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Abstract 

The renderer of a game engine is often a performance bottleneck from the CPU side. Adding 

multithreading to the rendering step is an effective means to address the performance issue 

without losing content details. In this article, the performance of DirectX 11* and DirectX 12* 

multithreading APIs is evaluated on advanced multicore processors and typical graphics 

hardware, the primary factors affecting multithreaded rendering performance are analyzed, and 

the relevant optimization methods are explored as well. 

1.    Introduction 

In the past ten years, PC processors have greatly improved. 4-core CPUs have become the 

mainstream configuration in the PC game market today. CPUs with more cores are rising in the 

market share. This trend is anticipated to continue, and in the next few years 6-core CPUs will 

likely grow in popularity for gamers. 

Unfortunately, the renderers of most game engines are still single-threaded by now, which often 

results in a performance bottleneck on the CPU, preventing multicore computing resources from 

being leveraged to improve performance or enrich visual contents. For example, when 

rendering large-scale outdoor scenes with many visible objects, the single-threaded renderer 

often leads to individual CPU cores running fully loaded while other cores remain relatively idle, 

and the performance below the playable frame rate. 

DirectX* started from DirectX 11 to formally support calling Direct3D*(D3D) application 

programming interfaces (APIs) in multiple threads. DirectX 11 multithreading supports two types 

of device contexts: immediate context and deferred context (Figure 1). Different deferred 

contexts can be used in different threads simultaneously, generating the command-lists that are 

to be executed in the immediate context. This multithreading strategy allows complex scenes to 

be broken up into concurrent tasks [1].  



         

Figure 1. DirectX 11 multithreading model 

Although DirectX 11 multithreading is supported by D3D runtime, the hardware acceleration for 

it is optional [2]. With hardware acceleration support, a part of the driver load can be parallelized 

along with the command-list build. Figure 2 shows the hardware acceleration capability in 

different graphics devices. Although all the graphics devices support “Driver Concurrent 

Creates”, only NVIDIA* graphics supports “Driver Command Lists”. 



 

Figure 2. Optional hardware acceleration for DirectX 11 multithreading 

DirectX 12 multithreading is improved much by significantly reducing API calling overhead. It 

eliminates the concept of device context of DirectX 11, instead using the command-list to invoke 

D3D APIs and then submit command-lists to the GPU through the command queue (Figure 3). 

All the DirectX 12 graphics hardware supports hardware acceleration for DirectX 12 

multithreading. 



 

Figure 3. DirectX 12 multithreading model 

Both DirectX 11 and DirectX 12 supports make multithreading an attractive alternative to 

address the performance bottleneck of rendering. However, due to the complexity of both the 

renderer and multithreaded programming, it’s necessary to carefully understand the 

characteristics of DirectX multithreading in detail to avoid the performance penalty of misusing. 

On multithreaded rendering performance, developers often concern about its actual pros and 

cons, multicore scalability and relevant key influence factors, and practical multithreading 

methods, among other things. Well understanding these questions will lead to more efficient 

implementation of a properly configured multithreaded renderer, which is the focus of the 

experiments detailed below. 

2.    Performance Evaluation of DirectX 

Multithreading APIs 

The workloads to evaluate the performance of multithreading APIs of DirectX11 and DirectX12 

are from DirectX official samples, which are respectively “MultithreadedRendering11” (Figure 4) 

in DirectX SDK (June 2010) [3] and “D3D12Multithreading” (Figure 5) in DirectX 12 Graphics 

samples [4]. Both samples are intended to demonstrate the advantages and methods of DirectX 

multithreaded rendering, which render the same “squid room” scene with thousands of draw 

calls per frame and are both CPU-bound on the test platforms. However, due to some 



programming tricks or defects, both samples do not comprehensively reflect the actual 

performance pros and cons of calling DirectX APIs in multithread threads. Thus, they are 

optimized and extended for the performance evaluation purpose.    

