
White Paper

Abstract
New I/O usage models have emerged recently. There is a trend towards offloading compute-
intensive applications to specialized engines/accelerators. Many such applications today are
in the high performance computing domain, examples of such are financial options modeling,
seismic exploration, game physics, and bio-informatics. This paper illustrates the need
for synchronization primitives for I/O accelerators to help these emerging usage models.
It shows examples from real-world applications and the associated performance
benefits of such primitives.

Atomic Read Modify
Write Primitives for I/O Devices

White Paper
Atomic Read Modify
Write Primitives

Abhishek Singhal
Rob Van der Wijngaart
Peter Barry
Intel Corporation

August 2008

Table of Contents

Introduction ��� 2

2.	What are Read Modify Writes?��� 3

3.	Synchronization Primitives for Traditional CPU-I/O Device Interactions ��� 3

	 3.1 Bulk Data Transfer ��� 3

	 3.1.1 Control Flow Between Host/CPU and I/O Device��� 3

4.	Synchronization Primitives in Multi-threaded Environments��� 4

	 4.1 .Multiple Accelerators Accessing Host Defined Work Queue��� 4

		 4.1.1 Non-RMW-based Implementation ��� 4

		 4.1.2 Atomic RMW-based Implementation��� 5

		 4.1.3 Performance Analysis��� 5

	 4.2 Multiple Accelerators Synchronizing with Host ��� 6

		 4.2.1 Non-RMW-based Implementation��� 7

		 4.2.2 RMW-based Implementation��� 7

		 4.2.3 Performance Analysis��� 7

Conclusion��� 7

Introduction
In recent years there has been a trend towards offloading computing-intensive workloads to specialized I/O devices
(example: math acceleration and physics acceleration). Two notable changes have contributed to this trend. First, the
accelerators have benefited from Moore’s Law which has given rise to extremely powerful engines which are increasingly
multi-core/multi-thread/multi-card devices. Second, the accelerators are becoming increasingly programmable. Another
trend emerging today is that of a collaborative execution-model where by both CPU and accelerator resources are
combined to achieve minimum execution time (for example, double precision units, branch prediction hardware).

Many such applications today are in high performance computing domain for example, options modeling, seismic
exploration, and game physics. These applications and associated libraries such as the Intel® Math Kernel Library (Intel®
MKL) have traditionally been run in multi-threaded environments (over multiple cores/CPUs) and hence make extensive
use of synchronization primitives such as semaphores, mutexes, and barriers. The challenges involved in porting existing
applications to accelerators are reduced if existing algorithms and their associated interactions could be relocated to the
accelerator(s). Because of the prevalence of synchronization primitives like semaphores, barriers, etc. in these algorithms,
it is natural that these primitives be extended to the accelerators. In this paper, we examine some use cases for such
primitives. In section two we define what Read Modify Write (RMW) primitives are. In section three we examine the
usage of I/O device side RMWs for traditional (single-threaded) I/O devices and in section four we show their usage
in multi-accelerator environments.

2

White Paper: Atomic Read Modify Write Primitives for I/O Devices

2. What are Read Modify Writes?
Read Modify Write (RMW) operations are hardware-assisted operations

that atomically update a variable at its memory location. These operations

have a long history and their usage in a wide range of synchronization

algorithms is well published. The operations are required for efficient

implementation of synchronization primitives such as semaphores,

mutexes, and barriers. Examples of RMWs that we have referred to

in this paper are:

1.	�Compare and Exchange (addr, value1, value2): Read the value

at addr and compare it with value1, write value2 to addr if value1

is equal to the value obtained at addr.

2.	�Atomic_Add (addr, value): Atomically increment (or decrement)

the variable at memory location addr.

In this paper we have examined the need and benefit of having

these primitives available on the I/O device(s).

3. Synchronization Primitives for
Traditional CPU-I/O Device1 Interactions
In this section we examine the use of RMWs for traditional I/O devices.

One can partition the interaction between host/CPU and I/O device

into two categories:

1. Bulk data transfer

2. Control information exchange

In the next two sections we examine the key characteristics of these

exchanges and also what role RMWs play in each of these categories.

