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Introduction 
 

Binary floating-point [FP] representations of most real numbers are inexact and 

there is an inherent uncertainty in the result of most calculations involving 

floating-point numbers. Programmers of floating-point applications typically 

have the following objectives: 

 Accuracy 

o Produce results that are “close” to the result of the exact 

calculation 

 Usually measured in fractional error, or sometimes “units in 

the last place” (ulp). 

 Reproducibility 

o Produce consistent results: 

 From one run to the next; 

 From one set of build options to another; 

 From one compiler to another 

 From one processor or operating system to another 

 Performance 

o Produce an application that runs as fast as possible 

 

These objectives usually conflict! However, good programming practices and 

judicious use of compiler options allow you to control the tradeoffs. 

 

For example, it is sometimes useful to have a degree of reproducibility that 

goes beyond the inherent accuracy of a computation. Some software quality 

assurance tests may require close, or even bit-for-bit, agreement between 

results before and after software changes, even though the mathematical 

uncertainty in the result of the computation may be considerably larger. The 
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right compiler options can deliver consistent, closely reproducible results while 

preserving good (though not optimal) performance. 

 

Floating-Point Semantics 

The Intel® Compiler implements a model for floating-point semantics based on 

the one introduced by Microsoft. 1  A compiler switch (/fp: for Windows*, -fp-

model for Linux* or OS* X) lets you choose the floating-point semantics at a 

coarse granularity. It lets you choose the compiler rules for: 

 Value safety 

 Floating-point expression evaluation 

 Precise floating-point exceptions 

 Floating-point contractions 

 Floating-point unit (FPU) environment access 

 

These map to the following arguments of the /fp: (-fp-model) switch2: 

 precise allows value-safe optimizations only 

 source specify the intermediate precision  

double used for 

extended floating-point expression evaluation 

 except enables strict floating-point exception semantics 

 strict  enables access to the FPU environment 

disables floating-point contractions 

such as fused multiply-add (fma) instructions 

implies “precise” and “except” 

 consistent best reproducibility from one processor type or 

set of build options to another (compiler version ≥17) 

 fast [=1]   allows value-unsafe optimizations  

(default) compiler chooses precision for expression evaluation 

  Floating-point exception semantics not enforced 

  Access to the FPU environment not allowed 

  Floating-point contractions are allowed 

 fast=2  some additional approximations allowed 

This switch supersedes a variety of switches that were implemented in older 

Intel compilers, such as /Op and /flt-consistency (-mp and -flt-consistency). 

                                                 
1 Microsoft* Visual C++* Floating-Point Optimization 

http://msdn2.microsoft.com/en-us/library/aa289157(vs.71).aspx 

 
2 In general, the Windows form of a switch is given first, followed by the form for Linux and OS X 

in parentheses. 
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The recommendation for obtaining floating-point values that are compliant 

with ANSI / IEEE standards for C++ and Fortran is: 

/fp:precise  /fp:source   (Windows) 

-fp-model precise -fp-model source (Linux or OS X) 

For C and C++, the float_control pragma may be used to achieve the same 

effect as the switches /fp:precise and /fp:fast (-fp-model precise and -fp-model 

fast): 

 

#pragma float_control (precise, on) 

#pragma float_control (precise, off) 

     or 

#pragma float_control (push) 

#pragma float_control (precise, on) 

#pragma float_control (pop) 

 

Although such a pragma may be placed in front of an individual block of code, it 

applies to the entire containing function. 

 

Value Safety  

 

In SAFE mode, corresponding to the precise, strict or consistent arguments for 

/fp: (-fp-model), the compiler may not make any transformations that could 

affect the result. For example, the following is prohibited: 

 

(x + y) + z    x + (y + z) 

 

since general reassociation is not value safe. When the order of floating-point 

operations is changed, (reassociation), different intermediate results get 

rounded to the nearest floating-point representation, and this can lead to slight 

variations in the final result. 

 

UNSAFE (fast) mode is the default. The variations implied by “unsafe” are 

usually very tiny; however, their impact on the final result of a longer calculation 

may be amplified if the algorithm involves cancellations (small differences of 

large numbers), as in the first example below. In such circumstances, the 

variations in the final result reflect the real uncertainty in the result due to the 

finite precision of the calculation. 
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VERY UNSAFE (fast=2) mode enables riskier transformations. For example, this 

might enable expansions that could overflow at the extreme limit of the allowed 

exponent range. 

 

More Examples that are disabled by /fp:precise (-fp-model precise) 

 

 reassociation            e.g.   (a + b) + c  a + (b + c) 

 vectorization of reductions         e.g.  for(i=0; i<n; i++) sum += x[i]; 

(special case of reassociation) 

 zero folding            e.g.   X+0  X,     X*0  0 

 multiply by reciprocal          e.g.   A/B   A*(1/B) 

 approximate square root 

 fast transcendental functions    e.g.  sin(a)  or  exp(a) 

(includes vectorization of loops containing transcendental functions) 

 abrupt underflow (flush-to-zero) 

 drop precision of RHS to that of LHS 

 etc. 

The zero folding examples above might not give the correct IEEE result for 

certain special values of X, such as infinity or NaN (Not a Number). 

Note, however, that fused-multiply-add contractions1 are still permitted unless 

they are explicitly disabled or /fp:strict (-fp-model strict) is specified. See the 

“Floating-Point Contractions” section. 

More about Reassociation 

 

Addition and multiplication are associative: 

 

 a + b + c = (a+b) + c = a + (b+c) 

            (a*b) * c = a * (b*c) 

 

These transformed expressions are equivalent mathematically, but they are not 

equivalent in finite precision arithmetic. The same is true for other algebraic 

identities such as 

a*b + a*c = a * (b+c) 

Examples of higher level optimizing transformations that involve reassociation 

are loop interchange and the vectorization of reduction operations by the use 

of partial sums (see the section on Reductions below). The corresponding 

                                                 
1 Certain Intel® microarchitectures support multiplication followed by an addition in a single 

instruction with a single rounding operation.  
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compiler options are available for both Intel® and non-Intel microprocessors 

but they may result in more optimizations for Intel microprocessors than for 

non-Intel microprocessors. 

