

Copyright © 2018, Intel Corporation. All rights reserved.

*Other brands and names may be claimed as the property of others

Consistency of Floating-Point Results using the Intel® Compiler

or

Why doesn’t my application always give the same answer?

Dr. Martyn J. Corden

David Kreitzer

Software Services Group

Intel Corporation

Introduction

Binary floating-point [FP] representations of most real numbers are inexact and

there is an inherent uncertainty in the result of most calculations involving

floating-point numbers. Programmers of floating-point applications typically

have the following objectives:

 Accuracy

o Produce results that are “close” to the result of the exact

calculation

 Usually measured in fractional error, or sometimes “units in

the last place” (ulp).

 Reproducibility

o Produce consistent results:

 From one run to the next;

 From one set of build options to another;

 From one compiler to another

 From one processor or operating system to another

 Performance

o Produce an application that runs as fast as possible

These objectives usually conflict! However, good programming practices and

judicious use of compiler options allow you to control the tradeoffs.

For example, it is sometimes useful to have a degree of reproducibility that

goes beyond the inherent accuracy of a computation. Some software quality

assurance tests may require close, or even bit-for-bit, agreement between

results before and after software changes, even though the mathematical

uncertainty in the result of the computation may be considerably larger. The

Copyright © 2018, Intel Corporation. All rights reserved.

*Other brands and names may be claimed as the property of others

right compiler options can deliver consistent, closely reproducible results while

preserving good (though not optimal) performance.

Floating-Point Semantics

The Intel® Compiler implements a model for floating-point semantics based on

the one introduced by Microsoft. 1 A compiler switch (/fp: for Windows*, -fp-

model for Linux* or OS* X) lets you choose the floating-point semantics at a

coarse granularity. It lets you choose the compiler rules for:

 Value safety

 Floating-point expression evaluation

 Precise floating-point exceptions

 Floating-point contractions

 Floating-point unit (FPU) environment access

These map to the following arguments of the /fp: (-fp-model) switch2:

 precise allows value-safe optimizations only

 source specify the intermediate precision

double used for

extended floating-point expression evaluation

 except enables strict floating-point exception semantics

 strict enables access to the FPU environment

disables floating-point contractions

such as fused multiply-add (fma) instructions

implies “precise” and “except”

 consistent best reproducibility from one processor type or

set of build options to another (compiler version ≥17)

 fast [=1] allows value-unsafe optimizations

(default) compiler chooses precision for expression evaluation

 Floating-point exception semantics not enforced

 Access to the FPU environment not allowed

 Floating-point contractions are allowed

 fast=2 some additional approximations allowed

This switch supersedes a variety of switches that were implemented in older

Intel compilers, such as /Op and /flt-consistency (-mp and -flt-consistency).

1 Microsoft* Visual C++* Floating-Point Optimization

http://msdn2.microsoft.com/en-us/library/aa289157(vs.71).aspx

2 In general, the Windows form of a switch is given first, followed by the form for Linux and OS X

in parentheses.

Copyright © 2018, Intel Corporation. All rights reserved.

*Other brands and names may be claimed as the property of others

The recommendation for obtaining floating-point values that are compliant

with ANSI / IEEE standards for C++ and Fortran is:

/fp:precise /fp:source (Windows)

-fp-model precise -fp-model source (Linux or OS X)

For C and C++, the float_control pragma may be used to achieve the same

effect as the switches /fp:precise and /fp:fast (-fp-model precise and -fp-model

fast):

#pragma float_control (precise, on)

#pragma float_control (precise, off)

 or

#pragma float_control (push)

#pragma float_control (precise, on)

#pragma float_control (pop)

Although such a pragma may be placed in front of an individual block of code, it

applies to the entire containing function.

Value Safety

In SAFE mode, corresponding to the precise, strict or consistent arguments for

/fp: (-fp-model), the compiler may not make any transformations that could

affect the result. For example, the following is prohibited:

(x + y) + z  x + (y + z)

since general reassociation is not value safe. When the order of floating-point

operations is changed, (reassociation), different intermediate results get

rounded to the nearest floating-point representation, and this can lead to slight

variations in the final result.

