
Understanding DirectX* Multithreaded

Rendering Performance by Experiments

By Sheng Guo (Intel Corporation)

Abstract

The renderer of a game engine is often a performance bottleneck from the CPU side. Adding

multithreading to the rendering step is an effective means to address the performance issue

without losing content details. In this article, the performance of DirectX 11* and DirectX 12*

multithreading APIs is evaluated on advanced multicore processors and typical graphics

hardware, the primary factors affecting multithreaded rendering performance are analyzed, and

the relevant optimization methods are explored as well.

1. Introduction

In the past ten years, PC processors have greatly improved. 4-core CPUs have become the

mainstream configuration in the PC game market today. CPUs with more cores are rising in the

market share. This trend is anticipated to continue, and in the next few years 6-core CPUs will

likely grow in popularity for gamers.

Unfortunately, the renderers of most game engines are still single-threaded by now, which often

results in a performance bottleneck on the CPU, preventing multicore computing resources from

being leveraged to improve performance or enrich visual contents. For example, when

rendering large-scale outdoor scenes with many visible objects, the single-threaded renderer

often leads to individual CPU cores running fully loaded while other cores remain relatively idle,

and the performance below the playable frame rate.

DirectX* started from DirectX 11 to formally support calling Direct3D*(D3D) application

programming interfaces (APIs) in multiple threads. DirectX 11 multithreading supports two types

of device contexts: immediate context and deferred context (Figure 1). Different deferred

contexts can be used in different threads simultaneously, generating the command-lists that are

to be executed in the immediate context. This multithreading strategy allows complex scenes to

be broken up into concurrent tasks [1].

Figure 1. DirectX 11 multithreading model

Although DirectX 11 multithreading is supported by D3D runtime, the hardware acceleration for

it is optional [2]. With hardware acceleration support, a part of the driver load can be parallelized

along with the command-list build. Figure 2 shows the hardware acceleration capability in

different graphics devices. Although all the graphics devices support “Driver Concurrent

Creates”, only NVIDIA* graphics supports “Driver Command Lists”.

Figure 2. Optional hardware acceleration for DirectX 11 multithreading

DirectX 12 multithreading is improved much by significantly reducing API calling overhead. It

eliminates the concept of device context of DirectX 11, instead using the command-list to invoke

D3D APIs and then submit command-lists to the GPU through the command queue (Figure 3).

All the DirectX 12 graphics hardware supports hardware acceleration for DirectX 12

multithreading.

Figure 3. DirectX 12 multithreading model

Both DirectX 11 and DirectX 12 supports make multithreading an attractive alternative to

address the performance bottleneck of rendering. However, due to the complexity of both the

renderer and multithreaded programming, it’s necessary to carefully understand the

characteristics of DirectX multithreading in detail to avoid the performance penalty of misusing.

On multithreaded rendering performance, developers often concern about its actual pros and

cons, multicore scalability and relevant key influence factors, and practical multithreading

methods, among other things. Well understanding these questions will lead to more efficient

implementation of a properly configured multithreaded renderer, which is the focus of the

experiments detailed below.

2. Performance Evaluation of DirectX

Multithreading APIs

The workloads to evaluate the performance of multithreading APIs of DirectX11 and DirectX12

are from DirectX official samples, which are respectively “MultithreadedRendering11” (Figure 4)

in DirectX SDK (June 2010) [3] and “D3D12Multithreading” (Figure 5) in DirectX 12 Graphics

samples [4]. Both samples are intended to demonstrate the advantages and methods of DirectX

multithreaded rendering, which render the same “squid room” scene with thousands of draw

calls per frame and are both CPU-bound on the test platforms. However, due to some

programming tricks or defects, both samples do not comprehensively reflect the actual

performance pros and cons of calling DirectX APIs in multithread threads. Thus, they are

optimized and extended for the performance evaluation purpose.

Figure 4. “MultithreadedRendering11” sample in DirectX SDK (June 2010) [3]

Figure 5. “D3D12Multithreading” in DirectX 12 Graphics samples [4]

This performance evaluation of DirectX multithreading APIs was conducted on three platforms

with different configurations, as shown in Table 1. The configurations include new-generation

multicore CPUs and the graphics devices from three major suppliers. To avoid GPU

bottlenecks, the graphics devices used are at the mid to high end of the spectrum of products

for each brand, and all support DirectX 11 and DirectX 12. To measure the multicore scalability

of DirectX multithreading performance, the 10-core Intel® Core™ i7-6950X CPU is used to

facilitate varying active CPU core count via BIOS. Since i7-6950X CPU doesn’t contain

processor graphics, a 4-core Intel® Core™ i7-6770HQ CPU is also used for evaluation.

