
Using Open vSwitch and DPDK with Neutron in DevStack

Introduction

This tutorial describes how to set up a demonstration or test cluster for Open vSwitch
(OVS) and Data Plane Development Kit (DPDK) to run together on OpenStack, using
DevStack as the deployment tool and the Neutron ML2/GRE Tunnel plugin.

While the learnings presented here could be used to inform a production deployment with
all of these pieces in play, actual production deployments are beyond the scope of this
document.

The primary source for most of the details presented here are the documents provided in
the following git repository:

https://github.com/openstack/networking-ovs-dpdk

The doc/source/getstarted/devstack/ directory at the root of this repository contains
instructions for installing DevStack + OVS + DPDK on multiple operating systems. This
tutorial uses the Ubuntu* instructions provided there and expands upon them to present
an end-to-end deployment guide for that operating system. Many of the lessons learned in
the creation of this document can be applied to the CentOS* and Fedora* instructions also
provided in the repository.

Anyone using this tutorial should, at least, understand how to install and configure Linux*,
especially for multi-homed networking across multiple network interfaces.

Knowledge of Open vSwitch and OpenStack is not necessarily required, but would be
exceedingly helpful.

Requirements

Hardware
• Two physical machines, one to act as a controller and one as a compute node.

• Systems must support VT-d and VT-x, and both capabilities should be enabled in the
system BIOS.

• Both machines should be equipped with DPDK-supported network interfaces. A list of
the supported equipment can be found at https://github.com/openstack/networking-
ovs-dpdk.

– In the examples shown here, an Intel® X710 (i40e) quad-port NIC was used.

• Both machines must have at least two active physical network connections: one to act
as the 'public' (or 'API') network and one to act as the 'private' (or 'data') network.

– This latter network should share the same broadcast domain/subnet between
the two hosts.

– See below for an example setup.

openvswitch.org
openvswitch.org
dpdk.org
https://software.intel.com/en-us/articles/open-vswitch-with-dpdk-overview
https://wiki.openstack.org/wiki/DevStack
https://wiki.openstack.org/wiki/Neutron/ML2
https://github.com/openstack/networking-ovs-dpdk
https://github.com/openstack/networking-ovs-dpdk
https://github.com/openstack/networking-ovs-dpdk

• IMPORTANT: If you have a two-socket (or more) system, you should ensure that your
involved network interfaces either span all NUMA nodes within the system, or are
installed in a PCIe slot that services NUMA Node 0.

– You can check this with the lstopo command from the hwloc package. On
Ubuntu, you can install it with the following command:
sudo apt-get install -y hwloc

– lstopo will output a hierarchical view. Your network interface devices will be
displayed underneath the NUMA Node that’s attached to the slot they are using.

– If you have the NICs installed entirely on a NUMA Node other than 0, you will
encounter a bug that will prevent correct OVS setup. You may wish to move
your NIC device to a different PCIe slot.

Operating System
• For this tutorial, we will use Ubuntu 16.04LTS Server. The installation .ISO file for this

OS can be downloaded from https://www.ubuntu.com/download/server.

• Steps should be taken to ensure that both systems are synchronized to an external
time service. Various utilities are available for this function in Ubuntu 16.04, such as
chrony.

• At least one non-root user (with administrative sudo privileges) should be created at
installation time. This user will be used to download and run DevStack.

Networking
• At least two active network connections are required.

• Both hosts must be able to reach the Internet either via one of the two connections on-
board, or via some other device. If one of the two interfaces is your default interface
for connecting to the Internet, then that interface should be your 'API network.'

• The addressing for the two NICs on each host must be static. DevStack will not cope
with using DHCP-assigned addresses for either interface.

– In the examples, the initial configuration of the machines before running
DevStack is shown in figure 1 below.

– Note that in this particular configuration a third, unshown NIC on each machine
functions as the default interface that DevStack uses to reach the Internet.

https://www.ubuntu.com/download/server

Figure 1. Initial machine configuration before DevStack is installed.

Preparation

Once your systems are set up with appropriate BIOS configuration, operating systems, and
network configurations, you can begin preparing each node for the DevStack installation.
Perform these actions on BOTH nodes.

User Setup
• Login as your non-root user, we'll assume here that it is called 'stack.'