3.1. Bulk Data Transfer

Bulk data transfer can be further divided into two subcategories based

on direction of transfer. The first subcategory is bulk data transfer from

Host/CPU to the I/O device. This primarily depends on the bandwidth

available to the I/O device. Since a large proportion of algorithms being

executed on I/O devices are data-parallel, programmers have been able

to hide I/O device data access latencies with great success through

techniques such as double buffering. A programmer can improve per-

formance of this data flow by a number of optimization techniques such

as pipelining data transfers, maximizing transfer sizes to achieve higher

link efficiencies, and by placing data structures to improve memory

page efficiency.

For the other direction of bulk-data transfer (I/O device to Host/CPU),

data access latency, and not bandwidth alone, is critical to performance.

The code executing on the host is dominated by control (branches) and

thus has very high sensitivity to latency for data accesses. In applications

where the I/O device serves as the producer of data that would be con-

sumed by the Host/CPU (example: where accelerator collaborates with

Host to utilize its double precision units) the access to system-

memory can be a performance limitation.

Another example is that of high-speed network links where small net-

work packets arrive at about the rate of memory access time. Host/

CPU caches have been traditionally utilized to improve the perfor-

mance of CPU latency. Another paper (Merits of Data Reuse Hints)

examines the extension of CPU caches for use by accelerators to im-

prove performance of this data flow. I/O device side RMWs are focused

on improving synchronization rather than improving raw bandwidth or

latency, and are thus not critical to performance of bulk data transfer.

3.1.1 Control Flow Between Host/CPU and I/O Device

Control between Host/CPU and the I/O device is required for a wide

range of uses such as:

• Setting up application parameters

• �Initiating computation on the I/O device. Often generically known
as “Do Work”

• Checking on the status bits on the accelerator

• Sending done signal to the Host/CPU, that is, Work complete indications

• To indicate error conditions from the I/O device to the Host/CPU

In traditional-I/O usage scenarios the existing mechanisms such as

Memory Mapped I/O (MMIO) writes (doorbells), interrupts, and polling,

etc. are utilized to exchange control information and facilitate

synchronization between the Host/CPU and I/O device.

These mechanisms typically provide for a pre-defined number of discrete

communications mechanisms between the I/O device and the CPU

complex. For example a network interface card might be designed to

have a separate descriptor ring per CPU core to facilitate TCP/IP flow

to processor core affinity. The trend to facilitate direct use of an I/O

device by user space applications brings with it scalability concerns

with the existing mechanisms, as the product designer must predefine

the number of resources dedicated to Host/CPU communications. Some

platform architectures provide architecture enhancements such as

Monitors, but these capabilities are also typically limited in availability.

However, I/O device side RMWs address some of the limits in scaling

mentioned above and also allow development of new usage models

which can improve the Host CPU-I/O interaction. For example, having

RMWs available to the I/O device facilitates the creation of lock-free

queues which are shared between I/O devices and the CPU(s). This

mechanism provides a scalable solution whereby each CPU thread can

submit work to an I/O device using a shared queue resident in system

memory. The lock-free queue can be read by the I/O device without the

need for costly bus-locks (Optimized Lock-Free FIFO Queue, Fober et. al).

It is important to recognize that the proposed RMW primitives equip

I/O devices with the capabilities hitherto available only to CPU/Host.

This capability is a basic requirement for an environment where algo-

rithms can be easily (and in a cost-effective manner) migrated

between the CPU and I/O domain.
3

White Paper: Atomic Read Modify Write Primitives for I/O Devices

4.Synchronization Primitives in Multi-
threaded Environments
Next we examine the use of I/O-side RMW semantics in multi-

threaded I/O environments.

4.1 Multiple Accelerators Accessing Host Defined Work Queue

In our first example we examine the utilization of work queues in

a multi-threaded environment. Work queues are a common way of

extracting coarse-grain parallelism in a dynamic environment where

load balancing cannot be done a priori, or where it is not efficient to do

so. A good example is the implementation of FLAME numerical linear

algebra library (Extracting SMP Parallelism for Dense Linear Algebra

Algorithms from High-Level Specifications, Tze Meng Low, Robert A.

van de Geijn, Field G. Van Zee). Even though the sizes of tasks to be

executed change continually, the load remains balanced as workers

(accelerators) acquire new work once they have finished a task.

Synchronization is required to make sure no task gets executed more

than once, and that no starvation occurs. This is accomplished using

RMW operations on shared variables in system memory, as illustrated

in the example work-queue implementation below.

