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Configuration and Deployment Guide 
for the Cassandra NoSQL Data Store on 
Intel Architecture 

About this Guide 

This Configuration and Deployment Guide explores one of the leading Not Only Structured Query 

Language (NoSQL) databases, Cassandra, on Intel® Architecture.  The configuration guidelines address 

use cases with both Intel Xeon® processor- and Atom™ processor-based servers that take into account 

differing business scenarios, performance requirements and Total Cost of Ownership (TCO) objectives. 
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1.0 Introduction – Driving Forces for NoSQL 
The driving force behind the development of NoSQL databases is the need to rapidly store and manage 

ever larger, dynamically changing “Big Data” information sets.  According to the Open Data Center 

Alliance (ODCA), Big Data can be defined as “massive amounts of data, the size and variety of which are 

beyond the processing capabilities of traditional data management tools to capture, manage and 

analyze in a timely manner”.  The key challenges include capture, curation, storage, search, sharing, 

transfer, analysis and visualization. 
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Big Data is often characterized by the three “V”s of Volume, Variety, and Velocity; along with a fourth 

“V” referring to the Value that can be derived from the effective use of Big Data informational assets. 

 

IDC's market forecast shows that the worldwide Big Data technology and services market will grow at a 

31.7% compound annual growth rate (CAGR) – about seven times the rate of the overall information 

and communication technology market – with Big Data revenues reaching $23.8 billion in 2016.   

NoSQL emerged as a means to satisfy new data format demands, in which data is no longer 

predominantly system generated, but rather user content emanating from multiple sources.  

This new phenomenon presents challenges for existing database systems, as the user generated data 

does not abide by any structure or model. With the popularity of social media outlets such as Facebook 

and Twitter, not only is the data growing at unprecedented rates, but it also needs to be shared with 

greater frequency by a growing user base. 

Big Data workloads vary from compute-intensive applications, such as real-time analytics, to I/O-

intensive operations, such as responding to fast-trending social media peak usage patterns and so-called 

“hot-key” requests (e.g., a surge of requests for a “hot” video clip, picture or other piece of popular 

content).   

Depending on your workloads and business requirements, the appropriate type of NoSQL 

implementation and the type of servers to run it on will vary.  This guide examines configuration and 

deployment practices for Cassandra both in heavy-workload/rigorous SLA environments and in lighter-

workload/looser-SLA environments. 
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2.0 NoSQL Database Overview 

2.1 NoSQL vs. Relational Databases 
NoSQL databases provide data storage and retrieval methods that use looser consistency models than 

traditional relational database management system (RDBMS) approaches.  Primary reasons for the 

move to NoSQL include simplicity of design, improved horizontal scaling, and finer control over data 

availability.  NoSQL architectures use distributed data stores to optimize scalability along with simple 

write, append and retrieval methods for fast performance, even with very large and diverse data sets. 

NoSQL solutions are not designed to provide the same guarantees of Atomicity, Consistency, Isolation 

and Durability (ACID) that characterize RDBMSs.  By leveraging the concept of eventual consistency, 

distributed databases can deal with huge volumes, velocity and variety of data while delivering very fast 

transactional performance.  If no new updates are made for a given data item, eventually all accesses to 

that item will return the last updated value.   

Depending on the specifics of the NoSQL architecture, this loosening of ACID consistency enables the 

database to provide high performance while scaling large data sets across distributed systems. 

2.2 Differences in NoSQL Architectures 
There are different approaches to classifying NoSQL databases, but the most widely used classification is 

by data model, such as Document, Key-Value/Object, Column or Graph.   

The first category of NoSQL databases is built as collections of "documents".  In general, these data 

stores assume that documents encapsulate and encode data in standard formats, such as XML, YAML, or 

JSON, as well as binary forms like BSON, PDF or Microsoft Office documents. 

Compared to RDBMSs, document stores resemble tables and documents resemble records. But they are 

different: every record in a RDBMS table has the same sequence of fields, while different documents 

have fields that are completely different. 

Each document is addressed in the data store via a unique key that represents that document. Beyond 

the simple key-document lookup, the NoSQL database can offer an API or query language to allow 

retrieval of documents based on their contents, or it can retrieve information using MapReduce 

techniques.   

Key–value/Object stores allow applications to store data in a schema-less way, thereby providing a very 

high degree of flexibility. Usually, the data is stored as objects, but key-value stores also can be based on 

data types (i.e., integers, Booleans, characters, floating-point numbers, or alphanumeric strings). 