• The command sudo visudo will allow you to edit the /etc/sudoers file. You will want
to set up the non-root user to be able to sudo without entering a password. The easiest
way to do that is to add a line like this to the bottom of the file, then save it:

stack ALL=(ALL) NOPASSWD: ALL

• Test your configuration by logging completely out of the machine and back in, then try
sudo echo Hello. You should not be prompted for a password.

A Word About Network Proxies
• You may skip this section if your Internet access does not require going through a

proxy service.

• If you do work behind a proxy, please note that your OS and the DevStack installation
will need to be configured appropriately for this. For the most part, this is a typical
setup that you are likely accustomed to; for example, you likely configured the apt
subsystem when you installed the Ubuntu OS in the first place.

– Of special note here is that git needs to be configured with a wrapper command.

– Install the socat package:
sudo apt-get install -y socat

– Create a text file in your non-root user's homedir called git-proxy-wrapper.

– Here is an example of what should go into this file. Replace PROXY and PROXY
PORT NUMBER with your appropriate values for your SOCKS4 proxy (not HTTP
or HTTPS).

 #!/bin/sh
_proxy=<PROXY>
_proxyport=<PROXY PORT NUMBER>
exec socat STDIO SOCKS4:$_proxy:$1:$2,socksport=$_proxyport

• You may need more detail if your proxy service requires authentication or another
protocol.
See the socat documentation for more information.

• Set this file executable (chmod +x git-proxy-wrapper) and set the envariable
GIT_PROXY_COMMAND=/home/stack/git-proxy-wrapper (if the non-root user is
'stack'). You should add this export to your ~/.bashrc to ensure it is available at all
times (like other proxy variables).

Install DevStack
• You will need the git package to clone the DevStack repository:

sudo apt-get install -y git

• To download DevStack, as your non-root user and in its home directory:
git clone https://github.com/openstack-dev/devstack.git

• You should now have the contents of the DevStack distribution in ~/devstack.

Configure and Run DevStack

The systems are now prepared for DevStack installation.

Controller Installation

In its default state, DevStack will make assumptions about the OpenStack services to install,
and their configuration. We will create a local.conf file to change those assumptions, where
pertinent, to ensure use of DPDK and OVS.

If you wish to clone the networking-ovs-dpdk repository (which is the first link in this
article, in the Introduction) and use the sample files included in the repository, you will find
them at doc/source/_downloads/local.conf.*. However, this guide will present pared-
down versions of these that are ready-made for this installation.

• Log in to your controller host as your non-root user.
cd devstack

• Edit a file called 'local.conf' and copy in the text in the following block:
[[local|localrc]]
#HOST_IP_IFACE=<device name of NIC for public/API network, e.g. 'eth0'>

#Example:
#HOST_IP_IFACE=eth0
HOST_IP_IFACE=
#HOST_IP=<static IPv4 address of public/API network NIC, e.g. '192.168.10.1'>
#Example:
#HOST_IP=192.168.10.1
HOST_IP=
HOST_NAME=$(hostname)
MYSQL_PASSWORD=password
DATABASE_PASSWORD=password
RABBIT_PASSWORD=password
ADMIN_PASSWORD=password
SERVICE_PASSWORD=password
HORIZON_PASSWORD=password
SERVICE_TOKEN=tokentoken
enable_plugin networking-ovs-dpdk https://github.com/openstack/networking-ovs
-dpdk master
OVS_DPDK_MODE=controller_ovs_dpdk
disable_service n-net
disable_service n-cpu
enable_service neutron
enable_service q-svc
enable_service q-agt
enable_service q-dhcp
enable_service q-l3
enable_service q-meta
DEST=/opt/stack
SCREEN_LOGDIR=$DEST/logs/screen
LOGFILE=${SCREEN_LOGDIR}/xstack.sh.log
LOGDAYS=1
Q_ML2_TENANT_NETWORK_TYPE=gre
ENABLE_TENANT_VLANS=False
ENABLE_TENANT_TUNNELS=True
#OVS_TUNNEL_CIDR_MAPPING=br-<device name of NIC for private network, e.g. 'et
h1'>:<CIDR of private NIC, e.g. 192.168.20.1/24>
#Example:
#OVS_TUNNEL_CIDR_MAPPING=br-eth1:192.168.20.1/24
OVS_TUNNEL_CIDR_MAPPING=
Q_ML2_PLUGIN_GRE_TYPE_OPTIONS=(tunnel_id_ranges=400:500)
OVS_NUM_HUGEPAGES=3072
OVS_DATAPATH_TYPE=netdev
OVS_LOG_DIR=/opt/stack/logs
#OVS_BRIDGE_MAPPINGS="default:br-<device name of NIC for private network, e.g
. 'eth1'>"
#Example:
#OVS_BRIDGE_MAPPINGS="default:br-eth1"
OVS_BRIDGE_MAPPINGS=
MULTI_HOST=1
[[post-config|$NOVA_CONF]]
[DEFAULT]