Config Platform A Platform B Platform C

CPU Intel® Core™ i7-6950X

CPU @ 3.00GHz

Intel Corei7-6950X CPU

@ 3.00GHz

Intel Core i7-6770HQ

CPU @ 2.60GHz

Memory 4x8GB RAM 4x8GB RAM 2x8GB RAM

Graphics NVIDIA* GeForce GTX

1080

Radeon* RX Vega 64 Intel® Iris™ Pro

Graphics 580

Driver 22.21.13.8494 22.19.677.257 22.20.16.4749

OS

Windows® 10

Enterprise 64-bit (10.0,

Build 17134)

Windows 10 Enterprise

64-bit (10.0, Build

17134)

Windows 10 Enterprise

64-bit (10.0, Build

17134)

Table 1. Test platform configurations

2.1 DirectX 11 Experiments

“MultithreadedRendering11” (Figure 4) is a sample of DirectX 11 multithreaded rendering. To

objectively evaluate the performance and overhead of calling DirectX 11 APIs in multiple

threads, it is optimized by reducing thread synchronization overhead and application-layer load.

The optimization methods are detailed in section 3. The optimized and rebuilt workload is

entitled “MTR11_Benchmark”, which implements five rendering modes, shown in Table 2, with

more than 4k draw calls per frame.

Mode Description

ST-Immediate

Single-threaded. The main thread uses immediate context to render all

scenes.

MT-Scene

Multithreaded. Each scene is assigned a deferred context and a

worker thread to render it. The main thread finally submits the

command-lists of all deferred contexts. (command-list submission #

per frame = scene #)

ST-Scene Single-threaded. The serialized version of MT-Scene. Main thread

sequentially executes all tasks of worker threads of MT-Scene.

MT-Chunk

Multithreaded. The meshes of each scene are evenly divided into N

(Core#-1) chunks. Each chunk is assigned a deferred context and a

worker thread to render it. The main thread submits the command-lists

of all deferred contexts at the end of rendering each scene.

(command-list submission # per frame = (Core#-1) * “scene #”)

ST-Chunk Single-threaded. The serialized version of MT-Chunk. Main thread

sequentially executes all tasks of worker threads of MT-Chunk.

Table 2. The rendering modes of MTR11-Benchmark

The average frame rate of MTR11_Benchmark running on different CPU and GPU

configurations are shown in Figure 6. The data revealed some surprising findings.

First, comparing the single-thread mode “ST-Immediate” with the multithread modes “MT-

Scene” and “MT-Chunk”, Figure 6 shows that: on all test platforms, when with less CPU cores,

single-threaded immediate rendering (“ST-Immediate”) has better performance than

multithreaded deferred rendering (“MT-Scene” and “MT-Chunk”). However, when with more

CPU cores, the performance of multithreaded deferred rendering is much better on Nvidia

graphics, and a little better on Intel graphics, but worse on AMD graphics than single-threaded

immediate rendering. Note that Nvidia graphics support hard acceleration for DirectX 11

multithreading.

Secondly, comparing between two multithread modes, “MT-Scene” and “MT-Chunk”, Figure 6

shows that: on all test platforms, the scene-based multithreading (“MT-Scene”) generally has

better performance than the chunk-based multithreading (“MT-Chunk”), except for on Nvidia

graphics where the chunk-based has better performance in some core counts (Figure 6.a). Note

that Nvidia graphics supports hard acceleration for DirectX 11 multithreading, and the scene-

based has less command-list submissions than the chunk-based (Table 2).

Finally, comparing all single-thread modes, “ST-Immediate”, “ST-Scene” and “ST-Chunk”, to

evaluate the cost of calling D3D11 APIs in different contexts and strategies without multithread

overhead interference. Figure 6 shows that: on all test platforms, calling D3D APIs in immediate

context (“ST-Immediate”) has much better performance than calling them in deferred context

(“ST-Scene” and “ST-Chunk”). Furthermore, on all CPU core counts, calling D3D APIs in

deferred context has better performance in the scene-based mode (“ST-Scene”) than in the

chunk-based mode (“ST-Chunk”) which degrades performance with increasing CPU core

counts. The rendering performance looks like negatively correlated with the number of

command-list submissions.