Column-oriented databases are different from traditional row-oriented databases because of how they 

store data. By storing a whole column together instead of a row, you can minimize disk access when 

selecting a few columns from a row containing many columns. This has advantages for data warehouses, 

customer relationship management (CRM) systems, library card catalogs, and other ad-hoc inquiry 

systems where aggregates are computed over large numbers of similar data items. 

http://en.wikipedia.org/wiki/Boolean_data_type
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Graph-oriented NoSQL databases are optimized for data relationships best represented in graphical 

form, such as networks of interconnected elements with an undetermined number of relations among 

them.  Examples could be social networks, public transport links, or other networking topologies. 

The following table provides an overview of popular NoSQL databases as categorized by their primary 

data models.  It is important to note that some NoSQL approaches use a combination of data models.   

Cassandra is a case in point—it can be classified as either a Column or Key-Value data store because it 

has attributes of both. 

Data Model Database API - Language 
 

Notes 

Column 
Store 

Cassandra Many Thrift languages MapReduce 

Hadoop/HBase Java/any writer MapReduce Java 

Hypertable Thrift (Java, PHP, Perl, Python, Ruby) JQL, native Thrift API 

Document 
Store 

MongoDB BSON (Binary JSON) Dynamic, object-based 

CouchDB JSON MapReduce 

MarkLogic Server JSON, XML, Java Full text, XPath, Geospatial 

Clusterpoint XML, PHP, Java, .NET Full text, XML, XPath 

Key-Value 
Store 

CouchBase Server Memcached API+ protocol  

Riak JSON MapReduce term matching 

MemcacheDB Memcached protocol  

Graph 
Databases 

InfiniteGraph Java  

AllegroGraph SPARQL  

Neo4j Java Compatible with Java, Ruby, 
Python, Groovy and others. 

3.0 Cassandra 
Cassandra is a scalable fully distributed NoSQL data storage system.  First published by Facebook in 

2008, Cassandra is licensed under the Apache License 2.0 for managing large amounts of loosely 

structured data. It aims to provide continuous availability with no single point of failure.  Cassandra is 

essentially a hybrid between a key-value and a column-oriented tabular database. Each key in Cassandra 

corresponds to an object that groups values as columns, and columns are grouped together into sets 

called column families. Also, multiple column families can be grouped in super column families.  Thus 

each key in Cassandra identifies a variable number of elements, which could be considered as multi-

dimensional maps that are indexed by a single key. 

A column family in Cassandra resembles a table in an RDBMS. Column families contain rows and 

columns. Each row is uniquely identified by a row key. Each row has multiple columns, each of which has 

a name, value, and a timestamp. Unlike a table in an RDBMS, different rows in the same column family 

do not have to share the same set of columns, and a column may be added to one or multiple rows at 

any time.  In addition, applications can specify the sort order of columns within a Super Column or 

Simple Column family. 
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3.1 Cassandra Cluster Topology 
Cassandra’s topology relies on a peer-to-peer distributed architecture. All nodes participate in a “ring” 

or datastore cluster, and communicate with each other via a gossip protocol. Data, depending on the 

user preference is either orderly or randomly distributed across all nodes.  

Additionally, data replication is available and is highly recommended to the user for fault-tolerance, as it 

allows for data durability in cases of node failures. The minimum replica set recommended is three. This 

means that should n nodes be found adequate for a given cluster/workload combination, 3n nodes 

should be provisioned. The user would then enable Cassandra to replicate each data chunk to three 

nodes, allowing for any part of database to be accessible even under node failures. For greater fault-

tolerance, a higher replica set number can be chosen. 

3.2 Server Operating System Configuration and Tuning 
Cassandra workloads can rapidly become CPU-bound, and as such, we recommend systems with as 

many CPU cores as possible.  Operating system parameters also determine how well a Cassandra cluster 

will perform. Among those, specific system resource limits will need to be changed.  Such settings can 

usually be found in /etc/security/limits.conf.  Below are the values that should be adopted. 