 

The ANSI C and C++ language standards do not permit reassociation by the 

compiler; even in the absence of parentheses, floating-point expressions are to 

be evaluated from left to right. Reassociation by the Intel compiler may be 

disabled in its entirety by the switch /fp:precise (-fp-model precise).  This also 

disables other value-unsafe optimizations, and may have a significant impact on 

performance at higher optimization levels. Under the default setting of /fp:fast 

(-fp-model fast), the Intel compiler may reassociate expressions, even in the 

presence of parentheses. 

 

The ANSI Fortran standard is less restrictive than the C standard: it requires the 

compiler to respect the order of evaluation specified by parentheses, but 

otherwise allows the compiler to reorder expressions as it sees fit. The Intel 

Fortran compiler has therefore implemented a corresponding switch, 

/assume:protect_parens (-assume protect_parens), that results in standard-

conforming behavior for reassociation, with considerably less impact on 

performance than /fp:precise (-fp-model precise). This switch does not affect 

any value-unsafe optimizations other than reassociation. In the version 18 

compiler, /Qprotect-parens (-fprotect-parens) is a synonym for 

/assume:protect_parens (-assume protect_parens). 

Since the version 16 compiler, a similar option is available for the Intel® C/C++ 

compiler, /Qprotect-parens (-fprotect-parens). This requires the compiler to 

respect parentheses when determining the order of evaluation of expressions. 

The compiler may still reorder expressions or subexpressions not explicitly 

protected by parentheses, if allowed by the /fp (-fp-model) setting. 

Example from a Fortran application 

 

The application gave different results when built with optimization compared to 

without optimization, and the residuals increased by an order of magnitude. 

The root cause was traced to source expressions of the form: 

  A(I) + B + TOL 

where TOL is very small and positive and A(I) and B may be large. With 

optimization, the compiler prefers to evaluate this as 

  A(I) + (B + TOL) 

because the constant expression (B+TOL) can be evaluated a single time before 

entry to the loop over I.  However, the intent of the code was to ensure that the 

expression remained positive definite in the case that A(I)  -B. When TOL is 
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added directly to B, its contribution is essentially rounded away due to the finite 

precision, and it no longer fulfills its role of keeping the expression positive-

definite when A(I) and B cancel. 

The simplest solution was to recompile the affected source files with the switch           

-fp-model precise, to disable reassociation and evaluate expressions in the 

order in which they are written. A more targeted solution, with less potential 

impact on performance, was to change the expression in the source code to 

  (A(I) + B) + TOL 

to more clearly express the intent of the programmer, and to compile with the 

option  -assume protect_parens. 

Example from WRF1 (Weather Research and Forecasting model) 

 

Slightly different results were observed when the same application was run on 

different numbers of processors under MPI (Message Passing Interface).  

This was because loop bounds, and hence data alignment, changed when the 

problem decomposition changed to match the different number of MPI 

processes. This in turn changed which loop iterations were in the vectorized 

loop kernel and which formed part of the loop prologue (“peel loop”) or 

epilogue (“remainder loop)”. Different generated code in the prologue or 

epilogue compared to the vectorized kernel can give slightly different results 

for the same data.  

 

The solution was to compile with -fp-model precise. This causes the compiler 

to generate consistent code and math library calls for the peel loop, remainder 

loop and kernel. In some cases, this may prevent the loop from being 

vectorized. 

Reductions 

 

Parallel implementations of reduction loops (such as dot products) make use of 

partial sums, which implies reassociation. They are therefore not value-safe. 

The following is a schematic example of serial and parallel implementations of 

a floating-point reduction loop: 

 

  

                                                 
1 See http://www.wrf-model.org 



 

Copyright © 2018, Intel Corporation. All rights reserved. 

*Other brands and names may be claimed as the property of others 

float Sum(const float A[ ], int n )      float Sum( const float A[ ], int n ) 

{          { 

                                                                      int i,  n4 = n-n%4; 

    float sum=0;           float sum=0,sum1=0,sum2=0,sum3=0; 

    for (int i=0; i<n; i++)          for (i=0; i<n4; i+=4) { 

        sum = sum + A[i];                 sum   = sum    + A[i]; 

                           sum1 = sum1 + A[i+1]; 

                           sum2 = sum2 + A[i+2]; 

                           sum3 = sum3 + A[i+3]; 

             } 

             sum = sum + sum1 + sum2 + sum3; 

             for (i=n4; i<n; i++) sum = sum + A[i]; 

    return sum;           return sum;  

}          } 

 

In the second implementation, the four partial sums may be computed in 

parallel, either by using SIMD instructions (eg as generated by the compiler’s 

automatic vectorizer), or by a separate thread for each sum (e.g. as generated 

by automatic parallelization). This can result in a large increase in performance; 

however, the changed order in which the elements of A are added to give the 

final sum results in different rounding errors, and thus may yield a slightly 

different final result.  

Because of this, the vectorization or automatic parallelization of reductions is 

disabled by /fp:precise (-fp-model precise), except where vectorization is 

explicitly mandated by an OpenMP* SIMD pragma or directive with a 

REDUCTION clause (see section on vectorization using OpenMP SIMD pragmas 

or directives). 

 

Parallel reductions in OpenMP are mandated by the OpenMP directive, and 

cannot be disabled by /fp:precise (-fp-model precise). Generally speaking, they 

are value-unsafe, and remain the responsibility of the programmer. Likewise, 

MPI* reductions involving calls to an MPI library are beyond the control of the 

compiler, and might not be value-safe. Changes in the number of threads, in the 

scheduling method or in the number of MPI processes are likely to cause small 

variations in results. In some cases, the order of operations may change 

between consecutive executions of the same binary.  

