of lock-free 

queues which are shared between I/O devices and the CPU(s). This 

mechanism provides a scalable solution whereby each CPU thread can 

submit work to an I/O device using a shared queue resident in system 

memory. The lock-free queue can be read by the I/O device without the 

need for costly bus-locks (Optimized Lock-Free FIFO Queue, Fober et. al).

It is important to recognize that the proposed RMW primitives equip  

I/O devices with the capabilities hitherto available only to CPU/Host. 

This capability is a basic requirement for an environment where algo-

rithms can be easily (and in a cost-effective manner) migrated 

between the CPU and I/O domain.
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4.Synchronization Primitives in Multi- 
threaded Environments
Next we examine the use of I/O-side RMW semantics in multi- 

threaded I/O environments.

4.1 Multiple Accelerators Accessing Host Defined Work Queue

In our first example we examine the utilization of work queues in  

a multi-threaded environment. Work queues are a common way of  

extracting coarse-grain parallelism in a dynamic environment where 

load balancing cannot be done a priori, or where it is not efficient to do 

so. A good example is the implementation of FLAME numerical linear 

algebra library (Extracting SMP Parallelism for Dense Linear Algebra 

Algorithms from High-Level Specifications, Tze Meng Low, Robert A. 

van de Geijn, Field G. Van Zee). Even though the sizes of tasks to be 

executed change continually, the load remains balanced as workers 

(accelerators) acquire new work once they have finished a task. 

Synchronization is required to make sure no task gets executed more 

than once, and that no starvation occurs. This is accomplished using 

RMW operations on shared variables in system memory, as illustrated  

in the example work-queue implementation below. 

Consider the case where multiple accelerators (or accelerator threads) 

Na are executing tasks (Nt) of various sizes (in cycles). A master thread 

on Host/CPU acting as a producer, fills a queue of tasks that is maintained 

as a (circular) array of size L (L< Nt) in system memory. It ensures new 

tasks are added to the end of the queue, and that no existing tasks 

are overwritten prematurely. To this end it maintains the producer_index 

(see code below) variable that points to the next entry in the task array 

to be filled, and checks the status of the task in that entry to make sure 

that it has been completed before overwriting it with a new one. The 

accelerators (consumers) acquire tasks strictly in the order they were 

generated. L must equal at least Na to allow full concurrency of con-

sumers. The situation is illustrated in figure 1, which depicts an 

intermediate state of the work queue.

4.1.1 Non-RMW-based Implementation

Without RMW the producer and consumers have to communicate 

strictly through interrupts, as the producer coordinates access to 

shared-data structure. Each consumer has a driver which communi-

cates with the producer master driver which ensures atomicity of 

operations in system memory. The consumers submit their ready  

to execute another task status by sending an interrupt to the Host. 

This is logged in the device driver. The master driver arbitrates between 

multiple requests for task, chooses a winner, and signals the winner  

to start processing. This model carries the overhead of interrupt  

based communication.

Task queue: L=9, N=3
producer_index=1, consumer_index=7

CPU/
Producer

Accelerator/
Consumer

Accelerator/
Consumer

Accelerator/
Consumer

Task 8

Task 7

Task 6

Task 5

Task 4

Task 3

Task 2

Task 1

Task 0

Producer (CPU)

while (task [producer_index].status ≠ completed){ };
task[producer_index].status = busy;
create task[producer_index];
task[producer_index].status = ready;
producer_index++; (periodic)

Consumer

while (task_being_acquired ≠ false) { };
task_being_acquired = true;

while (task[consumer_index].status ≠ ready){ };
task[consumer_index].status = busy;
index = acquire task [consumer_index];
consumer_index++; (periodic)
task_being_acquired = false;
execute task[index];
task[index].status = completed;

atomic
RMW

Figure 1a. Shared work-queue example.