 

Figure 4. “MultithreadedRendering11” sample in DirectX SDK (June 2010) [3] 



 

Figure 5. “D3D12Multithreading” in DirectX 12 Graphics samples [4] 

This performance evaluation of DirectX multithreading APIs was conducted on three platforms 

with different configurations, as shown in Table 1. The configurations include new-generation 

multicore CPUs and the graphics devices from three major suppliers. To avoid GPU 

bottlenecks, the graphics devices used are at the mid to high end of the spectrum of products 

for each brand, and all support DirectX 11 and DirectX 12. To measure the multicore scalability 

of DirectX multithreading performance, the 10-core Intel® Core™ i7-6950X CPU is used to 

facilitate varying active CPU core count via BIOS. Since i7-6950X CPU doesn’t contain 

processor graphics, a 4-core Intel® Core™ i7-6770HQ CPU is also used for evaluation.  

Config Platform A Platform B Platform C 

CPU Intel® Core™ i7-6950X 

CPU @ 3.00GHz 

Intel Corei7-6950X CPU 

@ 3.00GHz 

Intel Core i7-6770HQ 

CPU @ 2.60GHz 

Memory 4x8GB RAM 4x8GB RAM 2x8GB RAM 

Graphics NVIDIA* GeForce GTX 

1080 

Radeon* RX Vega 64 Intel® Iris™ Pro 

Graphics 580 



Driver 22.21.13.8494 22.19.677.257 22.20.16.4749 

OS 

  

Windows® 10 

Enterprise 64-bit (10.0, 

Build 17134) 

Windows 10 Enterprise 

64-bit (10.0, Build 

17134) 

Windows 10 Enterprise 

64-bit (10.0, Build 

17134) 

Table 1. Test platform configurations 

2.1 DirectX 11 Experiments 

“MultithreadedRendering11” (Figure 4) is a sample of DirectX 11 multithreaded rendering. To 

objectively evaluate the performance and overhead of calling DirectX 11 APIs in multiple 

threads, it is optimized by reducing thread synchronization overhead and application-layer load. 

The optimization methods are detailed in section 3. The optimized and rebuilt workload is 

entitled “MTR11_Benchmark”, which implements five rendering modes, shown in Table 2, with 

more than 4k draw calls per frame.  

Mode Description 

ST-Immediate 

  

Single-threaded. The main thread uses immediate context to render all 

scenes. 

MT-Scene 

  

Multithreaded. Each scene is assigned a deferred context and a 

worker thread to render it. The main thread finally submits the 

command-lists of all deferred contexts. (command-list submission # 

per frame = scene #) 

ST-Scene Single-threaded. The serialized version of MT-Scene. Main thread 

sequentially executes all tasks of worker threads of MT-Scene. 

MT-Chunk 

  

Multithreaded. The meshes of each scene are evenly divided into N 

(Core#-1) chunks. Each chunk is assigned a deferred context and a 

worker thread to render it. The main thread submits the command-lists 

of all deferred contexts at the end of rendering each scene. 

(command-list submission # per frame = (Core#-1) * “scene #”) 



ST-Chunk Single-threaded. The serialized version of MT-Chunk. Main thread 

sequentially executes all tasks of worker threads of MT-Chunk.  

Table 2. The rendering modes of MTR11-Benchmark 

The average frame rate of MTR11_Benchmark running on different CPU and GPU 

configurations are shown in Figure 6. The data revealed some surprising findings.  

First, comparing the single-thread mode “ST-Immediate” with the multithread modes “MT-

Scene” and “MT-Chunk”, Figure 6 shows that: on all test platforms, when with less CPU cores, 

single-threaded immediate rendering (“ST-Immediate”) has better performance than 

multithreaded deferred rendering (“MT-Scene” and “MT-Chunk”). However, when with more 

CPU cores, the performance of multithreaded deferred rendering is much better on Nvidia 

graphics, and a little better on Intel graphics, but worse on AMD graphics than single-threaded 

immediate rendering. Note that Nvidia graphics support hard acceleration for DirectX 11 

multithreading. 

Secondly, comparing between two multithread modes, “MT-Scene” and “MT-Chunk”, Figure 6 

shows that: on all test platforms, the scene-based multithreading (“MT-Scene”) generally has 

better performance than the chunk-based multithreading (“MT-Chunk”), except for on Nvidia 

graphics where the chunk-based has better performance in some core counts (Figure 6.a). Note 

that Nvidia graphics supports hard acceleration for DirectX 11 multithreading, and the scene-

based has less command-list submissions than the chunk-based (Table 2). 