 

The OpenMP standard does not specify the order in which partial sums should 

be combined, which may therefore be decided at runtime and vary from run to 

run. Versions 13 and later of the Intel Compiler provide a method to ensure 

consistent, reproducible results from OpenMP reductions for repeated 
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executions of the same binary, for a fixed number of threads and static 

scheduling only. The following environment variable should be set: 

 

 KMP_DETERMINISTIC_REDUCTION=yes         (or =on  or =true or =1 ) 

 

This also tends to increase the accuracy of large reductions. For large numbers 

of threads, KMP_DETERMINISTIC_REDUCTION=yes is the default; for small 

numbers of threads, it is not, as there may be a slight impact on performance. 

 

The Intel® Math Kernel Library, (Intel® MKL), and Intel® Threading Building 

Blocks, (Intel® TBB), in Intel® Parallel Studio XE 2013 and later contain similar 

functionality to provide reproducible results for repeated parallel execution of 

the same binary. For more detail, please consult the documentation for 

Conditional Numerical Reproducibility (Intel MKL) and 

parallel_deterministic_reduce() (Intel TBB). 

 

Compiler options that enable vectorization and OpenMP are available for both 

Intel® and non-Intel microprocessors but they may result in more optimizations 

for Intel microprocessors than for non-Intel microprocessors. 

 

Second Example from WRF 

 

Slightly different results were observed when re-running the same (non-

threaded) binary on the same data on the same processor. 

 

This was caused by variations in the starting address and alignment of the 

global stack, resulting from events external to the program. The resulting 

change in local stack alignment led to changes in which loop iterations were 

assigned to the loop prologue or epilogue, and which to the vectorized loop 

kernel. This in turn led to changes in the order of operations for vectorized 

reductions (i.e., reassociation). 

 

The solution was to build with -fp-model precise, which disabled the 

vectorization of reductions.  

 

Starting with version 11 of the Intel compiler, the starting address of the global 

stack is aligned to a cache line boundary. This avoids the run-to-run variations 

described above, even when building with /fp:fast (-fp-model fast), unless run-

to-run variations in stack alignment occur due to events internal to the 

application. (This might occur if a variable length string is allocated on the stack 
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to contain the current date and time, for example). Dynamic variations in heap 

alignment can lead to variations in floating-point results in a similar manner. 

Such variations in alignment typically arise from memory allocations that 

depend on the external environment. They can be prevented from causing 

variations in floating-point results by building with /fp:precise (-fp-model 

precise), or by explicit alignment of data arrays. Starting from the version 15 

compiler, such run-to-run variations can also be prevented by compiling with 

/Qopt-dynamic-align- (-qno-opt-dynamic-align), which may have much less 

impact on performance than /fp:precise (-fp-model precise). 

 

Vectorization using OpenMP* SIMD Pragmas or Directives 
 

In some circumstances, OpenMP pragmas or directives that require 

vectorization of a loop can be in conflict with requirements of the Floating-

point model specified by a /fp (-fp-model) switch or by /Qfp-speculation:safe 

(-fp-speculation=safe). By default, when OpenMP SIMD pragmas are enabled, 

they take precedence and in some cases lead to floating-point results that 

differ from results obtained without the pragma. 

To avoid this, certain OpenMP SIMD constructs must be avoided. 

 

Floating-Point Reductions 

                                                  As an example, take a variant of the simple reduction 

loop considered previously. 

 

              for (int i=0; i<n; i++)    sum = sum + A[i]*A[i]*A[i]; 

 

When compiled with -fp-model precise or -fp-model consistent, the loop is not 

auto-vectorized with the following message: 

 

remark #15331: loop was not vectorized: precise FP model implied by the 

command line or a directive prevents vectorization. 

 

However, if we place an OpenMP SIMD pragma before the loop, 

       #pragma omp simd reduction(+:sum) 

We then see 

 

remark #15301: OpenMP SIMD LOOP WAS VECTORIZED 

 

As discussed in the section on “Reductions”, the vectorization of the reduction 

loop changes the order of operations and yields results that may differ from 

lower optimization levels such as -O1, at which the  loop would not be 
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vectorized. The SIMD pragma can be prevented from overriding the floating-

point model and consistent results can be preserved using the compiler option 

/Qsimd-honor-fp-model (-qsimd-honor-fp-model). The loop is no longer 

vectorized with the message: 

 

   remark #15331: simd loop was not vectorized: precise FP model implied by 

the command line or a directive prevents vectorization. Consider using fast FP 

model 

   remark #15552: loop was not vectorized with "simd" 

 

For loops that contain a lot of computation in addition to the reduction, it may 

be worthwhile to compute the reduction serially, so that results are 

reproducible, while vectorizing the remainder of the loop to improve 

performance. This can be achieved by adding the compiler option /Qsimd-

serialize-fp-reduction (-qsimd-serialize-fp-reduction), which allows statements 

other than the reduction statement to be vectorized.  

 

For reproducible results with -qsimd-serialize-fp-reduction, there must be only 

a single lexical statement in the loop that updates the reduction variable; it 

must be executed only once per loop iteration; and it should contain no 

function calls. For better performance, it is recommended to minimize the 

amount of computation in the reduction statement itself by keeping it as simple 

as possible and using temporary variables if necessary.  

