
1

Configuration and Deployment Guide
for the Cassandra NoSQL Data Store on
Intel Architecture

About this Guide

This Configuration and Deployment Guide explores one of the leading Not Only Structured Query

Language (NoSQL) databases, Cassandra, on Intel® Architecture. The configuration guidelines address

use cases with both Intel Xeon® processor- and Atom™ processor-based servers that take into account

differing business scenarios, performance requirements and Total Cost of Ownership (TCO) objectives.

Table of Contents

1.0 Introduction – Driving Forces for NoSQL .. 1
2.0 NoSQL Database Overview ... 3

2.1 NoSQL vs. Relational Databases .. 3
2.2 Differences in NoSQL Architectures .. 3

3.0 Cassandra ... 4
3.1 Cassandra Cluster Topology .. 5
3.2 Server Operating System Configuration and Tuning ... 5
3.3 Memory Size Selection .. 7
3.4 Storage Device Configuration and Tuning ... 7
3.5 Networking .. 8
3.6 Cassandra Use Cases ... 8

3.6.1 Intel Atom processor-based Cassandra Deployment .. 8
3.6.2 Intel Xeon processor-based Cassandra Deployment .. 9

4.0 Summary .. 10
5.0 Additional Resources .. 11

1.0 Introduction – Driving Forces for NoSQL
The driving force behind the development of NoSQL databases is the need to rapidly store and manage

ever larger, dynamically changing “Big Data” information sets. According to the Open Data Center

Alliance (ODCA), Big Data can be defined as “massive amounts of data, the size and variety of which are

beyond the processing capabilities of traditional data management tools to capture, manage and

analyze in a timely manner”. The key challenges include capture, curation, storage, search, sharing,

transfer, analysis and visualization.

2

Big Data is often characterized by the three “V”s of Volume, Variety, and Velocity; along with a fourth

“V” referring to the Value that can be derived from the effective use of Big Data informational assets.

IDC's market forecast shows that the worldwide Big Data technology and services market will grow at a

31.7% compound annual growth rate (CAGR) – about seven times the rate of the overall information

and communication technology market – with Big Data revenues reaching $23.8 billion in 2016.

NoSQL emerged as a means to satisfy new data format demands, in which data is no longer

predominantly system generated, but rather user content emanating from multiple sources.

This new phenomenon presents challenges for existing database systems, as the user generated data

does not abide by any structure or model. With the popularity of social media outlets such as Facebook

and Twitter, not only is the data growing at unprecedented rates, but it also needs to be shared with

greater frequency by a growing user base.

Big Data workloads vary from compute-intensive applications, such as real-time analytics, to I/O-

intensive operations, such as responding to fast-trending social media peak usage patterns and so-called

“hot-key” requests (e.g., a surge of requests for a “hot” video clip, picture or other piece of popular

content).

Depending on your workloads and business requirements, the appropriate type of NoSQL

implementation and the type of servers to run it on will vary. This guide examines configuration and

deployment practices for Cassandra both in heavy-workload/rigorous SLA environments and in lighter-

workload/looser-SLA environments.

3

2.0 NoSQL Database Overview

2.1 NoSQL vs. Relational Databases
NoSQL databases provide data storage and retrieval methods that use looser consistency models than

traditional relational database management system (RDBMS) approaches. Primary reasons for the

move to NoSQL include simplicity of design, improved horizontal scaling, and finer control over data

availability. NoSQL architectures use distributed data stores to optimize scalability along with simple

write, append and retrieval methods for fast performance, even with very large and diverse data sets.

NoSQL solutions are not designed to provide the same guarantees of Atomicity, Consistency, Isolation

and Durability (ACID) that characterize RDBMSs. By leveraging the concept of eventual consistency,

distributed databases can deal with huge volumes, velocity and variety of data while delivering very fast

transactional performance. If no new updates are made for a given data item, eventually all accesses to

that item will return the last updated value.