Finally, comparing all single-thread modes, “ST-Immediate”, “ST-Scene” and “ST-Chunk”, to 

evaluate the cost of calling D3D11 APIs in different contexts and strategies without multithread 

overhead interference. Figure 6 shows that: on all test platforms, calling D3D APIs in immediate 

context (“ST-Immediate”) has much better performance than calling them in deferred context 

(“ST-Scene” and “ST-Chunk”). Furthermore, on all CPU core counts, calling D3D APIs in 

deferred context has better performance in the scene-based mode (“ST-Scene”) than in the 

chunk-based mode (“ST-Chunk”) which degrades performance with increasing CPU core 

counts. The rendering performance looks like negatively correlated with the number of 

command-list submissions. 



 

(6.a) Test result on Platform A 



 

(6.b) Test result on Platform B 



 

(6.c) Test result on Platform C 

Figure 6. The performance of MTR11-Benchmark on different CPU and GPU configurations 

Based on the test results above, a few performance characteristics of DirectX 11 multithreading 

can be inferred: 

1. DirectX 11 multithreading involves bigger overhead. Calling D3D APIs in deferred context and 

submitting command-lists yield more overhead than calling APIs in immediate context. And the 

more command-lists submitted, the more overhead generated. 

2. DirectX 11 multithreading doesn’t necessarily improve performance, especially when purely 

calling D3D APIs. It is because of not only the significant overhead generated by deferred 

contexts, but also that not all of the extra overhead can be amortized by multithreading, for 

example, serialized command-list submission. Thus, it’s possible that multithreaded deferred 

rendering may result in a longer total rendering time than single-threaded immediate rendering.  



3. The hardware acceleration significantly benefits to DirectX 11 multithreading performance. 

The drive load accounts for a notable portion of the overall rendering load (Figure 12). Hardware 

acceleration essentially parallelizes a part of the driver load, so shortens the rendering time. 

2.2 DirectX 12 Experiments 

“D3D12Multithreading” (Figure 5) is a sample of DirectX 12 multithreaded rendering. Compared 

to its DirectX 11 counterpart “MultithreadedRendering11”, it simplifies the rendering logic so 

much that the rendering procedure almost only calls DirectX 12 APIs. And it just implements two 

modes: single-thread and multithread. To objectively evaluate the performance and overhead of 

calling DirectX 12 APIs in multiple threads, the sample was optimized and extended with the 

following functions: 

1.   The number of worker threads, which was fixed to four in the original sample, can be scaled 

according to the active CPU core count. This modification helps us evaluate multicore 

performance scaling for DirectX 12 multithreading. 

2.   Adding two duplicated shadow passes, having the number of draw calls per frame increase 

from 2k to 4k as many as the “MTR11_Benchmark”. This modification not only offers more CPU 

load to test multicore scaling, but also enables us to compare multithreading performance 

between DirectX 12 and DirectX 11. 

3.   Minimizing the synchronization between the main thread and worker threads, by having the 

main thread wait for all command-lists to complete before submitting them in a batch. This 

modification helps us isolate the factors affecting DirectX 12 multithreading performance. 

4.   Implementing a single-threaded mode with only one command-list. The original single-thread 

mode is actually the serialized version of the multithread mode with many command-lists, which 

results in the single-thread mode has much worse performance than the multithread mode. 

However, the actual single-thread mode may just need one or a small amount of command-lists. 

5.   Implementing 5 rendering modes (Table 3) for evaluating the performance of different 

DirectX 12 multithreading methods. 

Mode Description 

ST-One 
  

Single-threaded. Main thread only uses one command-list to render all 
passes. 

MT-Pass Multithreaded. Each pass is assigned a command-list and a worker 
thread to render it. The main thread finally submits all command-lists in 
a batch. (command-list submission # per frame = pass #) 



ST-Pass Single-threaded. The serialized version of MT-Pass. Main thread 
sequentially executes all tasks of worker threads of MT-Pass. 

MT-Chunk Multithreaded. The meshes drawn in each pass are evenly divided into 
N (Core# -1) chunks. Each chunk is assigned a command-list and a 
worker thread to render it. The main thread finally submits the 
command-lists of all passes in a batch. (command-list submission # 
per frame = (core#-1) * “pass #”) 

ST-Chunk 
  

Single-threaded. The serialized version of MT-Chunk. Main thread 
sequentially executes all tasks of worker threads of MT-Chunk. 