E.g., if the example above is rewritten as  

double temp = A[i]*A[i]*A[i]; 

sum += temp; 

then the multiplications are carried out in SIMD mode but the additions are 

performed serially. The remarks in the optimization report are: 

 

   remark #15531: Block of statements was serialized due to user request    

   remark #15301: OpenMP SIMD LOOP WAS VECTORIZED 

                                              

 

Early Exit Clause 

                                 A loop with multiple exits, such as a search loop, can often be 

vectorized using a pragma or directive such as: 

    #pragma omp simd early_exit 

However, the compiler may speculatively execute code that comes lexically 

before a break statement. This could have consequences such as exceptions 

that would not occur in the absence of speculation. If this could be a problem, 

avoid using the early_exit clause. 
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            Speculation occurring in loops that are auto-vectorized without an 

OpenMP SIMD pragma can be disabled by the compiler switch -fp-

speculation=safe (see the section on the Floating-Point Environment). However, 

this switch may not disable speculation resulting from an OpenMP early_exit 

pragma. 

 

Ordered Clause 

                             Multiple “ordered” constructs within one OpenMP SIMD loop 

could cause operations to occur in a different order to the one that would 

obtain for a loop without SIMD pragmas. To ensure that results remain 

reproducible, do not use more than one ordered construct (e.g., #pragma omp 

ordered simd) within a single loop. 

 

Overlap Modifiers 

                                  The overlap modifier enables generation of more efficient 

code for architectures that natively support conflict detection instructions such 

as Intel® AVX-512CD. This optimization may cause variations in the order of 

operations and hence variations in floating-point results. To maintain 

reproducibility of results, do not use overlap modifiers, e.g.  

     #pragma omp ordered simd overlap(b[i]) 

in conjunction with floating-point data. 

 

Private and Lastprivate Clauses 

                                                            Private and lastprivate clauses define objects 

whose values live for one iteration only. The OpenMP standard says that an 

uninitialized object is created for each SIMD lane. If such an object is accessed 

before it has been initialized, results are unspecified and non-deterministic. 

Also, the number and order of constructor or destructor calls is unspecified.  

    To maintain reproducibility of results, initialize private or lastprivate objects 

inside the loop and do not rely on the number or order of constructor or 

destructor calls for these. 

 

Abrupt Underflow or Flush-To-Zero (FTZ) 

 

Denormalized numbers1 (denormals) extend slightly the allowed range of 

floating-point exponents, but computations involving them take substantially 

longer than those that involve only normal numbers. By default, when the result 

of a floating-point calculation would have been a denormal, it is instead set to 

                                                 
1  A short discussion of denormal numbers may be found in the Floating-Point Operation 

section of the Intel Compiler User and Reference Guides. 
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zero in hardware. When /fp:precise  (-fp-model precise) is specified, denormal 

results are preserved for value safety.  

The /fp: (-fp-model) settings may be overridden for the entire program by 

compiling the main function or routine with the switch /Qftz (-ftz)  or /Qftz-        

(-no-ftz), which sets or unsets the hardware flush-to-zero mode in the floating-

point control register1.  The default setting for /fp:fast (-fp-model fast) is /Qftz  

(-ftz) for optimization levels of -O1 and above.  

There is no flush-to-zero hardware for x87 arithmetic, for which the /Qftz (-ftz) 

switch has no effect. x87 arithmetic instructions are usually generated only in 

special circumstances, such as when compiling for older IA-32 processors 

without Intel SSE2 support using the option /arch:ia32 (-mia32). 

 

Floating-Point Expression Evaluation 

 

Example:  a = (b + c) + d 

 

There are four possibilities for rounding of the intermediate result (b+c), 

corresponding to values of FLT_EVAL_METHOD in C99: 

     

Evaluation Method /fp: (-fp-

model) 
Language FLT_EVAL_METHOD 

Indeterminate fast C/C++/Fortran -1 

Use source precision           source C/C++/Fortran 0 

Use double precision double C/C++ 1 

Use long double 

precision   
extended C/C++ 2 

 

If /fp:precise (-fp-model precise) is specified but the evaluation method is not, 

the evaluation method defaults to source precision on Intel64 architecture. For 

C/C++ on IA-32 architecture, the evaluation method defaults to double on 

Windows and to extended on Linux2. For Fortran, source is the only supported 

evaluation method under /fp:precise (-fp-model precise).  If an evaluation 

method of source, double or extended is specified but no value safety option is 

given, the latter defaults to /fp:precise (-fp-model precise). 

                                                 
1 The switch /Qftz (-ftz)  allows denormals results to be flushed to zero. It does not guarantee 

that they will always be flushed to zero. It also sets denormal inputs to zero (DAZ). 
2 The switch -mia32 is not supported on Mac OS* X, where all Intel processors support 

instructions up to Intel SSE3. The evaluation method therefore defaults to source precision with 

-fp-model precise. 
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The method of expression evaluation can impact performance, accuracy, 

reproducibility and portability! In particular, selection of an evaluation method 

that implies repeated conversions between representations of different 

precision can significantly impact performance. 

The Floating-Point Unit (FPU) Environment 

The floating-point environment1 consists of the floating-point control word 

settings and status flags.  The control word settings govern: 

 the FP rounding mode (nearest, toward +∞, toward -∞, toward 0) 

 FP exception masks for inexact, underflow, overflow, divide by zero, 

denormals and invalid exceptions 

 Flush-to-zero (FTZ), Denormals-are-zero (DAZ) 

 For x872 only:        precision control  (single, double, extended) 

o Changing this may have unintended consequences! 

There is a status flag corresponding to each exception mask. 