UNSAFE (fast) mode is the default. The variations implied by “unsafe” are

usually very tiny; however, their impact on the final result of a longer calculation

may be amplified if the algorithm involves cancellations (small differences of

large numbers), as in the first example below. In such circumstances, the

variations in the final result reflect the real uncertainty in the result due to the

finite precision of the calculation.

Copyright © 2018, Intel Corporation. All rights reserved.

*Other brands and names may be claimed as the property of others

VERY UNSAFE (fast=2) mode enables riskier transformations. For example, this

might enable expansions that could overflow at the extreme limit of the allowed

exponent range.

More Examples that are disabled by /fp:precise (-fp-model precise)

 reassociation e.g. (a + b) + c  a + (b + c)

 vectorization of reductions e.g. for(i=0; i<n; i++) sum += x[i];

(special case of reassociation)

 zero folding e.g. X+0  X, X*0  0

 multiply by reciprocal e.g. A/B  A*(1/B)

 approximate square root

 fast transcendental functions e.g. sin(a) or exp(a)

(includes vectorization of loops containing transcendental functions)

 abrupt underflow (flush-to-zero)

 drop precision of RHS to that of LHS

 etc.

The zero folding examples above might not give the correct IEEE result for

certain special values of X, such as infinity or NaN (Not a Number).

Note, however, that fused-multiply-add contractions1 are still permitted unless

they are explicitly disabled or /fp:strict (-fp-model strict) is specified. See the

“Floating-Point Contractions” section.

More about Reassociation

Addition and multiplication are associative:

 a + b + c = (a+b) + c = a + (b+c)

 (a*b) * c = a * (b*c)

These transformed expressions are equivalent mathematically, but they are not

equivalent in finite precision arithmetic. The same is true for other algebraic

identities such as

a*b + a*c = a * (b+c)

Examples of higher level optimizing transformations that involve reassociation

are loop interchange and the vectorization of reduction operations by the use

of partial sums (see the section on Reductions below). The corresponding

1 Certain Intel® microarchitectures support multiplication followed by an addition in a single

instruction with a single rounding operation.

Copyright © 2018, Intel Corporation. All rights reserved.

*Other brands and names may be claimed as the property of others

compiler options are available for both Intel® and non-Intel microprocessors

but they may result in more optimizations for Intel microprocessors than for

non-Intel microprocessors.

The ANSI C and C++ language standards do not permit reassociation by the

compiler; even in the absence of parentheses, floating-point expressions are to

be evaluated from left to right. Reassociation by the Intel compiler may be

disabled in its entirety by the switch /fp:precise (-fp-model precise). This also

disables other value-unsafe optimizations, and may have a significant impact on

performance at higher optimization levels. Under the default setting of /fp:fast

(-fp-model fast), the Intel compiler may reassociate expressions, even in the

presence of parentheses.

The ANSI Fortran standard is less restrictive than the C standard: it requires the

compiler to respect the order of evaluation specified by parentheses, but

otherwise allows the compiler to reorder expressions as it sees fit. The Intel

Fortran compiler has therefore implemented a corresponding switch,

/assume:protect_parens (-assume protect_parens), that results in standard-

conforming behavior for reassociation, with considerably less impact on

performance than /fp:precise (-fp-model precise). This switch does not affect

any value-unsafe optimizations other than reassociation. In the version 18

compiler, /Qprotect-parens (-fprotect-parens) is a synonym for

/assume:protect_parens (-assume protect_parens).

Since the version 16 compiler, a similar option is available for the Intel® C/C++

compiler, /Qprotect-parens (-fprotect-parens). This requires the compiler to

respect parentheses when determining the order of evaluation of expressions.

The compiler may still reorder expressions or subexpressions not explicitly

protected by parentheses, if allowed by the /fp (-fp-model) setting.

Example from a Fortran application

The application gave different results when built with optimization compared to

without optimization, and the residuals increased by an order of magnitude.