firewall_driver=nova.virt.firewall.NoopFirewallDriver
novncproxy_host=0.0.0.0
novncproxy_port=6080
scheduler_default_filters=RamFilter,ComputeFilter,AvailabilityZoneFilter,Comp
uteCapabilitiesFilter,ImagePropertiesFilter,PciPassthroughFilter,NUMATopology
Filter

• Wherever you see an Example given in the file contents, you will need to fill in a value
appropriate to your setup for that particular setting. The contents are dependent on
your particular hardware and network setup.

• Save the file.

• You are now ready to run the DevStack .installation. Issue the command ./stack.sh.

• Wait for successful completion and the return of your command prompt. It will take
quite a while (20 minutes to an hour or more depending on your connection), as
DevStack will need to install many software repositories.

• If you encounter errors, the log at /opt/stack/logs/screen/xstack.sh.log will
likely be the best source of useful debug information.

• If you need to restart the installation, unless you are very familiar with DevStack's
setup, it is best to wipe and reload the entire OS before proceeding. DevStack
sometimes does not recover well from partial installations, unfortunately.

Compute Node Installation

The setup for the compute node is very similar to that of the controller, but the local.conf
looks a little different. The same instructions apply here that you used above. Do not
attempt compute node installation until your controller has installed successfully.

• Log in to your compute node as the non-root user.
cd devstack

• Edit a local.conf file as above, but use the following text block and values:

 [[local|localrc]]
#HOST_IP_IFACE=<device name of NIC for public/API network, e.g. 'eth0'>
#Example:
#HOST_IP_IFACE=eth0
HOST_IP_IFACE=
#HOST_IP=<static IPv4 address of public/API network NIC, e.g. '192.168.10
.2'>
#Example:
#HOST_IP=192.168.10.1
HOST_IP=
HOST_NAME=$(hostname)
#SERVICE_HOST=<IP address of public NIC on controller>
#Example:
#SERVICE_HOST=192.168.10.1
SERVICE_HOST=
MYSQL_HOST=$SERVICE_HOST
RABBIT_HOST=$SERVICE_HOST

GLANCE_HOST=$SERVICE_HOST
KEYSTONE_AUTH_HOST=$SERVICE_HOST
KEYSTONE_SERVICE_HOST=$SERVICE_HOST
MYSQL_PASSWORD=password
DATABASE_PASSWORD=password
RABBIT_PASSWORD=password
ADMIN_PASSWORD=password
SERVICE_PASSWORD=password
HORIZON_PASSWORD=password
SERVICE_TOKEN=tokentoken
enable_plugin networking-ovs-dpdk https://github.com/openstack/networking
-ovs-dpdk master
OVS_DPDK_MODE=compute
disable_all_services
enable_service n-cpu
enable_service q-agt
DEST=/opt/stack
SCREEN_LOGDIR=$DEST/logs/screen
LOGFILE=${SCREEN_LOGDIR}/xstack.sh.log
LOGDAYS=1
Q_ML2_TENANT_NETWORK_TYPE=gre
ENABLE_TENANT_VLANS=False
ENABLE_TENANT_TUNNELS=True
#OVS_TUNNEL_CIDR_MAPPING=br-<device name of NIC for private network, e.g.
'eth1'>:<CIDR of private NIC, e.g. 192.168.20.2/24>
#Example:
#OVS_TUNNEL_CIDR_MAPPING=br-eth1:192.168.20.2/24
OVS_TUNNEL_CIDR_MAPPING=
Q_ML2_PLUGIN_GRE_TYPE_OPTIONS=(tunnel_id_ranges=400:500)
OVS_NUM_HUGEPAGES=3072
MULTI_HOST=1
[[post-config|$NOVA_CONF]]
[DEFAULT]
firewall_driver=nova.virt.firewall.NoopFirewallDriver
vnc_enabled=True
vncserver_listen=0.0.0.0
vncserver_proxyclient_address=$HOST_IP
scheduler_default_filters=RamFilter,ComputeFilter,AvailabilityZoneFilter,
ComputeCapabilitiesFilter,ImagePropertiesFilter,PciPassthroughFilter,NUMA
TopologyFilter

• Save the file and follow the rest of the instructions as performed above for the
controller.