Task queue: L=9, N=3
producer_index=1, consumer_index=7

CPU/
Producer

Accelerator/
Consumer

Accelerator/
Consumer

Accelerator/
Consumer

Task 8

Task 7

Task 6

Task 5

Task 4

Task 3

Task 2

Task 1

Task 0

Producer (CPU)

while (task [producer_index].status ≠ completed){ };
task[producer_index].status = busy;
create task[producer_index];
task[producer_index].status = ready;
producer_index++; (periodic)

Consumer

while (task_being_acquired ≠ false) { };
task_being_acquired = true;

while (task[consumer_index].status ≠ ready){ };
task[consumer_index].status = busy;
index = acquire task [consumer_index];
consumer_index++; (periodic)
task_being_acquired = false;
execute task[index];
task[index].status = completed;

atomic
RMW

Figure 1b. Pseudo-code for work-queue sharing.
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Figure 2. Performance benefit of RMWs for shared work queue.
Source: Intel Corporation.
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4.1.2 Atomic RMW-based Implementation

With RMWs available to I/O devices, producer and consumers can read 

and update shared variables atomically in system memory, thus avoiding 

the need for interrupts. Some of the coordination can be handled by the 

I/O devices without involving the producer, which increases concurrency 

(see figure 1a). Acquisition order of tasks is enforced by the shared 

consumer_index variable that indicates the next available task in the 

queue. Idle consumers spin on the shared task_being_acquired variable 

for the right to access the next task in the queue (consumer_index). 

Once a consumer wins access rights, it waits for the producer to finish 

creating the task by spinning on its shared status variable. Next, it changes 

the status so that the producer will not overwrite its contents before 

the task is completed and increments (modulo L) the consumer_index. 

Then it releases the task_being_acquired variable, which implements a 

critical section among the multiple consumers. The individual task status 

variables implement critical sections among the actively acquiring con-

sumer and the producer. Execution of tasks takes place outside all critical 

sections. Figure 1b shows the pseudo-code for the RMW implementation 

for producer and consumers. Each shaded box is implemented using a 

single atomic RMW primitive.

4.1.3 Performance Analysis

We use the following definitions and assumptions. All cycles refer to 

CPU cycles. Average time to acquire and execute a task is Ce cycles, 

latency from accelerator to LLC is CLLC cycles, time an interrupt takes to 

travel to the device driver plus time to handle the interrupt is Ci cycles, 

mutex variables (RMW) remain in Host cache, each task acquisition takes 

four non-pipelined cache accesses (RMW), or one interrupt (no RMW). 

Because we focus on synchronization, we ignore the time to create  

a task or to generate an interrupt.

We study two different scenarios. 

1. �All tasks are the same size, and are executed by the accelerators in 

lockstep, or the tasks are all very small. In that case cache accesses 

to task_being_acquired (RMW) cannot be overlapped with computa-

tions by other accelerators. The one cache access to a non-globally 

shared variable that occurs within the critical section guarded by 

task_being_acquired also cannot be overlapped with computations 

or cache accesses by other accelerators. Hence, three accesses per 

task are exposed (serialized), while one can be overlapped. In the 

non-RMW case, interrupts are all fully exposed.

2. �Tasks are of different sizes and sufficiently large that they lead to 

staggered cache accesses of synchronization variables (RMW), or to 

stagger interrupts (no RMW). In that case, interrupts or cache accesses 

related to synchronization variables can occur concurrently with 

computations by other accelerators.

We compute the time Ctot to execute all tasks for both scenarios,  

with and without RMW. 

1. �RMW: Ctot = Nt*((Ce+CLLC)/Na + 3*CLLC) 

No RMW: Ctot = Nt*(Ce/Na + Ci) 

2. �RMW: Ctot =Nt*(Ce+4*CLLC)/Na  

No RMW: Ctot = Nt*(Ce + Ci)/Na 

We plot the RMW performance benefit PG, expressed as the ratio of 

completion times in both scenarios, for the case that CLLC~300, Ci 

~4300, as a function of the task size. The results are shown in figure 2.  

Obviously, the performance benefit of RMW operations versus interrupt-

based synchronization for both scenarios is largest for small task sizes, 

and becomes negligible for tasks exceeding a quarter million cycles. For 

task sizes in the range of a few hundred to a few thousand cycles (very 

fine grain), RMW benefit is more than 100%.
Performance Benefit  
(Na=number of accelerators)
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4.2 Multiple Accelerators Synchronizing with Host

Next we examine a use-case where multiple accelerators are working 

collaboratively with the host. Our example illustrates the collaborative 

usage of CPU and accelerator resources through barriers. Barriers, 

which find very high usage in traditional multi-threaded application, 

provide a mechanism by which no process can go beyond the synchro-

nization point until all process have reached the barrier. The barrier 

transaction has three distinct phases, arrival, wait for release, and 

release of the barrier. There are a number of published variations of 

barriers such as Centralized Barrier, Software Combining Trees, and 

Tree Barrier with local spinning. A simple and prevalent example imple-

mentation of the barrier is shown below. 