The root cause was traced to source expressions of the form:

 A(I) + B + TOL

where TOL is very small and positive and A(I) and B may be large. With

optimization, the compiler prefers to evaluate this as

 A(I) + (B + TOL)

because the constant expression (B+TOL) can be evaluated a single time before

entry to the loop over I. However, the intent of the code was to ensure that the

expression remained positive definite in the case that A(I)  -B. When TOL is

Copyright © 2018, Intel Corporation. All rights reserved.

*Other brands and names may be claimed as the property of others

added directly to B, its contribution is essentially rounded away due to the finite

precision, and it no longer fulfills its role of keeping the expression positive-

definite when A(I) and B cancel.

The simplest solution was to recompile the affected source files with the switch

-fp-model precise, to disable reassociation and evaluate expressions in the

order in which they are written. A more targeted solution, with less potential

impact on performance, was to change the expression in the source code to

 (A(I) + B) + TOL

to more clearly express the intent of the programmer, and to compile with the

option -assume protect_parens.

Example from WRF1 (Weather Research and Forecasting model)

Slightly different results were observed when the same application was run on

different numbers of processors under MPI (Message Passing Interface).

This was because loop bounds, and hence data alignment, changed when the

problem decomposition changed to match the different number of MPI

processes. This in turn changed which loop iterations were in the vectorized

loop kernel and which formed part of the loop prologue (“peel loop”) or

epilogue (“remainder loop)”. Different generated code in the prologue or

epilogue compared to the vectorized kernel can give slightly different results

for the same data.

The solution was to compile with -fp-model precise. This causes the compiler

to generate consistent code and math library calls for the peel loop, remainder

loop and kernel. In some cases, this may prevent the loop from being

vectorized.

Reductions

Parallel implementations of reduction loops (such as dot products) make use of

partial sums, which implies reassociation. They are therefore not value-safe.

The following is a schematic example of serial and parallel implementations of

a floating-point reduction loop:

1 See http://www.wrf-model.org

Copyright © 2018, Intel Corporation. All rights reserved.

*Other brands and names may be claimed as the property of others

float Sum(const float A[], int n) float Sum(const float A[], int n)

{ {

 int i, n4 = n-n%4;

 float sum=0; float sum=0,sum1=0,sum2=0,sum3=0;

 for (int i=0; i<n; i++) for (i=0; i<n4; i+=4) {

 sum = sum + A[i]; sum = sum + A[i];

 sum1 = sum1 + A[i+1];

 sum2 = sum2 + A[i+2];

 sum3 = sum3 + A[i+3];

 }

 sum = sum + sum1 + sum2 + sum3;

 for (i=n4; i<n; i++) sum = sum + A[i];

 return sum; return sum;

} }

In the second implementation, the four partial sums may be computed in

parallel, either by using SIMD instructions (eg as generated by the compiler’s

automatic vectorizer), or by a separate thread for each sum (e.g. as generated

by automatic parallelization). This can result in a large increase in performance;

however, the changed order in which the elements of A are added to give the

final sum results in different rounding errors, and thus may yield a slightly

different final result.

Because of this, the vectorization or automatic parallelization of reductions is

disabled by /fp:precise (-fp-model precise), except where vectorization is

explicitly mandated by an OpenMP* SIMD pragma or directive with a

REDUCTION clause (see section on vectorization using OpenMP SIMD pragmas

or directives).

Parallel reductions in OpenMP are mandated by the OpenMP directive, and

cannot be disabled by /fp:precise (-fp-model precise). Generally speaking, they

are value-unsafe, and remain the responsibility of the programmer. Likewise,

MPI* reductions involving calls to an MPI library are beyond the control of the

compiler, and might not be value-safe. Changes in the number of threads, in the

scheduling method or in the number of MPI processes are likely to cause small

variations in results. In some cases, the order of operations may change

between consecutive executions of the same binary.