(6.a) Test result on Platform A

(6.b) Test result on Platform B

(6.c) Test result on Platform C

Figure 6. The performance of MTR11-Benchmark on different CPU and GPU configurations

Based on the test results above, a few performance characteristics of DirectX 11 multithreading

can be inferred:

1. DirectX 11 multithreading involves bigger overhead. Calling D3D APIs in deferred context and

submitting command-lists yield more overhead than calling APIs in immediate context. And the

more command-lists submitted, the more overhead generated.

2. DirectX 11 multithreading doesn’t necessarily improve performance, especially when purely

calling D3D APIs. It is because of not only the significant overhead generated by deferred

contexts, but also that not all of the extra overhead can be amortized by multithreading, for

example, serialized command-list submission. Thus, it’s possible that multithreaded deferred

rendering may result in a longer total rendering time than single-threaded immediate rendering.

3. The hardware acceleration significantly benefits to DirectX 11 multithreading performance.

The drive load accounts for a notable portion of the overall rendering load (Figure 12). Hardware

acceleration essentially parallelizes a part of the driver load, so shortens the rendering time.

2.2 DirectX 12 Experiments

“D3D12Multithreading” (Figure 5) is a sample of DirectX 12 multithreaded rendering. Compared

to its DirectX 11 counterpart “MultithreadedRendering11”, it simplifies the rendering logic so

much that the rendering procedure almost only calls DirectX 12 APIs. And it just implements two

modes: single-thread and multithread. To objectively evaluate the performance and overhead of

calling DirectX 12 APIs in multiple threads, the sample was optimized and extended with the

following functions:

1. The number of worker threads, which was fixed to four in the original sample, can be scaled

according to the active CPU core count. This modification helps us evaluate multicore

performance scaling for DirectX 12 multithreading.

2. Adding two duplicated shadow passes, having the number of draw calls per frame increase

from 2k to 4k as many as the “MTR11_Benchmark”. This modification not only offers more CPU

load to test multicore scaling, but also enables us to compare multithreading performance

between DirectX 12 and DirectX 11.

3. Minimizing the synchronization between the main thread and worker threads, by having the

main thread wait for all command-lists to complete before submitting them in a batch. This

modification helps us isolate the factors affecting DirectX 12 multithreading performance.

4. Implementing a single-threaded mode with only one command-list. The original single-thread

mode is actually the serialized version of the multithread mode with many command-lists, which

results in the single-thread mode has much worse performance than the multithread mode.

However, the actual single-thread mode may just need one or a small amount of command-lists.

5. Implementing 5 rendering modes (Table 3) for evaluating the performance of different

DirectX 12 multithreading methods.

Mode Description

ST-One

Single-threaded. Main thread only uses one command-list to render all
passes.

MT-Pass Multithreaded. Each pass is assigned a command-list and a worker
thread to render it. The main thread finally submits all command-lists in
a batch. (command-list submission # per frame = pass #)

ST-Pass Single-threaded. The serialized version of MT-Pass. Main thread
sequentially executes all tasks of worker threads of MT-Pass.

MT-Chunk Multithreaded. The meshes drawn in each pass are evenly divided into
N (Core# -1) chunks. Each chunk is assigned a command-list and a
worker thread to render it. The main thread finally submits the
command-lists of all passes in a batch. (command-list submission #
per frame = (core#-1) * “pass #”)

ST-Chunk

Single-threaded. The serialized version of MT-Chunk. Main thread
sequentially executes all tasks of worker threads of MT-Chunk.

Table 3. The rendering modes of MTR12_Benchmark

The modified “D3D12Multithreading” sample is referred to as “MTR12_Benchmark”. Running

MTR12_Benchmark on different CPU and GPU configurations, the average CPU time of calling

D3D APIs per frame are shown in Figure 7, resulting in a couple of interesting observations.

First, comparing the multithread modes “MT-Pass” and “MT-Chunk” with the single-thread mode

“ST-One”, Figure 7 shows that: on most test platforms, the single-threaded rendering with one

command-list (“ST-One”) generally has better performance than the multithreaded rendering

with multiple command-lists (“MT-Pass” and “MT-Chunk”), except that on AMD graphics “MT-

Pass” is a little faster than “ST-One” (Figure 7.b).

Then, comparing between two multithread modes, “MT-Pass” and “MT-Chunk”, Figure 7 shows

that: the pass-based multithreading (“MT-Pass”) always has better performance than the chunk-

based multithreading (“MT-Chunk”) which degrades performance with increasing CPU core

counts. Note that the pass-based multithreading has fixed numbers of threads and command-

list submissions which however vary with the number of CPU cores in the chunk-based

multithreading (Table 3).