Depending on the specifics of the NoSQL architecture, this loosening of ACID consistency enables the

database to provide high performance while scaling large data sets across distributed systems.

2.2 Differences in NoSQL Architectures
There are different approaches to classifying NoSQL databases, but the most widely used classification is

by data model, such as Document, Key-Value/Object, Column or Graph.

The first category of NoSQL databases is built as collections of "documents". In general, these data

stores assume that documents encapsulate and encode data in standard formats, such as XML, YAML, or

JSON, as well as binary forms like BSON, PDF or Microsoft Office documents.

Compared to RDBMSs, document stores resemble tables and documents resemble records. But they are

different: every record in a RDBMS table has the same sequence of fields, while different documents

have fields that are completely different.

Each document is addressed in the data store via a unique key that represents that document. Beyond

the simple key-document lookup, the NoSQL database can offer an API or query language to allow

retrieval of documents based on their contents, or it can retrieve information using MapReduce

techniques.

Key–value/Object stores allow applications to store data in a schema-less way, thereby providing a very

high degree of flexibility. Usually, the data is stored as objects, but key-value stores also can be based on

data types (i.e., integers, Booleans, characters, floating-point numbers, or alphanumeric strings).

Column-oriented databases are different from traditional row-oriented databases because of how they

store data. By storing a whole column together instead of a row, you can minimize disk access when

selecting a few columns from a row containing many columns. This has advantages for data warehouses,

customer relationship management (CRM) systems, library card catalogs, and other ad-hoc inquiry

systems where aggregates are computed over large numbers of similar data items.

http://en.wikipedia.org/wiki/Boolean_data_type

4

Graph-oriented NoSQL databases are optimized for data relationships best represented in graphical

form, such as networks of interconnected elements with an undetermined number of relations among

them. Examples could be social networks, public transport links, or other networking topologies.

The following table provides an overview of popular NoSQL databases as categorized by their primary

data models. It is important to note that some NoSQL approaches use a combination of data models.

Cassandra is a case in point—it can be classified as either a Column or Key-Value data store because it

has attributes of both.

Data Model Database API - Language

Notes

Column
Store

Cassandra Many Thrift languages MapReduce

Hadoop/HBase Java/any writer MapReduce Java

Hypertable Thrift (Java, PHP, Perl, Python, Ruby) JQL, native Thrift API

Document
Store

MongoDB BSON (Binary JSON) Dynamic, object-based

CouchDB JSON MapReduce

MarkLogic Server JSON, XML, Java Full text, XPath, Geospatial

Clusterpoint XML, PHP, Java, .NET Full text, XML, XPath

Key-Value
Store

CouchBase Server Memcached API+ protocol

Riak JSON MapReduce term matching

MemcacheDB Memcached protocol

Graph
Databases

InfiniteGraph Java

AllegroGraph SPARQL

Neo4j Java Compatible with Java, Ruby,
Python, Groovy and others.

3.0 Cassandra
Cassandra is a scalable fully distributed NoSQL data storage system. First published by Facebook in

2008, Cassandra is licensed under the Apache License 2.0 for managing large amounts of loosely

structured data. It aims to provide continuous availability with no single point of failure. Cassandra is

essentially a hybrid between a key-value and a column-oriented tabular database. Each key in Cassandra

corresponds to an object that groups values as columns, and columns are grouped together into sets

called column families. Also, multiple column families can be grouped in super column families. Thus

each key in Cassandra identifies a variable number of elements, which could be considered as multi-

dimensional maps that are indexed by a single key.

A column family in Cassandra resembles a table in an RDBMS. Column families contain rows and

columns. Each row is uniquely identified by a row key. Each row has multiple columns, each of which has

a name, value, and a timestamp. Unlike a table in an RDBMS, different rows in the same column family

do not have to share the same set of columns, and a column may be added to one or multiple rows at

any time. In addition, applications can specify the sort order of columns within a Super Column or

Simple Column family.