Programmer access to the FPU environment is disallowed by default. 

 the compiler assumes the default FPU environment: 

o round-to-nearest 

o all FP exceptions are masked 

o Flush-to-zero (FTZ) and Denormals-as-zero (DAZ) are disabled 

 the compiler assumes the program will not read FP status flags 

If the user might explicitly change the default FPU environment, e.g. by a call to 

the runtime library that modifies the FP control word, the compiler must be 

informed by setting the FPU environment access mode. The access mode may 

only be enabled in value-safe modes, by either 

 /fp:strict   (-fp-model strict)                   or 

 #pragma STDC FENV_ACCESS ON        (C/C++ only) 

In this case, the compiler treats the FPU control settings as unknown. It will 

preserve floating-point status flags and disable certain optimizations such as 

the evaluation of constant expressions at compile time, speculation of floating-

point operations and others3. Changing the default floating-point environment 

                                                 
1 For more detail, see the Intel Compiler User and Reference Guides, under Floating-point 

Operations/Understanding Floating-point Operations/Floating-point Environment. 
2 There is a separate control word for x87 floating-point arithmetic.  The x87 FP control word 

should not normally be of concern unless the /arch:IA32 (-mia32) option for the support of 

older processors is specified. 
3 Other optimizations that are disabled: 

Partial redundancy elimination 

Common subexpression elimination 

Dead code elimination 
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without informing the compiler may lead to unpredictable results, e.g. for math 

library functions if changes are made to the rounding mode. 

Example of changing the FPU environment: 

 

#include <fenv.h> 

double  x[20][20],  zero = 0.; 

   feenableexcept(FE_DIVBYZERO); 

   for( int i = 0; i < 20; i++ ) 

      for( int j = 0; j < 20; j++) 

         x[i][j] = zero ? (1./zero) : zero; 

      ….. 

 

A floating-point exception may occur, despite the explicit protection, because 

the calculation of (1./zero) gets hoisted out of the loop by the optimizer, so that 

it is only evaluated once, but the branch implied by “?” remains in the loop. The 

compiler assumes that this is safe, because divide-by-zero exceptions are 

masked in the default FPU environment. If the default environment is modified, 

as here by the call to feenableexcept(), the compiler should be informed, either 

by compiling with the option /fp:strict (-fp-model strict),  

or by use of the pragma 

#pragma STDC FENV_ACCESS ON        (C/C++ only).   

 

The optimization leading to the premature exception may also be disabled 

more directly with the option /Qfp-speculation:safe (-fp-speculation safe). This 

avoids some of the other consequences of /fp:strict (-fp-model strict), such as 

suppression of fused multiply-add instructions and non- vectorization of loops 

containing reductions or math functions.  The following example occurs 

frequently: 

double  *a, *b; 

     for( int i = 0; i < 100; i++ )   

           if (a[i] != 0.)  b[i] = b[i] / a[i] 

 

At default optimization, the compiler will vectorize this loop using Intel® SSE 

instructions. To do this, it uses packed SIMD instructions to speculatively 

evaluate b[i]/a[i] for all values of i, but then stores the result back to b[i] only 

for those values of i for which the mask is true. This is safe, because the divide-

by-zero exception is masked in the default FPU environment. If it is explicitly 

                                                 
Conditional transform,  e.g.     if (c) x = y; else x = z;  x = (c) ? y : z; 
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unmasked, e.g. by a call to feenableexcept() or by a command line switch such 

as /Qfp-trap:common (-fp-trap =common), the exception will be trapped and 

the program will terminate. This can be avoided by compiling with /Qfp-

speculation:safe (-fp-speculation safe), which will disable vectorization where 

there is a risk that speculation might lead to an exception.  Note that more 

recent instruction sets, such as Intel® Advanced Vector Extensions 512       

(Intel® AVX-512), include SIMD instructions that are masked in hardware. These 

may allow some loops similar to the above to be vectorized without the need 

for speculation. 

Precise Floating-Point Exceptions 

 

By default, (precise exceptions disabled), code may be reordered by the 

compiler during optimization, and so floating-point exceptions might not occur 

at the same time and place as they would if the code were executed exactly as 

written in the source. This effect is particularly important for x87 arithmetic 

where exceptions are not signaled as promptly as for Intel SSE or Intel AVX. 

 

Precise FP exceptions may be enabled by one of: 

 /fp:strict     (-fp-model strict) 

 /fp:except  (-fp-model except) 

 #pragma float_control(except, on)      (C and C++ only) 

When enabled, the compiler must account for the possibility that any floating-

point operation might throw an exception. Optimizations such as speculation of 

FP operations are disabled, as these might result in exceptions coming from a 

branch that would not otherwise be executed. This may prevent the 

vectorization of certain loops containing “if” statements, for example. The 

compiler inserts fwait after other x87 instructions, to ensure that any FP 

exception is synchronized with the instruction causing it. Precise FP exceptions 

may only be enabled in value-safe mode, i.e. with /fp:precise (-fp-model 

precise) or #pragma float_control(precise, on). Value-safety is already implied 

by /fp:strict (-fp-model strict). 

 

Note that enabling precise FP exceptions does not unmask FP exceptions. That 

must be done separately, e.g. with a function call, or (for Fortran) with the 

command line switch /fpe:0 (-fpe0) or /fpe-all:0 (-fpe-all0), or (for C or C++) with 

a command line switch such as /Qfp-trap:common (-fp-trap=common) or          

/Qfp-trap-all:common (-fp-trap-all=common). 

Floating-Point Contractions 
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This refers primarily to the generation of fused multiply-add (FMA) instructions, 

such as found in the Intel® AVX2 and Intel® AVX-512 instruction sets. FMA 

generation is enabled by default. The compiler may generate a single FMA 

instruction for a combined multiply and add operation,   

          e.g.   a = b*c + d.   

This leads to faster, slightly more accurate calculations, but results may differ in 

the last bit from separate multiply and add instructions, if all terms are positive,  

or by much more, if there is a cancellation. 

 

Floating-point contractions are enabled by default at optimization levels /O1   

(-O1) and above when targeting processors that support the FMA instructions, 

for example when compiling with switches such as /QxCORE-AVX2 (-xcore-

avx2). They are a common source of differences in floating-point results 

compared to older processors. Generation of FMA instructions may be disabled 

at the source file or function level by one of the following: 

 /fp:strict  (-fp-model strict) 

 #pragma fp_contract(off)                  (C/C++) 

 !DIR$ NOFMA                                       (Fortran)       

 /Qfma-   (-no-fma)         (this overrides the /fp or -fp-model setting) 

 

When disabled, the compiler must generate separate multiply and add 

instructions, with rounding of the intermediate result. Note that generation of 

FMA instructions is not disabled by /fp:precise (-fp-model precise).  