The OpenMP standard does not specify the order in which partial sums should

be combined, which may therefore be decided at runtime and vary from run to

run. Versions 13 and later of the Intel Compiler provide a method to ensure

consistent, reproducible results from OpenMP reductions for repeated

Copyright © 2018, Intel Corporation. All rights reserved.

*Other brands and names may be claimed as the property of others

executions of the same binary, for a fixed number of threads and static

scheduling only. The following environment variable should be set:

 KMP_DETERMINISTIC_REDUCTION=yes (or =on or =true or =1)

This also tends to increase the accuracy of large reductions. For large numbers

of threads, KMP_DETERMINISTIC_REDUCTION=yes is the default; for small

numbers of threads, it is not, as there may be a slight impact on performance.

The Intel® Math Kernel Library, (Intel® MKL), and Intel® Threading Building

Blocks, (Intel® TBB), in Intel® Parallel Studio XE 2013 and later contain similar

functionality to provide reproducible results for repeated parallel execution of

the same binary. For more detail, please consult the documentation for

Conditional Numerical Reproducibility (Intel MKL) and

parallel_deterministic_reduce() (Intel TBB).

Compiler options that enable vectorization and OpenMP are available for both

Intel® and non-Intel microprocessors but they may result in more optimizations

for Intel microprocessors than for non-Intel microprocessors.

Second Example from WRF

Slightly different results were observed when re-running the same (non-

threaded) binary on the same data on the same processor.

This was caused by variations in the starting address and alignment of the

global stack, resulting from events external to the program. The resulting

change in local stack alignment led to changes in which loop iterations were

assigned to the loop prologue or epilogue, and which to the vectorized loop

kernel. This in turn led to changes in the order of operations for vectorized

reductions (i.e., reassociation).

The solution was to build with -fp-model precise, which disabled the

vectorization of reductions.

Starting with version 11 of the Intel compiler, the starting address of the global

stack is aligned to a cache line boundary. This avoids the run-to-run variations

described above, even when building with /fp:fast (-fp-model fast), unless run-

to-run variations in stack alignment occur due to events internal to the

application. (This might occur if a variable length string is allocated on the stack

Copyright © 2018, Intel Corporation. All rights reserved.

*Other brands and names may be claimed as the property of others

to contain the current date and time, for example). Dynamic variations in heap

alignment can lead to variations in floating-point results in a similar manner.

Such variations in alignment typically arise from memory allocations that

depend on the external environment. They can be prevented from causing

variations in floating-point results by building with /fp:precise (-fp-model

precise), or by explicit alignment of data arrays. Starting from the version 15

compiler, such run-to-run variations can also be prevented by compiling with

/Qopt-dynamic-align- (-qno-opt-dynamic-align), which may have much less

impact on performance than /fp:precise (-fp-model precise).

Vectorization using OpenMP* SIMD Pragmas or Directives

In some circumstances, OpenMP pragmas or directives that require

vectorization of a loop can be in conflict with requirements of the Floating-

point model specified by a /fp (-fp-model) switch or by /Qfp-speculation:safe

(-fp-speculation=safe). By default, when OpenMP SIMD pragmas are enabled,

they take precedence and in some cases lead to floating-point results that

differ from results obtained without the pragma.

To avoid this, certain OpenMP SIMD constructs must be avoided.

Floating-Point Reductions

 As an example, take a variant of the simple reduction

loop considered previously.

 for (int i=0; i<n; i++) sum = sum + A[i]*A[i]*A[i];

When compiled with -fp-model precise or -fp-model consistent, the loop is not

auto-vectorized with the following message:

remark #15331: loop was not vectorized: precise FP model implied by the

command line or a directive prevents vectorization.

However, if we place an OpenMP SIMD pragma before the loop,

 #pragma omp simd reduction(+:sum)

We then see

remark #15301: OpenMP SIMD LOOP WAS VECTORIZED

As discussed in the section on “Reductions”, the vectorization of the reduction

loop changes the order of operations and yields results that may differ from

lower optimization levels such as -O1, at which the loop would not be

Copyright © 2018, Intel Corporation. All rights reserved.