5

3.1 Cassandra Cluster Topology
Cassandra’s topology relies on a peer-to-peer distributed architecture. All nodes participate in a “ring”

or datastore cluster, and communicate with each other via a gossip protocol. Data, depending on the

user preference is either orderly or randomly distributed across all nodes.

Additionally, data replication is available and is highly recommended to the user for fault-tolerance, as it

allows for data durability in cases of node failures. The minimum replica set recommended is three. This

means that should n nodes be found adequate for a given cluster/workload combination, 3n nodes

should be provisioned. The user would then enable Cassandra to replicate each data chunk to three

nodes, allowing for any part of database to be accessible even under node failures. For greater fault-

tolerance, a higher replica set number can be chosen.

3.2 Server Operating System Configuration and Tuning
Cassandra workloads can rapidly become CPU-bound, and as such, we recommend systems with as

many CPU cores as possible. Operating system parameters also determine how well a Cassandra cluster

will perform. Among those, specific system resource limits will need to be changed. Such settings can

usually be found in /etc/security/limits.conf. Below are the values that should be adopted.

* soft nofile 32768

* hard nofile 32768

root soft nofile 32768

root hard nofile 32768

* soft memlock unlimited

* hard memlock unlimited

root soft memlock unlimited

6

root hard memlock unlimited

* soft as unlimited

* hard as unlimited

root soft as unlimited

root hard as unlimited

Additionally, you need to change kernel parameters controlling the maximum number of memory map

areas used by Cassandra. This will enable the software to map more than 65536 areas, as it is by default.

sysctl -w vm.max_map_count=131072 To make this setting permanent,

vm.max_map_count = 131072 Should be added to: /etc/sysctl.conf

On RedHat Enterprise Linux, Oracle Enterprise Linux, and CentOS,Systems, system limits should be

changed from 1024 to 10240 in /etc/security/limits.d/90-nproc.conf like so: soft nproc 10240

So that the Java Virtual Machine (JVM) does not endlessly swap, all paging spaces should be deactivated

like so: sudo swapoff –all or as root swapoff –all This change can be made permanent by removing

swap file entries from /etc/fstab

Tune the JVM Heap size on each node of the cluster, depending on the amount of memory on that

specific node. Too big a Heap size can impair Cassandra’s efficiency. Recommended settings are:

RAM Heap Size

< 2GB ½ of RAM

2GB to 4GB 1GB

> 4GB ¼ of RAM, but not more than 8GB

7

3.3 Memory Size Selection
Cassandra relies on RAM for speed and efficiency for read-dominant workloads. More RAM allows

Cassandra larger cache sizes, larger memtables, and thus fewer disk flushes. However, rather than using

most of the available RAM on a system, Cassandra through the JVM will only make use of 8GB. If your

workload is predominantly composed of read operations, to achieve best performance, you should

allow for enough nodes to host the dataset in RAM. This considers that each node will have only 8GB of

its RAM usable to Cassandra. As our testing shows, performance begins deteriorating past 15.7GB of

data for 2 servers, thus about 8GB per server. As we point out in the table above this section, assigning

more than 8GB of heap size to the JVM proves to be counterproductive in Cassandra’s case.

3.4 Storage Device Configuration and Tuning
If the intended workload for a Cassandra deployment will not fit in RAM, secondary storage will be more

frequently accessed. Opting for storage solutions offering faster I/O operations, such as RAID or SSDs,

becomes crucial for out of memory read-dominant workloads, as shown in the figure below.

Read-dominant workloads show greater sensitivity to this condition than write-dominant ones, as read

operations tap secondary storage far more than writes in Cassandra’s case. As an example, our tests

with various workloads showed SSDs to perform up to 6X faster than spinning disks for read-dominant

workloads, as compared to 25% faster for write-dominant workloads. When dealing with in-memory

workloads, the use of spinning drives is generally adequate, as the performance numbers observed

between those and SSDs show very little variation for Intel Xeon and Intel Atom processor-based

platforms, with the exception of writes on Intel Xeon-based systems. For write-dominant workloads,

Intel Xeon processor-based platforms show up to a 24% performance increase with SSDs over spinning

disks, when it comes to in-memory writes workloads.