Consider the case where multiple accelerators (or accelerator threads)

Na are executing tasks (Nt) of various sizes (in cycles). A master thread

on Host/CPU acting as a producer, fills a queue of tasks that is maintained

as a (circular) array of size L (L< Nt) in system memory. It ensures new

tasks are added to the end of the queue, and that no existing tasks

are overwritten prematurely. To this end it maintains the producer_index

(see code below) variable that points to the next entry in the task array

to be filled, and checks the status of the task in that entry to make sure

that it has been completed before overwriting it with a new one. The

accelerators (consumers) acquire tasks strictly in the order they were

generated. L must equal at least Na to allow full concurrency of con-

sumers. The situation is illustrated in figure 1, which depicts an

intermediate state of the work queue.

4.1.1 Non-RMW-based Implementation

Without RMW the producer and consumers have to communicate

strictly through interrupts, as the producer coordinates access to

shared-data structure. Each consumer has a driver which communi-

cates with the producer master driver which ensures atomicity of

operations in system memory. The consumers submit their ready

to execute another task status by sending an interrupt to the Host.

This is logged in the device driver. The master driver arbitrates between

multiple requests for task, chooses a winner, and signals the winner

to start processing. This model carries the overhead of interrupt

based communication.

Task queue: L=9, N=3
producer_index=1, consumer_index=7

CPU/
Producer

Accelerator/
Consumer

Accelerator/
Consumer

Accelerator/
Consumer

Task 8

Task 7

Task 6

Task 5

Task 4

Task 3

Task 2

Task 1

Task 0

Producer (CPU)

while (task [producer_index].status ≠ completed){ };
task[producer_index].status = busy;
create task[producer_index];
task[producer_index].status = ready;
producer_index++; (periodic)

Consumer

while (task_being_acquired ≠ false) { };
task_being_acquired = true;

while (task[consumer_index].status ≠ ready){ };
task[consumer_index].status = busy;
index = acquire task [consumer_index];
consumer_index++; (periodic)
task_being_acquired = false;
execute task[index];
task[index].status = completed;

atomic
RMW

Figure 1a. Shared work-queue example.

Task queue: L=9, N=3
producer_index=1, consumer_index=7

CPU/
Producer

Accelerator/
Consumer

Accelerator/
Consumer

Accelerator/
Consumer

Task 8

Task 7

Task 6

Task 5

Task 4

Task 3

Task 2

Task 1

Task 0

Producer (CPU)

while (task [producer_index].status ≠ completed){ };
task[producer_index].status = busy;
create task[producer_index];
task[producer_index].status = ready;
producer_index++; (periodic)

Consumer

while (task_being_acquired ≠ false) { };
task_being_acquired = true;

while (task[consumer_index].status ≠ ready){ };
task[consumer_index].status = busy;
index = acquire task [consumer_index];
consumer_index++; (periodic)
task_being_acquired = false;
execute task[index];
task[index].status = completed;

atomic
RMW

Figure 1b. Pseudo-code for work-queue sharing.

4

White Paper: Atomic Read Modify Write Primitives for I/O Devices

Figure 2. Performance benefit of RMWs for shared work queue.
Source: Intel Corporation.

2.5

2.0

1.5

1.0

0.0

20
0

40
0

80
0

1,
60

0

3,
20

0

6,
40

0

12
,8

00

25
,6

00

51
2,

00
0

10
0

0.5

3.5

3.0

4.0

4.5

5.0

Task Size (cycles)

B
en

efi
t

(r
at

io
)

Na=4Na=3Na=2

4.1.2 Atomic RMW-based Implementation

With RMWs available to I/O devices, producer and consumers can read

and update shared variables atomically in system memory, thus avoiding

the need for interrupts. Some of the coordination can be handled by the

I/O devices without involving the producer, which increases concurrency

(see figure 1a). Acquisition order of tasks is enforced by the shared

consumer_index variable that indicates the next available task in the

queue. Idle consumers spin on the shared task_being_acquired variable

for the right to access the next task in the queue (consumer_index).

Once a consumer wins access rights, it waits for the producer to finish

creating the task by spinning on its shared status variable. Next, it changes

the status so that the producer will not overwrite its contents before

the task is completed and increments (modulo L) the consumer_index.