 

The Intel C/C++ compiler supports SIMD intrinsics for FMA generation, such as 

_mm256_fmadd_pd() etc., for processors that support FMA instructions. 

However, intrinsics may still be subject to further compiler optimization.  

Writing an addition and a multiplication as separate assignments on 

consecutive source lines does not prevent FMA instructions from being 

generated. If needed for debugging, a “memory fence” intrinsic may be used to 

prevent FMA generation by forcing an intermediate result to be stored to 

memory, for example: 

 

 t = a*b; 

 _mm_mfence(); 

 result = t + c; 

 

The fma() and fmaf() intrinsics from math.h should always give a result with a 

single rounding, even on processors with no FMA instruction, though at some 

cost in performance. 
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FMA instructions may sometimes break the symmetry of an expression. 

Consider: 

c = a;    d = -b; 

result = a*b + c*d;        

This will normally result in zero in the absence of FMA instructions. 

If FMAs are supported, the compiler may convert this to either 

 

          result = fma(c, d, (a*b))     or     result = fma(a, b, (c*d)) 

 

Because of the different roundings, these may give results that are non-zero 

and/or different from each other. 

 

Typical Performance Impact of /fp:precise /fp:source                                               

(-fp-model precise -fp-model source) 

 

The options /fp:precise /fp:source /Qftz  (-fp-model precise -fp-model source    

-ftz) are recommended to improve floating-point reproducibility while limiting 

performance impact, for typical applications where the preservation of 

denormalized numbers is not important.  The switch /fp:precise (-fp-model 

precise) disables certain optimizations, and therefore tends to reduce 

application performance. The performance impact may vary significantly from 

one application to another. It tends to be greatest for applications with many 

high level loop optimizations, since these often involve the reordering of 

floating-point operations. The impact is illustrated by performance estimates 

for the SPECCPU2017 speed Floating Point benchmark suite. With build 

options including -O3 -xcore-avx2 -ipo, the geomean of the performance 

reduction due to -fp-model precise -fp-model source was about 9%. The 

geomean of the performance reduction due to -fp-model consistent -fp-model 

source was about 12%. This was using the Intel Compiler 18.0 on an Intel Xeon® 

E5-2680 v4 system with dual, 14-core processors at 2.40 GHz, 251GB memory 

and 35MB cache running Linux*. The option -O3 is available for both Intel® and 

non-Intel microprocessors but it may result in more optimizations for Intel 

microprocessors than for non-Intel microprocessors. The option -xcore-avx2 is 

available only for Intel microprocessors. 

 

Additional Remarks 
 

The options /fp:precise /fp:source (-fp-model precise -fp-model source) should 

also be used for debug builds at /Od (-O0). In particular, the evaluation method 

may not default to “source” at /Od (-O0). 
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Although the floating-point model described in this paper is also applicable to 

Intel® MIC™ Architecture, there are some slight differences in implementation 

for the Intel® Xeon Phi™ coprocessor x100 family. These are described in the 

paper “Differences in floating-point arithmetic between Intel® Xeon® processors 

and the Intel® Xeon Phi™ coprocessor“, see the “Further Information” section 

below. There are no differences in the implementation of the floating-point 

model between the Intel® Xeon Phi™ x200 processor family and the Intel® Xeon® 

processor family. 

 

Math Library Functions 
 

As yet, no C, C++ or Fortran standard specifies the accuracy of mathematical 

functions1 such as log() or sin(), or how the results should be rounded. Different 

implementations of these functions may not have the same accuracy or be 

rounded in the same way.   

 

The Intel compiler may implement math functions in the following ways: 

 By standard calls to the optimized Intel math library libm (on Windows) 

or libimf (on Linux or OS X). These calls are mostly compatible with math 

functions in the Microsoft C runtime library libc (Windows) or the GNU 

library libm (Linux or OS X). 

 By generating inline code that can be optimized in later stages of the 

compilation  

 By architecture-specific calling sequences (e.g. by passing arguments via 

SIMD registers on IA-32 processors with support for Intel SSE2) 

 By vector calls to the short vector math library (libsvml) for loops that 

can be vectorized 

 By scalar calls to the short vector math library (libsvml) 

 

Calls may be limited to the first of these methods by the switch /fp:precise                 

(-fp-model precise) or by the more specific switches /Qfast-transcendentals-             

(-no-fast-transcendentals). This makes the calling sequence generated by the 

compiler consistent between different optimization levels or different compiler 

versions. However, it does not ensure consistent behavior of the library function 

itself. The value returned by a math library function may vary: 

 Between one compiler release and another, due to algorithmic and 

optimization improvements 

                                                 
1 With the exception of division and square root functions. 
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 Between one run-time processor and another. The math libraries contain 

function implementations that are optimized differently for different 

processors. In the Intel® Compiler version 17 and earlier, the code 

automatically detects what type of processor it is running on, and selects 

the implementation accordingly. For example, a function involving 

complex arithmetic might have implementations both with and without 

Intel SSE3 instructions. The implementation that used Intel SSE3 

instructions would be invoked only on a processor that was known to 

support these. In the version 18 compiler, for processor targets 

supporting at least Intel® AVX, the function implementation is 

determined at compile time by the processor targeting switch (/Qx, /Qax 

or /arch on Windows;   -x, -ax or -m on Linux) for calls resolved by the 

Short Vector Math Library (libsvml). It does not depend on the processor 

on which the application is executed. Processor targeting at run-time, as 

in the 17.0 and earlier compilers, can be enabled by the new option 

/Qimf-force-dynamic-target (-fimf-force-dynamic-target).  