Table 3. The rendering modes of MTR12_Benchmark 

The modified “D3D12Multithreading” sample is referred to as “MTR12_Benchmark”. Running 

MTR12_Benchmark on different CPU and GPU configurations, the average CPU time of calling 

D3D APIs per frame are shown in Figure 7, resulting in a couple of interesting observations.  

First, comparing the multithread modes “MT-Pass” and “MT-Chunk” with the single-thread mode 

“ST-One”, Figure 7 shows that: on most test platforms, the single-threaded rendering with one 

command-list (“ST-One”) generally has better performance than the multithreaded rendering 

with multiple command-lists (“MT-Pass” and “MT-Chunk”), except that on AMD graphics “MT-

Pass” is a little faster than “ST-One” (Figure 7.b). 

Then, comparing between two multithread modes, “MT-Pass” and “MT-Chunk”, Figure 7 shows 

that: the pass-based multithreading (“MT-Pass”) always has better performance than the chunk-

based multithreading (“MT-Chunk”) which degrades performance with increasing CPU core 

counts. Note that the pass-based multithreading has fixed numbers of threads and command-

list submissions which however vary with the number of CPU cores in the chunk-based 

multithreading (Table 3). 

Also, comparing all single-thread modes (“ST-One”, “ST-Pass”, “ST-Chunk”), to evaluate the 

cost of calling D3D12 APIs with different strategies without multithreading overhead 

interference. Figure 7 shows that: on all test platforms, calling D3D APIs with one command-list 

per frame (“ST-One”) has the best performance. Calling D3D APIs with the mode submitting a 

small number of command-lists per frame (“ST-Pass”) has the poor performance. And Calling 

D3D APIs with the mode submitting more command-lists per frame (“ST-Chunk”) has the worst 

performance which will further degrades with increasing CPU core counts.  

Lastly, comparing the test results of MTR11_Benchmark (Figure 6) and MTR12_Benchmark 

(Figure 7). It’s obvious that rendering with D3D12 APIs has much better performance than 

rendering with D3D 11 APIs even though there are some implementation differences between 

both workloads.  



 

(7.a) Test result on Platform A 



 

(7.b) Test result on Platform B 



 

(7.c) Test result on Platform C 

Figure 7. The performance of MTR12-Benchmark on different CPU and GPU configurations 

Based on the test results above, the following performance characteristics of DirectX 12 

multithreading can be concluded: 

1. Submitting D3D12 command-list involves much more overhead than calling other D3D12 

APIs. The more command-lists submitted, the more overhead generated. 

2. DirectX 12 multithreading doesn’t necessarily improve performance, especially when purely 

calling D3D APIs. As opposed to the single-threaded rendering submitting command-lists one or 

few times per frame, multithreaded rendering usually requires submitting more times. These 

submissions may have to be done sequentially and involve so much overhead that the 

performance gains of building command-lists in parallel are offset. 



3. DirectX 12 benefits multithreaded rendering more than DirectX 11. Although DirectX 12 

multithreading does involve some overhead, it has much less overhead than DirectX 11 

multithreading, which will relieve the bottleneck and improve multithreading performance. 

3.    Key Factors Affecting Multithreaded 

Rendering Performance 

The “MultithreadedRendering11” (MTR11) sample provides a good experimental basis to 

disclose the key factors affecting multithreaded rendering performance. Besides of DirectX 

multithreading API overhead discussed in section 2, thread synchronization overhead and 

parallelizable application-layer load also play important roles in the performance of 

multithreaded rendering. 

3.1 Thread Synchronization Overhead 

The result of testing the original “MultithreadedRendering11” sample (Figure 4) on Platform A, 

shows that both multithread modes, “MT Def/Scene” and “MT Def/Chunk”, have much better 

performance than the single-thread mode “Immediate” (Figure 8). However, when CPU core 

count increases to 10, the frame rate of “MT Def/Chunk” mode drops significantly. This anomaly 

should be investigated. 