Launch a Test Instance

At this point, you should have a working OpenStack installation. You can reach the Horizon
dashboard at the public IP address of the controller node, on port 80. But before launching
an instance, we need to make at least one 'flavor' in the Nova service aware of DPDK, and

specifically the use of hugepages, so that it can appropriately use the DPDK-enabled private
interface.

Enable DPDK in Nova
• Log in to your controller host as the non-root user.

cd devstack

• source openrc admin demo - this command will set up your environment to act as the
OpenStack 'admin' user in the 'demo' project.
nova flavor-key nova flavor-key m1.small set hw:mem_page_size=large

• The preceding command ensures that an instance launched with the m1.small size will
use hugepages , thus enabling use of the DPDK device.

Open Ports

We need to make sure that ICMP and TCP traffic can reach any spawned VM.

• Connect to your public API network with HTTP on port 80 through a browser.

• Login with the credentials 'demo' and 'password.'

• Select 'Access & Security' from the left-hand menu.

• Click 'Manage Rules' in the 'default' security group.

• Click 'Add Rule' button.

• Select 'All ICMP' from 'Rule' drop-down menu and then click 'Add' in lower right.

• Repeat the above 2 steps, selecting 'All TCP' this time.

Launch an instance

Now we are ready to launch a test instance.

• Select 'instances' from the left-hand menu.

• Select 'Launch Instance' from the right-side button.

• Give an instance name such as 'test.' Click 'Next' at the lower right.

• Ensure 'Select Boot Source' is set to 'Image.'

• Select 'No' for 'Create New Volume.' It will not work in this tutorial setup because we
have not enabled the Cinder service.

• Click the '+' sign next to the Cirros image under 'Available.'

• Click 'Next' in the lower-right corner.

• Click the '+' sign next to the 'm1.small' flavor.

• Select 'Launch Instance.'

Eventually, you should see your instance launch become available. Make note of the private
IP address given.

Test Connectivity to Instance

The VM is up and running with a private IP address assigned to it. You can connect to this
private IP, but only if you are in the same network namespace as the virtual router that the
VM is connected to.

These instructions will show how to enter the virtual namespace and access the VM.

• Log in to the controller host as the non-root user.
sudo ip netns exec `ip netns | grep qrouter` /bin/bash

• You should get a root-shell prompt. You can use this to ping the IP address of the VM.

• You can also ssh to the VM. In CirrOS, you can log in with username 'cirros' and
password 'cubswin:)'

Summary

This completes a demonstration installation of DPDK with OpenVSwitch and Neutron in
DevStack.

From here, you can examine the configurations that were generated by DevStack to learn
how to apply those configurations in production instances of OpenStack. You will find the
service configurations under the /opt/stack/ directory, and in their respective locations
in /etc (e.g. /etc/nova/nova.conf). Of particular note for our purposes are
/etc/neutron/neutron.conf, which defines the use of the ML2 plugin by Neutron, and
/etc/neutron/plugins/ml2_conf.ini, which specifies how OpenVSwitch is to be
configured and used by the Neutron agents.

End Notes

OVS Bridge Information

For reference, here is the sample bridge structure that shows up on a lab system that was
used to test this tutorial. This is from the compute node. On this system, ens786f3 is the
private/data network interface designation. There are two running VMs; their interfaces
can be seen on br-int.