 Math function calls potentially yield different results depending on 

whether they are resolved from the Short Vector Math Library libsvml or 

Intel’s optimized scalar libraries libm (Windows) or libimf (Linux). To 

ensure that equivalent calls always yield the same results, resolution can 

be restricted to libm (libimf) by /fp:precise (-fp-model precise) or /Qfast-

transcendentals- (-no-fast-transcendentals). This typically prevents 

vectorization of loops containing such calls, which may result in 

significant loss of performance. In the version 18 compiler, the switch 

/Qimf-use-svml (-fimf-use-svml) will try instead to resolve all math 

function calls only from libsvml, whenever SVML supports that particular 

function. This allows loops containing such calls to be vectorized while 

preserving identical results for scalar and vector calls, including calls 

from within peel or remainder loops. The Intel Compiler Developer Guide 

and Reference contains additional discussion of the side effects of this 

option on accuracy, errno generation and floating-point exceptions. 

 

The variations in the results of math functions discussed above are small. The 

expected accuracy is maintained both for different compiler releases and for 

implementations optimized for different processors and is governed by the         

/Qimf-max-error  or /Qimf-precision:high | medium | low   

(-fimf-max-error  or -fimf-precision=high | medium | low)  switches. 

 

There is no direct way to enforce bit-for-bit consistency between math libraries 

coming from different compiler releases. It may sometimes be possible to use 
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the runtime library from the higher compiler version in conjunction with both 

compilers when checking for consistency of compiler generated code. 

 

The switch /Qimf-arch-consistency:true (-fimf-arch-consistency=true) may be 

used to ensure bit-wise consistency between results returned by math library 

functions on different processor types of the same architecture, including 

between results on Intel processors and on compatible, non-Intel processors. 

This switch does not ensure bit-wise consistency between different 

architectures, such as between IA-32 and Intel 64. This switch may result in 

reduced performance, since it results in calls to less optimized functions that 

can execute on a wide range of processors.  

 

Because the version 18 compiler defaults to compile-time targeting of SVML 

math functions for Intel AVX and higher instruction sets, (see above), another 

approach becomes possible. The options /Qxcore-avx2 /Qimf-use-svml  

(-xcore-avx2 -fimf-use-svml) would give consistent math function results on 

different, Intel processors supporting at least Intel AVX2. This might result in 

better performance than /Qimf-arch-consistency:true (-fimf-arch-

consistency=true), since it would allow the use of more optimized math 

functions, for example making use of FMA instructions. 

 

Adoption of a formal standard with specified rounding for the results of math 

functions would encourage further improvements in floating-point consistency, 

including between different architectures, but would likely come at an 

additional cost in performance. 

 

The Intel compiler contains additional options to control the accuracy of results 

returned by math functions, such as /Qimf-precision (-fimf-precision) and 

/Qimf-max-error (-fimf-max-error), that may have an indirect impact on 

reproducibility. For more details of these options, see the Intel Compiler User 

and Reference Guides.  

 

Vectorization of loops containing math functions such as log() or sin() is 

normally disabled by /fp:precise (-fp-model precise), since vectorization would 

result in a function call to a different math library, libsvml, that returns different, 

slightly less accurate results than the default optimized Intel math library (libm 

or libimf, see above). This could also lead to differences in results between 

vectorized and non-vectorized loops, and consequently to differences between 

different optimization levels. 

The version 18 compiler implements a new option, /Qimf-use-svml (Windows) 

or -fimf-use-svml (Linux or OS X). This causes the Short Vector Math Library 
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(libsvml) to be used for all math functions, including for scalar calls that would 

otherwise have been resolved from the default Intel math library libm or libimf. 

This has the advantage that math function calls yield the same result, whether 

or not they are part of a vectorized loop. Consequently, vectorization of loops 

containing math functions is not disabled when compiling with /fp:precise 

/Qimf-use-svml (-fp-model precise -fimf-use-svml). The disadvantage is that 

the accuracy of scalar math function calls of better than 1 ulp, corresponding to 

the option /Qimf-precision:high (-fimf-precision=high),  is very slightly worse 

than if they were resolved from the default optimized Intel math library libm or 

libimf. 

The Short Vector Math Library is optimized for throughput, unlike libm and 

libimf which are optimized for latency. libsvml only supports the default  

rounding mode of round-to-nearest even, does not set error codes in the 

integer global variable errno and may sometimes raise exceptions that would 

not be seen with libm or libimf. For some functions, this may result in slightly 

better performance for scalar calls than for the default library; for other 

functions, performance may be worse. 

 

The switch /Qimf-use-svml (-fimf-use-svml) introduced in the version 18.0 

compiler is designed to be value-safe and should therefore be preferred to 

/Qfast-transcendentals (-fast-transcendentals) for re-enabling vectorization of 

transcendental math functions in the presence of /fp:precise (-fp-model 

precise). 

 

/fp:precise (-fp-model precise) also implies the switches /Qprec-sqrt (-prec-

sqrt) and /Qprec-div (-prec-div) that ensure the generation of consistent, 

correctly rounded results for square roots and for division. In some cases, this 

may disable vectorization of loops containing division or square root functions. 

The switches /Qprec-sqrt- (-no-prec-sqrt) and /Qprec-div- (-no-prec-div) may 

be used to re-enable vectorization. The accuracy of the generated code 

sequences may be also be controlled using the switch /Qimf-precision (-fimf-

precision). 

 

Many math library functions are more highly optimized for Intel 

microprocessors than for other microprocessors. While the math libraries in the 

Intel® Compiler offer optimizations for both Intel and compatible, non-Intel 

microprocessors, depending on the options you select, your code and other 

factors, you likely will get extra performance on Intel microprocessors. 