 

Figure 8. The performance comparison between multithreaded rendering and single-threaded 

rendering 

Analyzing the thread activities of “MT Def/Chunk” mode on 10-core CPU by GPUView* [9], finds 

that worker thread running is interrupted frequently (Figure 9.a), which means there are a lot of 

thread state changes during rendering. The sample’s source code indicates that the main thread 

continuously produces more than 4 thousand work items to render each scene, meanwhile 

worker threads consume them in parallel by synchronize with main thread on each work item. It 

means there are considerable overhead of thread synchronization in rendering. When the CPU 

cores increase, the worker threads increase correspondingly, thus the probability and time of 

each worker thread waiting for a work item increase too. It results in the thread synchronization 

overhead expands further so that the performance dramatically dropped on 10-core CPU. 



 

(9.a) original implementation 

 

(9.b) thread synchronization optimized implementation 

Figure 9. Thread activities of the “MT Def/Chunk” mode of “MultithreadedRendering11” sample 

on 10 cores 



To solve the problem, the source codes of the sample was modified to make the main thread 

produce all of the work items before notifying work threads to consume them in parallel, which 

greatly reduces the frequency and overhead of synchronization between the main thread and 

the worker thread. Figure 9.b shows the optimized sample improved the continuity of worker 

thread running, significantly reducing the rendering time of each scene. Figure 10 shows the 

performance of “MT Def/Chunk” mode is significantly improved after thread synchronization 

optimization. It not only solves the problem of frame rate dropping on 10 cores, but also 

improves the performance of this mode on all CPU core counts. 

 

Figure 10. The multicore performance scaling of the “MT Def/Chunk” mode of 

“MultithreadedRendering11” sample before and after thread synchronization optimization 

This experiment demonstrates that thread synchronization overhead can significantly affect 

multithreaded performance. Inappropriate thread synchronization strategy, for example, using 



too small granularity of thread job, may impair the advantage of multithreaded rendering 

performance. 

3.2 Parallelizable Application-layer Load 

The “MultithreadedRendering11” sample shows that both multithread modes have much better 

performance than the single-thread mode (Figure 8). To understand the characteristics of the 

workload that may benefits from multithreaded rendering, the load distributed in the layers of 

application logic, D3D runtime and graphics driver was analyzed in the “Immediate” mode of the 

sample (Figure 4). According to the weights of CPU usage of the modules profiled by Windows* 

Performance Analyzer (WPA) [8] (Figure 11), the relative load of different layers can be 

calculated. And it shows that the application logic has the biggest load (60%), the driver load 

has 23%, and Direct3D runtime consumes 8% of the load. 

 

Figure 11. Load distribution of the “Immediate” mode of the “MultithreadedRendering11” sample  

WPA also reveals the top 1 hotspot function (Figure 11). The source code indicates the function 

is used to validate the vertex buffers and index buffers of all meshes in the scene. Oddly, the 

function is called repeatedly as each mesh is drawn, which is unnecessary. Actually, this 

hotspot function has been optimized in the sample of the same name in the latest DirectX SDK 

sample package [5]. Commenting out this function call (Figure 12) does not affect the normal 

execution of the program, while the primary load transfers from application logic (7%) to the 

graphics driver (55%).  



 

Figure 12. Load distribution of the “Immediate” mode of the “MultithreadedRendering11” sample 

after removing hotspot codes of application-layer 

Retesting the sample that comments out the hotspot function shows the speedup of multithread 

mode (“MT Def/Scene”) against single-thread mode (“Immediate”) decreases dramatically 

(Figure 13). It means the significant advantage of multithreaded rendering comes primarily from 

calling the hotspot function of application-layer, other than D3D APIs, in multiple threads. 



 

Figure 13. Application-layer load significantly affects the advantage of multithreaded rendering 

over single-threaded rendering  



 

This experiment demonstrates that the amount of parallelizable application-layer load can 

significantly affect the performance advantage of multithreaded rendering. Without enough 

parallelizable application-layer load, multi-threaded rendering may not show much of the 

performance and multi-core scalability advantage over single-threaded rendering. 

4.    Tips and Tricks for Multithreaded 

Rendering 

Based on the conclusions from above experiments, a couple of tips and tricks may be 

considered to take advantage of multithreaded rendering performance. 

Before multithreading the renderer, it’s recommended to use WPA or Intel® VTune™ [6] firstly 

to evaluate the proportion of the application-layer load of the renderer to the load of D3D 

runtime and graphics driver. If the application-layer load is parallelizable and has a large enough 

proportion, multithreading renderer is helpful to improve the performance. Otherwise, it may 

have little benefit or even hit the performance. 