$ sudo ovs-vsctl show
3c8cd45e-9285-45b2-b57f-5c4febd53e3f
 Manager "ptcp:6640:127.0.0.1"
 is_connected: true
 Bridge br-int
 Controller "tcp:127.0.0.1:6633"
 is_connected: true
 fail_mode: secure
 Port "int-br-ens786f3"
 Interface "int-br-ens786f3"

 type: patch
 options: {peer="phy-br-ens786f3"}
 Port patch-tun
 Interface patch-tun
 type: patch
 options: {peer=patch-int}
 Port br-int
 Interface br-int
 type: internal
 Port "vhufb2e2855-70"
 tag: 1
 Interface "vhufb2e2855-70"
 type: dpdkvhostuser
 Port "vhu53d18db8-b5"
 tag: 1
 Interface "vhu53d18db8-b5"
 type: dpdkvhostuser
 Bridge br-tun
 Controller "tcp:127.0.0.1:6633"
 is_connected: true
 fail_mode: secure
 Port "gre-c0a81401"
 Interface "gre-c0a81401"
 type: gre
 options: {df_default="true", in_key=flow, local_ip="192.168.2
0.2", out_key=flow, remote_ip="192.168.20.1"}
 Port patch-int
 Interface patch-int
 type: patch
 options: {peer=patch-tun}
 Port br-tun
 Interface br-tun
 type: internal
 Bridge "br-ens786f3"
 Controller "tcp:127.0.0.1:6633"
 is_connected: true
 fail_mode: secure
 Port "br-ens786f3"
 Interface "br-ens786f3"
 type: internal
 Port "dpdk0"
 Interface "dpdk0"
 type: dpdk
 Port "phy-br-ens786f3"
 Interface "phy-br-ens786f3"
 type: patch
 options: {peer="int-br-ens786f3"}

Neutron Plugin Information

This tutorial set up the ML2/GRE tunnel plugin to Neutron, since it is the most likely plugin
to work without additional setup for a specific network buildout. It is also possible to use
the ML2/VXLAN plugin or the ML2/VLAN plugin. Examples for each of these plugins are
given in the local.conf files in the networking-ovs-dpdk repository mentioned above.

NUMA Debugging

While it is beyond the scope of this tutorial to dive into multi-socket NUMA arrangements,
it is important to understand that CPU pinning and PCIe will interact with DPDK and OVS,
and sometimes to simply cause silent failures. Ensure that all of your CPU, memory
allocations, and PCIe devices are within the same NUMA Node if you are having
connectivity issues.

Additional OVS/DPDK Options of Note

OVS_PMD_CORE_MASK is an option that can be added to local.conf to isolate DPDK's PMD
threads to specific CPU cores. The default value of '0x4' means that CPU #3 (and its
hyperthread pair, if HT is enabled) will be pinned to the PMD thread. If you are using
multiple NUMA nodes in your system, you should work out the bitwise mask to assign one
PMD thread/CPU per node. You will see these CPUs spike to 100% utilization once DPDK is
enabled as they begin polling.

You can find other interesting and useful OVS-DPDK settings and their default values in
devstack/settings in the networking-ovs-dpdk repository.

About the Author

Jim Chamings is a Sr. Software Engineer at Intel Corporation, who focuses on enabling
cloud technology for Intel’s Developer Relations Division. He’d be happy to hear from you
about this article at: jim.chamings@intel.com.

Notices

Intel technologies’ features and benefits depend on system configuration and may require
enabled hardware, software or service activation. Performance varies depending on system
configuration. Check with your system manufacturer or retailer or learn more at intel.com.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights
is granted by this document.

Intel disclaims all express and implied warranties, including without limitation, the implied
warranties of merchantability, fitness for a particular purpose, and non-infringement, as

http://www.intel.com/

well as any warranty arising from course of performance, course of dealing, or usage in
trade.

This document contains information on products, services and/or processes in
development. All information provided here is subject to change without notice. Contact
your Intel representative to obtain the latest forecast, schedule, specifications and
roadmaps.

The products and services described may contain defects or errors known as errata which
may cause deviations from published specifications. Current characterized errata are
available on request.

This sample source code is released under the Intel Sample Source Code License
Agreement.

Copies of documents which have an order number and are referenced in this document
may be obtained by calling 1-800-548-4725 or by visiting

www.intel.com/design/literature.htm.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other
countries.

*Other names and brands may be claimed as the property of others.

© 2016 Intel Corporation

http://software.intel.com/en-us/articles/intel-sample-source-code-license-agreement/
http://software.intel.com/en-us/articles/intel-sample-source-code-license-agreement/
http://www.intel.com/design/literature.htm