 

Copyright © 2018, Intel Corporation. All rights reserved. 

*Other brands and names may be claimed as the property of others 

 

Bottom Line 
 

Compiler options let you control the tradeoffs between accuracy, 

reproducibility and performance.  Use /fp:precise /fp:source (Windows) or -fp-

model precise -fp-model source (Linux or OS X) to improve the consistency and 

reproducibility of floating-point results while limiting the impact on 

performance1. If reproducibility between different processor types of the same 

architecture is important, use also  /Qimf-arch-consistency:true (Windows) or -

fimf-arch-consistency=true (Linux or OS X). For best reproducibility between 

different processors, at least one of which supports FMA instructions, use also 

/Qfma- (Windows) or -no-fma (Linux or OS X). 

 

In the version 17 and later compilers, best reproducibility may be obtained with 

the single switch /fp:consistent (Windows) or -fp-model consistent (Linux or OS 

X), which sets all of the above options. 

 

With the version 18 compiler, for applications with vectorizable loops 

containing math functions, it may be possible to improve performance whilst 

maintaining best reproducibility by adding /Qimf-use-svml (-fimf-use-svml). 

Further Information 

 

• Microsoft Visual C++* Floating-Point Optimization 

http://msdn2.microsoft.com/en-us/library/aa289157(vs.71).aspx 

• Intel® MKL Conditional Numerical Reproducibility: 

https://software.intel.com/en-us/articles/introduction-to-the-

conditional-numerical-reproducibility-cnr  

• Differences in Floating-Point Arithmetic Between Intel® Xeon® Processors 

and the Intel® Xeon Phi™ Coprocessor: 

https://software.intel.com/en-us/articles/differences-in-floating-point-

arithmetic-between-intel-xeon-processors-and-the-intel-xeon 

• The Intel® C++ and Fortran Compiler User and Reference Guides, 

      “Floating-Point Operations” section. 

• Goldberg, David: "What Every Computer Scientist Should Know About 

Floating-Point Arithmetic“ Computing Surveys, March 1991, pg. 203 

 

  

                                                 
1  /fp:source implies also /fp:precise 

http://msdn2.microsoft.com/en-us/library/aa289157(vs.71).aspx
https://software.intel.com/en-us/articles/introduction-to-the-conditional-numerical-reproducibility-cnr
https://software.intel.com/en-us/articles/introduction-to-the-conditional-numerical-reproducibility-cnr
https://software.intel.com/en-us/articles/differences-in-floating-point-arithmetic-between-intel-xeon-processors-and-the-intel-xeon
https://software.intel.com/en-us/articles/differences-in-floating-point-arithmetic-between-intel-xeon-processors-and-the-intel-xeon
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Optimization Notice 

Intel’s compilers may or may not optimize to the same degree for non-Intel 

microprocessors for optimizations that are not unique to Intel microprocessors. These 

optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. 

Intel does not guarantee the availability, functionality, or effectiveness of any 

optimization on microprocessors not manufactured by Intel. Microprocessor-dependent 

optimizations in this product are intended for use with Intel microprocessors. Certain 

optimizations not specific to Intel microarchitecture are reserved for Intel 

microprocessors. Please refer to the applicable product User and Reference Guides for 

more information regarding the specific instruction sets covered by this notice. 

 

Notice revision #20110804 
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Appendix 
 

 

Quick summary of main floating-point switches: 

 

Primary Switch Description 

/fp:keyword 

-fp-model keyword 

fast[=1|2], precise, except, strict, consistent, source 

 [ double, extended  -  C/C++ only] 

Controls floating-point semantics 

Other Switches  

/Qftz[-]             -[no-]ftz Flushes denormal results to zero 

/Qimf-use-svml 

-fimf-use-svml 

Use the Short Vector Math Library to resolve all 

(including scalar) calls to math library functions 

/Qprec-div[-]  -[no-]prec-div Improves precision of floating-point divides 

/Qprec-sqrt[-]   

-[no-]prec-sqrt 

Improves precision of square root calculations 

/Qfp-speculation keyword 

-fp-speculation  keyword 

fast, safe, strict, off 

floating-point speculation control 

/fpe:0               -fpe0 Unmask floating-point exceptions  (Fortran only) 

and disable generation of denormalized numbers 

/Qfp-trap:common 

-fp-trap=common 

Unmask common floating-point exceptions  

(C/C++ only) 

/Qimf-arch-consistency:true 

-fimf-arch-consistency=true 

Math library functions produce consistent results 

on different processor types of the same 

architecture 

/Qfma[-]     -[no-]fma Enable[Disable] use of fused multiply-add  (FMA) 

instructions 

/Qopt-dynamic-align[-]                  

-q[no-]opt-dynamic-align 

Enable[Disable] dynamic data alignment 

optimizations, that could possibly cause slight run-

to-run variations in floating-point results 

/Qprotect-parens[-] 

-f[no-]protect-parens 

[Don’t] Require the compiler to respect paren-

theses for the order of evaluation of expressions. 

/Qimf-precision:name 

-fimf-precision=name 

high, medium, low 

Controls accuracy of math library functions 

/Qimf-force-dynamic-target 

-fimf-force-dynamic-target 

Enables run-time dispatch of math functions. Code 

path depends on processor on which executed. 

/Qprec             -mp1 More consistent comparisons & transcendentals 

/Qfast-transcendentals[-]       

-[no-]fast-transcendentals 

Enable[Disable] optimization of math functions 

that might not be value-safe 
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/Qsimd-honor-fp-model[-] 

-q[no-]simd-honor-fp-

model 

Tells the compiler to obey the selected floating-

point model when vectorizing SIMD loops. 

/Qsimd-serialize-fp-

reduction[-] 

-q[no-]simd-serialize-fp-

reduction 

Tells the compiler to serialize floating-point 

reductions when vectorizing SIMD loops. 

 