When designing or selecting the methods to multithread the renderer, developers should keep 

in mind that the thread synchronization and command-list submission may cause considerable 

overhead and thus hit performance. Therefore, it’s required to carefully control the amount of 

thread synchronization and command-list submission per frame in the implementation of 

multithreaded rendering.  

There are two basic methods of multithreaded rendering: the pass(scene)-based and the chunk-

based, as illustrated in “MultithreadedRendering11” sample. The pass-based method divides 

the rendering task in the granularity of pass(scene). The number of thread jobs generated each 

frame is equal to the number of passes(scenes) per frame. Therefore, it has the limited 

multithreading overhead due to the small amount of thread synchronization and command-list 

submission per frame. But it may not have balanced thread load and cannot scale performance 

with CPU core counts. Generally, the pass-based method has moderate performance 

advantage. 

The chunk-based method divides the rendering task of pass (scene) into smaller-grained jobs. 

The number of thread jobs generated each frame can be many times the number of CPU cores. 

Theoretically, this method can achieve the best performance due to good thread load balancing 

and multi-core performance scalability. However, actually it sometimes may not even as fast as 

the pass-based method, especially when the parallelizable application-layer load is less. It’s 

because that this method may produce more thread synchronization and command-list 

submission per frame. And the more CPU cores, the more thread synchronization and 



command-list submission per frame. It may result in significant overhead which offsets the 

multithreading performance gain. 

Both methods have certain limitations. The “ideal” method for multithreaded rendering should be 

able to make the most of multicore to improve performance in all cases, no matter how large the 

application load, and whether or not the graphics hardware acceleration for DirectX 

multithreading is supported.  

A promising solution is to use the concept of "intermediate rendering command" to decouple the 

rendering logic and graphics (D3D) API calls. The "intermediate rendering command" is a 

wrapper of graphics APIs, similar to the “Rendering Hardware Interface”(RHI) command in 

Unreal Engine* 4 [10], used to cache the arguments for graphics APIs. The renderer front-end 

may execute the rendering logic to generate "intermediate rendering commands". And the 

renderer back-end may translate the "intermediate rendering commands" to graphics APIs and 

call them. 

This solution allows rendering logic and graphics API calls to respectively use the most 

appropriate task decomposition strategy for each. Rendering logic may be divided into small-

grained jobs to improve multicore utilization and load balancing. And graphics API calls may be 

divided into one or several jobs (command-lists), depending on the number of draw calls per 

frame, to limit the number of command-list submissions. To minimize the thread synchronization 

overhead, the efficient thread library with work-stealing task scheduler, for instance, Intel® 

Threading Building Blocks (Intel® TBB) [7], is recommended.  

With minimizing the overhead involved in DirectX multithreading, when the application-layer 

load of the renderer is small, this solution may avoid the performance of multithreaded rendering 

worse than the performance of the single-threaded rendering across a wide range of graphics 

cards. When the parallelizable application-layer load is large, this solution may make the most 

of multicore to achieve much better performance than the single-threaded rendering.  

5.    Summary 

This article disclosed the performance characteristics of DirectX multithreading with a series of 

experiments based on the modified and extended workload of official DirectX samples. 

Through these experiments, it’s found that for either D3D11 or D3D12, the command-list 

submission has much more overhead than other draw calls, so that many command-list 

submissions may negate the performance gains of parallelizing draw calls. For D3D11, the 

hardware acceleration significantly benefits to multithreaded rendering performance. It’s also 

shown that the thread synchronization overhead and parallelizable application-layer load have 

the significant impact on the performance advantage of multithreaded rendering versus single-

threaded rendering. 



Based on these qualitative analyses, it’s recommended to evaluate the amount of parallelizable 

application-layer load before multithreading the renderer, and carefully control the amount of 

thread synchronization and command-list submission in multithreaded implementation. Also, a 

multithreaded rendering method based on “intermediate rendering command” is proposed to 

maintain the multithreading performance advantage in various situations and make the most of 

multicore for the best performance. 

CPU keeps on evolving to more cores. Based on the in-depth understanding of DirectX 

multithreading performance, multithreading the renderer is promising to relieve the CPU 

bottleneck on multiple cores, or to extract more performance headroom to render scenes with 

richer visual content. 
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