*Other brands and names may be claimed as the property of others

vectorized. The SIMD pragma can be prevented from overriding the floating-

point model and consistent results can be preserved using the compiler option

/Qsimd-honor-fp-model (-qsimd-honor-fp-model). The loop is no longer

vectorized with the message:

 remark #15331: simd loop was not vectorized: precise FP model implied by

the command line or a directive prevents vectorization. Consider using fast FP

model

 remark #15552: loop was not vectorized with "simd"

For loops that contain a lot of computation in addition to the reduction, it may

be worthwhile to compute the reduction serially, so that results are

reproducible, while vectorizing the remainder of the loop to improve

performance. This can be achieved by adding the compiler option /Qsimd-

serialize-fp-reduction (-qsimd-serialize-fp-reduction), which allows statements

other than the reduction statement to be vectorized.

For reproducible results with -qsimd-serialize-fp-reduction, there must be only

a single lexical statement in the loop that updates the reduction variable; it

must be executed only once per loop iteration; and it should contain no

function calls. For better performance, it is recommended to minimize the

amount of computation in the reduction statement itself by keeping it as simple

as possible and using temporary variables if necessary.

E.g., if the example above is rewritten as

double temp = A[i]*A[i]*A[i];

sum += temp;

then the multiplications are carried out in SIMD mode but the additions are

performed serially. The remarks in the optimization report are:

 remark #15531: Block of statements was serialized due to user request

 remark #15301: OpenMP SIMD LOOP WAS VECTORIZED

Early Exit Clause

 A loop with multiple exits, such as a search loop, can often be

vectorized using a pragma or directive such as:

 #pragma omp simd early_exit

However, the compiler may speculatively execute code that comes lexically

before a break statement. This could have consequences such as exceptions

that would not occur in the absence of speculation. If this could be a problem,

avoid using the early_exit clause.

Copyright © 2018, Intel Corporation. All rights reserved.

*Other brands and names may be claimed as the property of others

 Speculation occurring in loops that are auto-vectorized without an

OpenMP SIMD pragma can be disabled by the compiler switch -fp-

speculation=safe (see the section on the Floating-Point Environment). However,

this switch may not disable speculation resulting from an OpenMP early_exit

pragma.

Ordered Clause

 Multiple “ordered” constructs within one OpenMP SIMD loop

could cause operations to occur in a different order to the one that would

obtain for a loop without SIMD pragmas. To ensure that results remain

reproducible, do not use more than one ordered construct (e.g., #pragma omp

ordered simd) within a single loop.

Overlap Modifiers

 The overlap modifier enables generation of more efficient

code for architectures that natively support conflict detection instructions such

as Intel® AVX-512CD. This optimization may cause variations in the order of

operations and hence variations in floating-point results. To maintain

reproducibility of results, do not use overlap modifiers, e.g.

 #pragma omp ordered simd overlap(b[i])

in conjunction with floating-point data.

Private and Lastprivate Clauses

 Private and lastprivate clauses define objects

whose values live for one iteration only. The OpenMP standard says that an

uninitialized object is created for each SIMD lane. If such an object is accessed

before it has been initialized, results are unspecified and non-deterministic.

Also, the number and order of constructor or destructor calls is unspecified.

 To maintain reproducibility of results, initialize private or lastprivate objects

inside the loop and do not rely on the number or order of constructor or

destructor calls for these.

Abrupt Underflow or Flush-To-Zero (FTZ)

Denormalized numbers1 (denormals) extend slightly the allowed range of

floating-point exponents, but computations involving them take substantially

longer than those that involve only normal numbers. By default, when the result

of a floating-point calculation would have been a denormal, it is instead set to

1 A short discussion of denormal numbers may be found in the Floating-Point Operation

section of the Intel Compiler User and Reference Guides.

Copyright © 2018, Intel Corporation. All rights reserved.

*Other brands and names may be claimed as the property of others

zero in hardware. When /fp:precise (-fp-model precise) is specified, denormal

results are preserved for value safety.