* soft nofile 32768 

* hard nofile 32768 

root soft nofile 32768  

root hard nofile 32768 

* soft memlock unlimited 

* hard memlock unlimited 

root soft memlock unlimited 
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root hard memlock unlimited 

* soft as unlimited 

* hard as unlimited 

root soft as unlimited 

root hard as unlimited 

Additionally, you need to change kernel parameters controlling the maximum number of memory map 

areas used by Cassandra. This will enable the software to map more than 65536 areas, as it is by default.  

sysctl -w vm.max_map_count=131072  To make this setting permanent,  

vm.max_map_count = 131072 Should be added to:  /etc/sysctl.conf  

On RedHat Enterprise Linux, Oracle Enterprise Linux, and CentOS,Systems, system limits should be 

changed from 1024 to 10240 in /etc/security/limits.d/90-nproc.conf like so: soft  nproc  10240 

So that the Java Virtual Machine (JVM) does not endlessly swap, all paging spaces should be deactivated 

like so: sudo swapoff –all  or as root swapoff –all  This change can be made permanent by removing 

swap file entries from   /etc/fstab   

Tune the JVM Heap size on each node of the cluster, depending on the amount of memory on that 

specific node. Too big a Heap size can impair Cassandra’s efficiency. Recommended settings are:  

RAM Heap Size 

< 2GB ½ of RAM 

2GB to 4GB 1GB 

>  4GB ¼ of RAM, but not more than 8GB 
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3.3 Memory Size Selection 
Cassandra relies on RAM for speed and efficiency for read-dominant workloads. More RAM allows 

Cassandra larger cache sizes, larger memtables, and thus fewer disk flushes. However, rather than using 

most of the available RAM on a system, Cassandra through the JVM will only make use of 8GB. If your 

workload is predominantly composed of read operations, to achieve best performance, you should 

allow for enough nodes to host the dataset in RAM. This considers that each node will have only 8GB of 

its RAM usable to Cassandra. As our testing shows, performance begins deteriorating past 15.7GB of 

data for 2 servers, thus about 8GB per server.  As we point out in the table above this section, assigning 

more than 8GB of heap size to the JVM proves to be counterproductive in Cassandra’s case.  

 

3.4 Storage Device Configuration and Tuning 
If the intended workload for a Cassandra deployment will not fit in RAM, secondary storage will be more 

frequently accessed. Opting for storage solutions offering faster I/O operations, such as RAID or SSDs, 

becomes crucial for out of memory read-dominant workloads, as shown in the figure below.   

Read-dominant workloads show greater sensitivity to this condition than write-dominant ones, as read 

operations tap secondary storage far more than writes in Cassandra’s case.  As an example, our tests 

with various workloads showed SSDs to perform up to 6X faster than spinning disks for read-dominant 

workloads, as compared to 25% faster for write-dominant workloads.  When dealing with in-memory 

workloads, the use of spinning drives is generally adequate, as the performance numbers observed 

between those and SSDs show very little variation for Intel Xeon and Intel Atom processor-based 

platforms, with the exception of writes on Intel Xeon-based systems. For write-dominant workloads, 

Intel Xeon processor-based platforms show up to a 24% performance increase with SSDs over spinning 

disks, when it comes to in-memory writes workloads. 
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Cassandra writes to the disk when appending content to its “commit log”, and when flushing memtables 

for durability. Storing “commit logs” on a separate disk from the data disks will benefit performance. 

When selecting storage sizes for a given workload, we recommend provisioning for a minimum of 1.1 

times the size of the workload to be processed. 

 

 

3.5 Networking 
As per our testing, the recommended bandwidth for Cassandra is a 1Gb internal network between the 

nodes. A faster network might be generally preferred, but in Cassandra’s case, 1Gb is sufficient. 

3.6 Cassandra Use Cases 

3.6.1 Intel Atom processor-based Cassandra Deployment 

For each workload, we assume a 1Gb internal network between all Cassandra nodes. Assuming 32GB of 

RAM per Intel Atom processor-based microserver, and given that 8GB will be provisioned for Cassandra, 

below are possible cluster configurations along with resulting performance expectations. These 

scenarios assume a fault-tolerance cluster with a replication count of three. (The same scenarios can be 

considered without replication, by dividing the number of suggested nodes by three.) 

For a maximum throughput of 800 read operations/second at the client, the table below should be 

followed to determine the number of servers. For a solely read-intensive workload, spinning drives 

would be sufficient. The total disk capacity across all servers should be greater or equal to 1.1 times the 

size of the workload. SSDs in this scenario do not add much performance, only 0.3% when the workload 

is fully hosted in memory. For write-intensive workloads, a throughput of 1400 operations/second at the 

client can be achieved with the use of spinning disks.  As writes occur in memory, the use of SSDs offers 

only 1.5% more performance to our workload. The total disk capacity across all servers in this case also 

should be greater or equal to 1.1 times the size of the workload. 
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Workload Size # of Servers 

100GB 39 

1TB 378 

 

At the cost of performance, an alternate configuration choice is possible with the use of SSDs and a 

reduced number of total participating servers. This also could be the case when not enough servers are 

available to accommodate a given workload. The table below highlights such a case for our two 

scenarios (100GB, and 1TB of user data).  