Also, comparing all single-thread modes (“ST-One”, “ST-Pass”, “ST-Chunk”), to evaluate the

cost of calling D3D12 APIs with different strategies without multithreading overhead

interference. Figure 7 shows that: on all test platforms, calling D3D APIs with one command-list

per frame (“ST-One”) has the best performance. Calling D3D APIs with the mode submitting a

small number of command-lists per frame (“ST-Pass”) has the poor performance. And Calling

D3D APIs with the mode submitting more command-lists per frame (“ST-Chunk”) has the worst

performance which will further degrades with increasing CPU core counts.

Lastly, comparing the test results of MTR11_Benchmark (Figure 6) and MTR12_Benchmark

(Figure 7). It’s obvious that rendering with D3D12 APIs has much better performance than

rendering with D3D 11 APIs even though there are some implementation differences between

both workloads.

(7.a) Test result on Platform A

(7.b) Test result on Platform B

(7.c) Test result on Platform C

Figure 7. The performance of MTR12-Benchmark on different CPU and GPU configurations

Based on the test results above, the following performance characteristics of DirectX 12

multithreading can be concluded:

1. Submitting D3D12 command-list involves much more overhead than calling other D3D12

APIs. The more command-lists submitted, the more overhead generated.

2. DirectX 12 multithreading doesn’t necessarily improve performance, especially when purely

calling D3D APIs. As opposed to the single-threaded rendering submitting command-lists one or

few times per frame, multithreaded rendering usually requires submitting more times. These

submissions may have to be done sequentially and involve so much overhead that the

performance gains of building command-lists in parallel are offset.

3. DirectX 12 benefits multithreaded rendering more than DirectX 11. Although DirectX 12

multithreading does involve some overhead, it has much less overhead than DirectX 11

multithreading, which will relieve the bottleneck and improve multithreading performance.

3. Key Factors Affecting Multithreaded

Rendering Performance

The “MultithreadedRendering11” (MTR11) sample provides a good experimental basis to

disclose the key factors affecting multithreaded rendering performance. Besides of DirectX

multithreading API overhead discussed in section 2, thread synchronization overhead and

parallelizable application-layer load also play important roles in the performance of

multithreaded rendering.

3.1 Thread Synchronization Overhead

The result of testing the original “MultithreadedRendering11” sample (Figure 4) on Platform A,

shows that both multithread modes, “MT Def/Scene” and “MT Def/Chunk”, have much better

performance than the single-thread mode “Immediate” (Figure 8). However, when CPU core

count increases to 10, the frame rate of “MT Def/Chunk” mode drops significantly. This anomaly

should be investigated.

Figure 8. The performance comparison between multithreaded rendering and single-threaded

rendering

Analyzing the thread activities of “MT Def/Chunk” mode on 10-core CPU by GPUView* [9], finds

that worker thread running is interrupted frequently (Figure 9.a), which means there are a lot of

thread state changes during rendering. The sample’s source code indicates that the main thread

continuously produces more than 4 thousand work items to render each scene, meanwhile

worker threads consume them in parallel by synchronize with main thread on each work item. It

means there are considerable overhead of thread synchronization in rendering. When the CPU

cores increase, the worker threads increase correspondingly, thus the probability and time of

each worker thread waiting for a work item increase too. It results in the thread synchronization

overhead expands further so that the performance dramatically dropped on 10-core CPU.

(9.a) original implementation

(9.b) thread synchronization optimized implementation

Figure 9. Thread activities of the “MT Def/Chunk” mode of “MultithreadedRendering11” sample

on 10 cores

To solve the problem, the source codes of the sample was modified to make the main thread

produce all of the work items before notifying work threads to consume them in parallel, which

greatly reduces the frequency and overhead of synchronization between the main thread and

the worker thread. Figure 9.b shows the optimized sample improved the continuity of worker

thread running, significantly reducing the rendering time of each scene. Figure 10 shows the

performance of “MT Def/Chunk” mode is significantly improved after thread synchronization

optimization. It not only solves the problem of frame rate dropping on 10 cores, but also

improves the performance of this mode on all CPU core counts.