The /fp: (-fp-model) settings may be overridden for the entire program by

compiling the main function or routine with the switch /Qftz (-ftz) or /Qftz-

(-no-ftz), which sets or unsets the hardware flush-to-zero mode in the floating-

point control register1. The default setting for /fp:fast (-fp-model fast) is /Qftz

(-ftz) for optimization levels of -O1 and above.

There is no flush-to-zero hardware for x87 arithmetic, for which the /Qftz (-ftz)

switch has no effect. x87 arithmetic instructions are usually generated only in

special circumstances, such as when compiling for older IA-32 processors

without Intel SSE2 support using the option /arch:ia32 (-mia32).

Floating-Point Expression Evaluation

Example: a = (b + c) + d

There are four possibilities for rounding of the intermediate result (b+c),

corresponding to values of FLT_EVAL_METHOD in C99:

Evaluation Method /fp: (-fp-

model)
Language FLT_EVAL_METHOD

Indeterminate fast C/C++/Fortran -1

Use source precision source C/C++/Fortran 0

Use double precision double C/C++ 1

Use long double

precision
extended C/C++ 2

If /fp:precise (-fp-model precise) is specified but the evaluation method is not,

the evaluation method defaults to source precision on Intel64 architecture. For

C/C++ on IA-32 architecture, the evaluation method defaults to double on

Windows and to extended on Linux2. For Fortran, source is the only supported

evaluation method under /fp:precise (-fp-model precise). If an evaluation

method of source, double or extended is specified but no value safety option is

given, the latter defaults to /fp:precise (-fp-model precise).

1 The switch /Qftz (-ftz) allows denormals results to be flushed to zero. It does not guarantee

that they will always be flushed to zero. It also sets denormal inputs to zero (DAZ).
2 The switch -mia32 is not supported on Mac OS* X, where all Intel processors support

instructions up to Intel SSE3. The evaluation method therefore defaults to source precision with

-fp-model precise.

Copyright © 2018, Intel Corporation. All rights reserved.

*Other brands and names may be claimed as the property of others

The method of expression evaluation can impact performance, accuracy,

reproducibility and portability! In particular, selection of an evaluation method

that implies repeated conversions between representations of different

precision can significantly impact performance.

The Floating-Point Unit (FPU) Environment

The floating-point environment1 consists of the floating-point control word

settings and status flags. The control word settings govern:

 the FP rounding mode (nearest, toward +∞, toward -∞, toward 0)

 FP exception masks for inexact, underflow, overflow, divide by zero,

denormals and invalid exceptions

 Flush-to-zero (FTZ), Denormals-are-zero (DAZ)

 For x872 only: precision control (single, double, extended)

o Changing this may have unintended consequences!

There is a status flag corresponding to each exception mask.

Programmer access to the FPU environment is disallowed by default.

 the compiler assumes the default FPU environment:

o round-to-nearest

o all FP exceptions are masked

o Flush-to-zero (FTZ) and Denormals-as-zero (DAZ) are disabled

 the compiler assumes the program will not read FP status flags

If the user might explicitly change the default FPU environment, e.g. by a call to

the runtime library that modifies the FP control word, the compiler must be

informed by setting the FPU environment access mode. The access mode may

only be enabled in value-safe modes, by either

 /fp:strict (-fp-model strict) or

 #pragma STDC FENV_ACCESS ON (C/C++ only)

In this case, the compiler treats the FPU control settings as unknown. It will

preserve floating-point status flags and disable certain optimizations such as

the evaluation of constant expressions at compile time, speculation of floating-

point operations and others3. Changing the default floating-point environment

1 For more detail, see the Intel Compiler User and Reference Guides, under Floating-point

Operations/Understanding Floating-point Operations/Floating-point Environment.
2 There is a separate control word for x87 floating-point arithmetic. The x87 FP control word

should not normally be of concern unless the /arch:IA32 (-mia32) option for the support of

older processors is specified.
3 Other optimizations that are disabled:

Partial redundancy elimination

Common subexpression elimination

Dead code elimination

Copyright © 2018, Intel Corporation. All rights reserved.