Then it releases the task_being_acquired variable, which implements a

critical section among the multiple consumers. The individual task status

variables implement critical sections among the actively acquiring con-

sumer and the producer. Execution of tasks takes place outside all critical

sections. Figure 1b shows the pseudo-code for the RMW implementation

for producer and consumers. Each shaded box is implemented using a

single atomic RMW primitive.

4.1.3 Performance Analysis

We use the following definitions and assumptions. All cycles refer to

CPU cycles. Average time to acquire and execute a task is Ce cycles,

latency from accelerator to LLC is CLLC cycles, time an interrupt takes to

travel to the device driver plus time to handle the interrupt is Ci cycles,

mutex variables (RMW) remain in Host cache, each task acquisition takes

four non-pipelined cache accesses (RMW), or one interrupt (no RMW).

Because we focus on synchronization, we ignore the time to create

a task or to generate an interrupt.

We study two different scenarios.

1. �All tasks are the same size, and are executed by the accelerators in

lockstep, or the tasks are all very small. In that case cache accesses

to task_being_acquired (RMW) cannot be overlapped with computa-

tions by other accelerators. The one cache access to a non-globally

shared variable that occurs within the critical section guarded by

task_being_acquired also cannot be overlapped with computations

or cache accesses by other accelerators. Hence, three accesses per

task are exposed (serialized), while one can be overlapped. In the

non-RMW case, interrupts are all fully exposed.

2. �Tasks are of different sizes and sufficiently large that they lead to

staggered cache accesses of synchronization variables (RMW), or to

stagger interrupts (no RMW). In that case, interrupts or cache accesses

related to synchronization variables can occur concurrently with

computations by other accelerators.

We compute the time Ctot to execute all tasks for both scenarios,

with and without RMW.

1. �RMW: Ctot = Nt*((Ce+CLLC)/Na + 3*CLLC)

No RMW: Ctot = Nt*(Ce/Na + Ci)

2. �RMW: Ctot =Nt*(Ce+4*CLLC)/Na

No RMW: Ctot = Nt*(Ce + Ci)/Na

We plot the RMW performance benefit PG, expressed as the ratio of

completion times in both scenarios, for the case that CLLC~300, Ci

~4300, as a function of the task size. The results are shown in figure 2.

Obviously, the performance benefit of RMW operations versus interrupt-

based synchronization for both scenarios is largest for small task sizes,

and becomes negligible for tasks exceeding a quarter million cycles. For

task sizes in the range of a few hundred to a few thousand cycles (very

fine grain), RMW benefit is more than 100%.
Performance Benefit
(Na=number of accelerators)

5

White Paper: Atomic Read Modify Write Primitives for I/O Devices

4.2 Multiple Accelerators Synchronizing with Host

Next we examine a use-case where multiple accelerators are working

collaboratively with the host. Our example illustrates the collaborative

usage of CPU and accelerator resources through barriers. Barriers,

which find very high usage in traditional multi-threaded application,

provide a mechanism by which no process can go beyond the synchro-

nization point until all process have reached the barrier. The barrier

transaction has three distinct phases, arrival, wait for release, and

release of the barrier. There are a number of published variations of

barriers such as Centralized Barrier, Software Combining Trees, and

Tree Barrier with local spinning. A simple and prevalent example imple-

mentation of the barrier is shown below.

Barrier Init:

		 Set counter value to 0; Set lock to 0;

Barrier:

		� Acquire(lock); [Uses SWAP atomic] - RMW

	 if counter is zero set flag to zero.

	 increment counter

		 Release(lock) ; [Uses SWAP atomic] - RMW

		� if counter equals number of waiting processes

	 set counter to zero

	 set flag to one

		� else

	 repeat:

		 until flag is one

end if

An example application, which may make use of barriers to synchronize

between worker threads, is the parallel execution of Gauss-Seidel

equation solver. The Gauss-Seidel is an iterative solver that continues

to run until it converges to a solution within a target error range.

The algorithm consists of dependencies between surrounding elements

within the matrix. In order to solve elements of the algorithm in parallel,

data dependent groups are grouped a number of ways. The first data

partitioning is known as red-black. This allows the algorithm to be sepa-

rated into two separate phases which do not have data dependences.

The second method is to divide the array into separate sweeps that

may occur in parallel. The data points adjacent to each sweep must

not be calculated once Sweep A and B have completed.