Figure 10. The multicore performance scaling of the “MT Def/Chunk” mode of

“MultithreadedRendering11” sample before and after thread synchronization optimization

This experiment demonstrates that thread synchronization overhead can significantly affect

multithreaded performance. Inappropriate thread synchronization strategy, for example, using

too small granularity of thread job, may impair the advantage of multithreaded rendering

performance.

3.2 Parallelizable Application-layer Load

The “MultithreadedRendering11” sample shows that both multithread modes have much better

performance than the single-thread mode (Figure 8). To understand the characteristics of the

workload that may benefits from multithreaded rendering, the load distributed in the layers of

application logic, D3D runtime and graphics driver was analyzed in the “Immediate” mode of the

sample (Figure 4). According to the weights of CPU usage of the modules profiled by Windows*

Performance Analyzer (WPA) [8] (Figure 11), the relative load of different layers can be

calculated. And it shows that the application logic has the biggest load (60%), the driver load

has 23%, and Direct3D runtime consumes 8% of the load.

Figure 11. Load distribution of the “Immediate” mode of the “MultithreadedRendering11” sample

WPA also reveals the top 1 hotspot function (Figure 11). The source code indicates the function

is used to validate the vertex buffers and index buffers of all meshes in the scene. Oddly, the

function is called repeatedly as each mesh is drawn, which is unnecessary. Actually, this

hotspot function has been optimized in the sample of the same name in the latest DirectX SDK

sample package [5]. Commenting out this function call (Figure 12) does not affect the normal

execution of the program, while the primary load transfers from application logic (7%) to the

graphics driver (55%).

Figure 12. Load distribution of the “Immediate” mode of the “MultithreadedRendering11” sample

after removing hotspot codes of application-layer

Retesting the sample that comments out the hotspot function shows the speedup of multithread

mode (“MT Def/Scene”) against single-thread mode (“Immediate”) decreases dramatically

(Figure 13). It means the significant advantage of multithreaded rendering comes primarily from

calling the hotspot function of application-layer, other than D3D APIs, in multiple threads.

Figure 13. Application-layer load significantly affects the advantage of multithreaded rendering

over single-threaded rendering

This experiment demonstrates that the amount of parallelizable application-layer load can

significantly affect the performance advantage of multithreaded rendering. Without enough

parallelizable application-layer load, multi-threaded rendering may not show much of the

performance and multi-core scalability advantage over single-threaded rendering.

4. Tips and Tricks for Multithreaded

Rendering

Based on the conclusions from above experiments, a couple of tips and tricks may be

considered to take advantage of multithreaded rendering performance.

Before multithreading the renderer, it’s recommended to use WPA or Intel® VTune™ [6] firstly

to evaluate the proportion of the application-layer load of the renderer to the load of D3D

runtime and graphics driver. If the application-layer load is parallelizable and has a large enough

proportion, multithreading renderer is helpful to improve the performance. Otherwise, it may

have little benefit or even hit the performance.

When designing or selecting the methods to multithread the renderer, developers should keep

in mind that the thread synchronization and command-list submission may cause considerable

overhead and thus hit performance. Therefore, it’s required to carefully control the amount of

thread synchronization and command-list submission per frame in the implementation of

multithreaded rendering.

There are two basic methods of multithreaded rendering: the pass(scene)-based and the chunk-

based, as illustrated in “MultithreadedRendering11” sample. The pass-based method divides

the rendering task in the granularity of pass(scene). The number of thread jobs generated each

frame is equal to the number of passes(scenes) per frame. Therefore, it has the limited

multithreading overhead due to the small amount of thread synchronization and command-list

submission per frame. But it may not have balanced thread load and cannot scale performance

with CPU core counts. Generally, the pass-based method has moderate performance

advantage.

The chunk-based method divides the rendering task of pass (scene) into smaller-grained jobs.

The number of thread jobs generated each frame can be many times the number of CPU cores.

Theoretically, this method can achieve the best performance due to good thread load balancing

and multi-core performance scalability. However, actually it sometimes may not even as fast as

the pass-based method, especially when the parallelizable application-layer load is less. It’s

because that this method may produce more thread synchronization and command-list

submission per frame. And the more CPU cores, the more thread synchronization and

command-list submission per frame. It may result in significant overhead which offsets the

multithreading performance gain.

Both methods have certain limitations. The “ideal” method for multithreaded rendering should be

able to make the most of multicore to improve performance in all cases, no matter how large the

application load, and whether or not the graphics hardware acceleration for DirectX

multithreading is supported.