This configuration choice provides 100 read operations/second versus the 800 read operations/second 

previously noted because the data is no longer directly fetched from RAM. SSDs in this case will provide 

600 read operations per second compared to 100 operations with spinning disks. For write-intensive 

applications in the configuration below, we can expect 1200 write operations per second with spinning 

drives, and a 25% improvement over spinning drives with SSDs. 

Workload Size # of Servers 

100GB 3 

1TB 3 

 

3.6.2 Intel Xeon processor-based Cassandra Deployment 

Because Cassandra effectively uses only 8GB of heap space, despite the larger overall memory capacity, 

the number of servers recommended is the same as in the Atom processor-based scenario. However, 

Cassandra still benefits from larger memory systems, as larger pages can be cached.   

For each workload, we assume a 1Gb internal network between all Cassandra nodes. Considering 512GB 

of RAM per server, and given that only 8GB of heap space will be used by Cassandra, below are possible 

Intel Xeon processor-based performance expectations: 

In this scenario we assume a fault-tolerance cluster with a replication count of three. If this same 

scenario is considered without replication, the number of suggested nodes should be divided by three. 

For a maximum throughput of 1200 read operations/second at the client, the table below should be 

followed to determine the number of servers. For a solely read-intensive workload, spinning drives 

would be sufficient, as SSDs only provide a 1.5% performance boost. The total disk capacity across all 

servers should be greater than or equal to 1.1 times the size of the workload. For write-intensive 

workloads, a throughput of 2900 operations/second at the client can be achieved with the use of 

spinning disks, and a 24% higher throughput with SSDs. The total disk capacity across all servers in this 

case also should be greater than or equal to 1.1 times the size of the workload. 

Workload Size # of Servers 

100GB 39 

1TB 378 
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At the cost of performance, an alternate configuration is possible with the use of SSDs and a reduced 

amount of total participating servers. This also can be the case when not enough servers are available to 

accommodate a workload. The table below highlights such a case for our two scenarios (100GB, and 1TB 

of user data).  

This configuration will provide 100 read operations/second versus the 1200 read operations/second 

previously noted, because the data is no longer directly fetched from RAM. SSDs in this case would 

provide 600 read operations per second compared to 100 operations with spinning disks. For write-

intensive applications on the other hand, we can expect 2800 write operations per second with spinning 

drive, and 3500 operations per second with SSDs. 

Workload Size # of Servers 

100GB 3 

1TB 3 

 

4.0 Summary  
NoSQL provides important solutions for effective data management across a growing range of scenarios 

including compute-intensive applications, such as real-time Big Data analytics, as well as I/O-intensive 

requirements, such as serving hot-trending social media peak usage patterns.   

The flexibility of NoSQL has also driven its usage in realms beyond Big Data. Because NoSQL is basically 

about data storage and management, it provides advantages for applications such as entry dedicated 

hosting, static web serving, simple content delivery and memory caching. 

Cassandra has emerged as a leading open-source NoSQL data store that offers a high level of flexibility, 

scalability and performance for addressing these challenges.  

The proper hardware configuration for optimizing performance and cost of ownership for Cassandra is 

not a one-size-fits-all proposition.  Key factors that must be considered include: 

 Size of the workload and future growth predictions 

 Performance requirements and criticality vs. cost of ownership considerations 

 Nature of workload: read-intensive, write-intensive, or both 

 Overall data center considerations: space, power, interoperability 

As detailed in this guide, the deployment of Cassandra can be optimized to achieve a targeted balance 

of these key factors using either Intel Xeon processor-based or Intel Atom processor-based solutions, 

depending on the specific requirements of the application. 

The use of Intel Architecture based solutions for Cassandra deployments also takes advantage of the 

extensive Intel ecosystem, reduces overall complexity and improves TCO by providing a common 
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hardware and software architecture that can be optimized for performance, cost and maintainability 

throughout the data center. 

5.0 Additional Resources 
Open Data Center Alliance (ODCA) Big Data Consumer Guide 

http://www.opendatacenteralliance.org/docs/Big_Data_Consumer_Guide_Rev1.0.pdf 

The Apache Cassandra Project 

http://cassandra.apache.org/ 

Apache Cassandra Quick Doc 

http://planetcassandra.org/Content/Learn/Docs/QuickDoc.pdf 
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