Figure 4 shows an example association of accelerator worker threads

to the data partitioned matrix. There are a number of global synchro-

nization points introduced which can be implemented as barriers. A

barrier is required at the end of processing between each sweep to

synchronous processing of the elements adjacent to each sweep.

Figure 3. Data partitioning for Gauss-Seidel Algorithm.

Sweep A

Each element has a
dependency on its neighbors.

Sweep B

M

N

Figure 4. Example thread partition for Gauss-Seidel algorithm.

Red-Sweep A

Black-Sweep A

Red-Sweep B

Black-Sweep B

Barrier

Accelerator Work Items

Master
Process

Barrier

Work
Distribution

Red-A-B
Adjacent

Black-A-B
Adjacent

6

White Paper: Atomic Read Modify Write Primitives for I/O Devices

4.2.1 Non-RMW-Based Implementation

In the traditional (without I/O-side RMWs), the accelerators must signal

the IA processor when each of the work tasks complete. This signaling

is typically an interrupt raised by the accelerator. A device drive interrupt

handler would execute and decrement the barrier counter on behalf of

the accelerator. Atomicity of updates is achieved by the shared interrupt-

queue. When the counter reaches zero the barrier is synchronized

and the master thread that is waiting on the barrier is released. As

the reader would note interrupts (alternatively bus-locks) present

a substantial overhead.

4.2.2 RMW-Based Implementation

With RMW primitives accelerators can replace the interrupts with

atomic increments the shared variable in the system memory (or the

system cache if appropriate hardware is available). The next section

shows performance benefits achievable as a consequence. It also

highlights the nature of applications that will benefit from these

primitives. The potential usage of RMWs is highlighted in the grayed

section of the code reference above. Essentially, the barrier-count

variable can be updated in-place by the use of RMW primitives.

4.2.3 Performance Analysis

The graph below shows the benefit of using RMW operations for

our use case. It is apparent from the graph below that main savings

come from replacing costly interrupts with much faster RMW operations.

It is also to be noted that the benefits are mostly for applications

which have small problem sizes that are offloaded to accelerators.

Conclusion
We have examined several application models in this paper. We

believe that to best service the emerging application domain of

multiple-accelerators and multi-threaded applications which span

both Host and I/O devices, I/O-side RMWs are a key element. These

primitives not only provide ease of programming but also by over-

coming the limitation of legacy CPU-I/O mechanisms (locks, interrupts)

they provide a significant performance boost. For some representative

example parallel workloads (work-queues) we showed that RMW

operations can give performance benefits of more than a factor

of two compared to interrupt-based synchronizations. The gains

are typically significant in use when there is need for fine-grained

synchronization in presence of multi-threaded accelerators.

Contact Information:

Abhishek Singhal	 abhishek.singhal@intel.com

Peter Barry	 peter.barry@intel.com

Rob Van der Wijngaart	 rob.f.van.der.wijngaart@intel.com

Figure 5. Performance benefit of RMWs for applications with barriers.
Source: Intel Corporation.

10.0

8.0

6.0

4.0

0.0

20
0

40
0

80
0

1,
60

0

3,
20

0

6,
40

0

12
,8

00

25
,6

00

51
2,

00
0

10
0

2.0

14.0

12.0

16.0

Problem Size (cycles)

Sp
ee

d-
up

Na=4Na=3Na=2

IO-side RMW Speed-up for Application Using Barriers (Na=number of accelerators)

7

White Paper: Atomic Read Modify Write Primitives for I/O Devices

Engage with Intel on Next Generation PCI Express* (PCle*) product development,
visit www.intel.com/technology/pciexpress/devnet for more information.

1. In this paper we define traditional CPU-Device model to be one which has one I/O thread. this could have one or more CPU threads.

		 INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS
GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS
OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGE-
MENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY
APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.

		 Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions
marked “reserved” or “undefined.” Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.
The information here is subject to change without notice. Do not finalize a design with this information.

		 The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current
characterized errata are available on request. Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order. Copies
of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-4725, or by visiting Intel’s Web site
at www.intel.com.

		 Copyright © 2008 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

 *Other names and brands may be claimed as the property of others.

		 Printed in USA	 0808/VP/HBD/PDF	 Please Recycle