A promising solution is to use the concept of "intermediate rendering command" to decouple the

rendering logic and graphics (D3D) API calls. The "intermediate rendering command" is a

wrapper of graphics APIs, similar to the “Rendering Hardware Interface”(RHI) command in

Unreal Engine* 4 [10], used to cache the arguments for graphics APIs. The renderer front-end

may execute the rendering logic to generate "intermediate rendering commands". And the

renderer back-end may translate the "intermediate rendering commands" to graphics APIs and

call them.

This solution allows rendering logic and graphics API calls to respectively use the most

appropriate task decomposition strategy for each. Rendering logic may be divided into small-

grained jobs to improve multicore utilization and load balancing. And graphics API calls may be

divided into one or several jobs (command-lists), depending on the number of draw calls per

frame, to limit the number of command-list submissions. To minimize the thread synchronization

overhead, the efficient thread library with work-stealing task scheduler, for instance, Intel®

Threading Building Blocks (Intel® TBB) [7], is recommended.

With minimizing the overhead involved in DirectX multithreading, when the application-layer

load of the renderer is small, this solution may avoid the performance of multithreaded rendering

worse than the performance of the single-threaded rendering across a wide range of graphics

cards. When the parallelizable application-layer load is large, this solution may make the most

of multicore to achieve much better performance than the single-threaded rendering.

5. Summary

This article disclosed the performance characteristics of DirectX multithreading with a series of

experiments based on the modified and extended workload of official DirectX samples.

Through these experiments, it’s found that for either D3D11 or D3D12, the command-list

submission has much more overhead than other draw calls, so that many command-list

submissions may negate the performance gains of parallelizing draw calls. For D3D11, the

hardware acceleration significantly benefits to multithreaded rendering performance. It’s also

shown that the thread synchronization overhead and parallelizable application-layer load have

the significant impact on the performance advantage of multithreaded rendering versus single-

threaded rendering.

Based on these qualitative analyses, it’s recommended to evaluate the amount of parallelizable

application-layer load before multithreading the renderer, and carefully control the amount of

thread synchronization and command-list submission in multithreaded implementation. Also, a

multithreaded rendering method based on “intermediate rendering command” is proposed to

maintain the multithreading performance advantage in various situations and make the most of

multicore for the best performance.

CPU keeps on evolving to more cores. Based on the in-depth understanding of DirectX

multithreading performance, multithreading the renderer is promising to relieve the CPU

bottleneck on multiple cores, or to extract more performance headroom to render scenes with

richer visual content.

References

[1] Introduction to Multithreading in Direct3D 11

[2] How To: Check for Driver Support

[3] DirectX SDK (June 2010)

[4] DirectX 12 Graphics samples

[5] DirectX SDK samples for Windows 8.x SDK or Windows 10 SDK

[6] Intel® VTune™ Amplifier

[7] Intel® Threading Building Blocks (Intel® TBB)

[8] Windows Performance Analyzer

[9] GPUView

[10] Render Hardware Interface (RHI)

About the Author

Sheng Guo is a senior application engineer on game enabling in Intel Corporation. He has been

helping top game ISVs improve games by Intel platforms and technologies for over 10 years.

His expertise includes performance profiling, optimization, cutting-edge feature programming for

games. He has contributed quite a few technical articles and white papers to game

communities, and published a couple of papers in academic conferences and journals.

https://msdn.microsoft.com/en-us/library/windows/desktop/ff476891(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ff476891(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ff476891(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ff476891(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ff476893(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ff476893(v=vs.85).aspx
https://www.microsoft.com/en-us/download/details.aspx?id=6812
https://www.microsoft.com/en-us/download/details.aspx?id=6812
https://github.com/Microsoft/DirectX-Graphics-Samples
https://github.com/Microsoft/DirectX-Graphics-Samples
https://github.com/walbourn/directx-sdk-samples
https://github.com/walbourn/directx-sdk-samples
https://software.intel.com/en-us/vtune
https://software.intel.com/en-us/vtune
https://software.intel.com/en-us/tbb
https://software.intel.com/en-us/tbb
https://docs.microsoft.com/en-us/windows-hardware/test/wpt/windows-performance-analyzer
https://docs.microsoft.com/en-us/windows-hardware/test/wpt/windows-performance-analyzer
https://graphics.stanford.edu/~mdfisher/GPUView.html
https://graphics.stanford.edu/~mdfisher/GPUView.html
https://docs.unrealengine.com/en-US/Programming/Rendering/Overview/index.html
https://docs.unrealengine.com/en-US/Programming/Rendering/Overview/index.html