0

500

1000

1500

2000

2500

2 4 8 15 17 23 36 80

Ti
m

e
(s

)

Size (GB) 1Gb ~ 1,000,000 records

Cassandra Performance: 2 servers

Read

R/W

Write

8

Cassandra writes to the disk when appending content to its “commit log”, and when flushing memtables

for durability. Storing “commit logs” on a separate disk from the data disks will benefit performance.

When selecting storage sizes for a given workload, we recommend provisioning for a minimum of 1.1

times the size of the workload to be processed.

3.5 Networking
As per our testing, the recommended bandwidth for Cassandra is a 1Gb internal network between the

nodes. A faster network might be generally preferred, but in Cassandra’s case, 1Gb is sufficient.

3.6 Cassandra Use Cases

3.6.1 Intel Atom processor-based Cassandra Deployment

For each workload, we assume a 1Gb internal network between all Cassandra nodes. Assuming 32GB of

RAM per Intel Atom processor-based microserver, and given that 8GB will be provisioned for Cassandra,

below are possible cluster configurations along with resulting performance expectations. These

scenarios assume a fault-tolerance cluster with a replication count of three. (The same scenarios can be

considered without replication, by dividing the number of suggested nodes by three.)

For a maximum throughput of 800 read operations/second at the client, the table below should be

followed to determine the number of servers. For a solely read-intensive workload, spinning drives

would be sufficient. The total disk capacity across all servers should be greater or equal to 1.1 times the

size of the workload. SSDs in this scenario do not add much performance, only 0.3% when the workload

is fully hosted in memory. For write-intensive workloads, a throughput of 1400 operations/second at the

client can be achieved with the use of spinning disks. As writes occur in memory, the use of SSDs offers

only 1.5% more performance to our workload. The total disk capacity across all servers in this case also

should be greater or equal to 1.1 times the size of the workload.

9

Workload Size # of Servers

100GB 39

1TB 378

At the cost of performance, an alternate configuration choice is possible with the use of SSDs and a

reduced number of total participating servers. This also could be the case when not enough servers are

available to accommodate a given workload. The table below highlights such a case for our two

scenarios (100GB, and 1TB of user data).

This configuration choice provides 100 read operations/second versus the 800 read operations/second

previously noted because the data is no longer directly fetched from RAM. SSDs in this case will provide

600 read operations per second compared to 100 operations with spinning disks. For write-intensive

applications in the configuration below, we can expect 1200 write operations per second with spinning

drives, and a 25% improvement over spinning drives with SSDs.

Workload Size # of Servers

100GB 3

1TB 3

3.6.2 Intel Xeon processor-based Cassandra Deployment

Because Cassandra effectively uses only 8GB of heap space, despite the larger overall memory capacity,

the number of servers recommended is the same as in the Atom processor-based scenario. However,

Cassandra still benefits from larger memory systems, as larger pages can be cached.

For each workload, we assume a 1Gb internal network between all Cassandra nodes. Considering 512GB

of RAM per server, and given that only 8GB of heap space will be used by Cassandra, below are possible

Intel Xeon processor-based performance expectations:

In this scenario we assume a fault-tolerance cluster with a replication count of three. If this same

scenario is considered without replication, the number of suggested nodes should be divided by three.

For a maximum throughput of 1200 read operations/second at the client, the table below should be

followed to determine the number of servers. For a solely read-intensive workload, spinning drives

would be sufficient, as SSDs only provide a 1.5% performance boost. The total disk capacity across all

servers should be greater than or equal to 1.1 times the size of the workload. For write-intensive

workloads, a throughput of 2900 operations/second at the client can be achieved with the use of

spinning disks, and a 24% higher throughput with SSDs. The total disk capacity across all servers in this

case also should be greater than or equal to 1.1 times the size of the workload.