Barrier Init:

		  Set counter value to 0; Set lock to 0;

Barrier:

		�  Acquire(lock); [Uses SWAP atomic] - RMW 

	 if counter is zero set flag to zero. 

	 increment counter

		  Release(lock) ; [ Uses SWAP atomic] - RMW

		�  if counter equals number of waiting processes 

	 set counter to zero 

	 set flag to one

		�  else 

	 repeat: 

		  until flag is one 

end if

An example application, which may make use of barriers to synchronize 

between worker threads, is the parallel execution of Gauss-Seidel 

equation solver. The Gauss-Seidel is an iterative solver that continues 

to run until it converges to a solution within a target error range. 

The algorithm consists of dependencies between surrounding elements 

within the matrix. In order to solve elements of the algorithm in parallel, 

data dependent groups are grouped a number of ways. The first data 

partitioning is known as red-black. This allows the algorithm to be sepa-

rated into two separate phases which do not have data dependences. 

The second method is to divide the array into separate sweeps that 

may occur in parallel. The data points adjacent to each sweep must 

not be calculated once Sweep A and B have completed.

Figure 4 shows an example association of accelerator worker threads 

to the data partitioned matrix. There are a number of global synchro-

nization points introduced which can be implemented as barriers. A 

barrier is required at the end of processing between each sweep to 

synchronous processing of the elements adjacent to each sweep.

Figure 3. Data partitioning for Gauss-Seidel Algorithm.

Sweep A

Each element has a 
dependency on its neighbors.

Sweep B

M

N

Figure 4. Example thread partition for Gauss-Seidel algorithm.

Red-Sweep A

Black-Sweep A

Red-Sweep B

Black-Sweep B

Barrier

Accelerator Work Items

Master
Process

Barrier

Work
Distribution

Red-A-B
Adjacent

Black-A-B
Adjacent
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4.2.1 Non-RMW-Based Implementation

In the traditional (without I/O-side RMWs), the accelerators must signal 

the IA processor when each of the work tasks complete. This signaling 

is typically an interrupt raised by the accelerator. A device drive interrupt 

handler would execute and decrement the barrier counter on behalf of 

the accelerator. Atomicity of updates is achieved by the shared interrupt-

queue. When the counter reaches zero the barrier is synchronized  

and the master thread that is waiting on the barrier is released. As  

the reader would note interrupts (alternatively bus-locks) present  

a substantial overhead.

4.2.2 RMW-Based Implementation

With RMW primitives accelerators can replace the interrupts with 

atomic increments the shared variable in the system memory (or the 

system cache if appropriate hardware is available). The next section 

shows performance benefits achievable as a consequence. It also 

highlights the nature of applications that will benefit from these  

primitives. The potential usage of RMWs is highlighted in the grayed 

section of the code reference above. Essentially, the barrier-count 

variable can be updated in-place by the use of RMW primitives.

4.2.3 Performance Analysis

The graph below shows the benefit of using RMW operations for  

our use case. It is apparent from the graph below that main savings 

come from replacing costly interrupts with much faster RMW operations. 

It is also to be noted that the benefits are mostly for applications 

which have small problem sizes that are offloaded to accelerators.

Conclusion
We have examined several application models in this paper. We  

believe that to best service the emerging application domain of 

multiple-accelerators and multi-threaded applications which span 

both Host and I/O devices, I/O-side RMWs are a key element. These 

primitives not only provide ease of programming but also by over-

coming the limitation of legacy CPU-I/O mechanisms (locks, interrupts) 

they provide a significant performance boost. For some representative 

example parallel workloads (work-queues) we showed that RMW 

operations can give performance benefits of more than a factor  

of two compared to interrupt-based synchronizations. The gains 

are typically significant in use when there is need for fine-grained 

synchronization in presence of multi-threaded accelerators.

Contact Information:

Abhishek Singhal	 abhishek.singhal@intel.com 

Peter Barry	 peter.barry@intel.com 

Rob Van der Wijngaart	 rob.f.van.der.wijngaart@intel.com

Figure 5. Performance benefit of RMWs for applications with barriers.
Source: Intel Corporation.
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Engage with Intel on Next Generation PCI Express* (PCle*) product development,  
visit www.intel.com/technology/pciexpress/devnet for more information.

1. In this paper we define traditional CPU-Device model to be one which has one I/O thread. this could have one or more CPU threads.
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