Workload Size # of Servers

100GB 39

1TB 378

10

At the cost of performance, an alternate configuration is possible with the use of SSDs and a reduced

amount of total participating servers. This also can be the case when not enough servers are available to

accommodate a workload. The table below highlights such a case for our two scenarios (100GB, and 1TB

of user data).

This configuration will provide 100 read operations/second versus the 1200 read operations/second

previously noted, because the data is no longer directly fetched from RAM. SSDs in this case would

provide 600 read operations per second compared to 100 operations with spinning disks. For write-

intensive applications on the other hand, we can expect 2800 write operations per second with spinning

drive, and 3500 operations per second with SSDs.

Workload Size # of Servers

100GB 3

1TB 3

4.0 Summary
NoSQL provides important solutions for effective data management across a growing range of scenarios

including compute-intensive applications, such as real-time Big Data analytics, as well as I/O-intensive

requirements, such as serving hot-trending social media peak usage patterns.

The flexibility of NoSQL has also driven its usage in realms beyond Big Data. Because NoSQL is basically

about data storage and management, it provides advantages for applications such as entry dedicated

hosting, static web serving, simple content delivery and memory caching.

Cassandra has emerged as a leading open-source NoSQL data store that offers a high level of flexibility,

scalability and performance for addressing these challenges.

The proper hardware configuration for optimizing performance and cost of ownership for Cassandra is

not a one-size-fits-all proposition. Key factors that must be considered include:

 Size of the workload and future growth predictions

 Performance requirements and criticality vs. cost of ownership considerations

 Nature of workload: read-intensive, write-intensive, or both

 Overall data center considerations: space, power, interoperability

As detailed in this guide, the deployment of Cassandra can be optimized to achieve a targeted balance

of these key factors using either Intel Xeon processor-based or Intel Atom processor-based solutions,

depending on the specific requirements of the application.

The use of Intel Architecture based solutions for Cassandra deployments also takes advantage of the

extensive Intel ecosystem, reduces overall complexity and improves TCO by providing a common

11

hardware and software architecture that can be optimized for performance, cost and maintainability

throughout the data center.

5.0 Additional Resources
Open Data Center Alliance (ODCA) Big Data Consumer Guide

http://www.opendatacenteralliance.org/docs/Big_Data_Consumer_Guide_Rev1.0.pdf

The Apache Cassandra Project

http://cassandra.apache.org/

Apache Cassandra Quick Doc

http://planetcassandra.org/Content/Learn/Docs/QuickDoc.pdf

Notices:

Copyright © 2013 Intel Corporation. All rights reserved

Intel, the Intel logo, Intel Atom, Intel Core, and Intel Xeon are trademarks of Intel Corporation in the U.S. and/or other

countries. *Other names and brands may be claimed as the property of others.

Results have been estimated based on internal Intel analysis and are provided for informational purposes only. Any

difference in system hardware or software design or configuration may affect actual performance.

Any software source code reprinted in this document is furnished under a software license and may only be used or

copied in accordance with the terms of that license.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE,

EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS

GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR

SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR

IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR

WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR

INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly,

in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION

CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES,

SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH,

HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS'

FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL

INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR

NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF

THE INTEL PRODUCT OR ANY OF ITS PARTS.

http://www.opendatacenteralliance.org/docs/Big_Data_Consumer_Guide_Rev1.0.pdf
http://cassandra.apache.org/
http://planetcassandra.org/Content/Learn/Docs/QuickDoc.pdf

12

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not

rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined". Intel reserves

these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from

future changes to them. The information here is subject to change without notice. Do not finalize a design with this

information.

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are

not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSE3 instruction sets and other

optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on

microprocessors not manufactured by Intel.

Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain

optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the

applicable product User and Reference Guides for more information regarding the specific instruction sets covered by

this notice. Notice revision #20110804

The products described in this document may contain design defects or errors known as errata which may cause the

product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your

product order.