*Other brands and names may be claimed as the property of others

without informing the compiler may lead to unpredictable results, e.g. for math

library functions if changes are made to the rounding mode.

Example of changing the FPU environment:

#include <fenv.h>

double x[20][20], zero = 0.;

 feenableexcept(FE_DIVBYZERO);

 for(int i = 0; i < 20; i++)

 for(int j = 0; j < 20; j++)

 x[i][j] = zero ? (1./zero) : zero;

 …..

A floating-point exception may occur, despite the explicit protection, because

the calculation of (1./zero) gets hoisted out of the loop by the optimizer, so that

it is only evaluated once, but the branch implied by “?” remains in the loop. The

compiler assumes that this is safe, because divide-by-zero exceptions are

masked in the default FPU environment. If the default environment is modified,

as here by the call to feenableexcept(), the compiler should be informed, either

by compiling with the option /fp:strict (-fp-model strict),

or by use of the pragma

#pragma STDC FENV_ACCESS ON (C/C++ only).

The optimization leading to the premature exception may also be disabled

more directly with the option /Qfp-speculation:safe (-fp-speculation safe). This

avoids some of the other consequences of /fp:strict (-fp-model strict), such as

suppression of fused multiply-add instructions and non- vectorization of loops

containing reductions or math functions. The following example occurs

frequently:

double *a, *b;

 for(int i = 0; i < 100; i++)

 if (a[i] != 0.) b[i] = b[i] / a[i]

At default optimization, the compiler will vectorize this loop using Intel® SSE

instructions. To do this, it uses packed SIMD instructions to speculatively

evaluate b[i]/a[i] for all values of i, but then stores the result back to b[i] only

for those values of i for which the mask is true. This is safe, because the divide-

by-zero exception is masked in the default FPU environment. If it is explicitly

Conditional transform, e.g. if (c) x = y; else x = z;  x = (c) ? y : z;

Copyright © 2018, Intel Corporation. All rights reserved.

*Other brands and names may be claimed as the property of others

unmasked, e.g. by a call to feenableexcept() or by a command line switch such

as /Qfp-trap:common (-fp-trap =common), the exception will be trapped and

the program will terminate. This can be avoided by compiling with /Qfp-

speculation:safe (-fp-speculation safe), which will disable vectorization where

there is a risk that speculation might lead to an exception. Note that more

recent instruction sets, such as Intel® Advanced Vector Extensions 512

(Intel® AVX-512), include SIMD instructions that are masked in hardware. These

may allow some loops similar to the above to be vectorized without the need

for speculation.

Precise Floating-Point Exceptions

By default, (precise exceptions disabled), code may be reordered by the

compiler during optimization, and so floating-point exceptions might not occur

at the same time and place as they would if the code were executed exactly as

written in the source. This effect is particularly important for x87 arithmetic

where exceptions are not signaled as promptly as for Intel SSE or Intel AVX.

Precise FP exceptions may be enabled by one of:

 /fp:strict (-fp-model strict)

 /fp:except (-fp-model except)

 #pragma float_control(except, on) (C and C++ only)

When enabled, the compiler must account for the possibility that any floating-

point operation might throw an exception. Optimizations such as speculation of

FP operations are disabled, as these might result in exceptions coming from a

branch that would not otherwise be executed. This may prevent the

vectorization of certain loops containing “if” statements, for example. The

compiler inserts fwait after other x87 instructions, to ensure that any FP

exception is synchronized with the instruction causing it. Precise FP exceptions

may only be enabled in value-safe mode, i.e. with /fp:precise (-fp-model

precise) or #pragma float_control(precise, on). Value-safety is already implied

by /fp:strict (-fp-model strict).

Note that enabling precise FP exceptions does not unmask FP exceptions. That

must be done separately, e.g. with a function call, or (for Fortran) with the

command line switch /fpe:0 (-fpe0) or /fpe-all:0 (-fpe-all0), or (for C or C++) with

a command line switch such as /Qfp-trap:common (-fp-trap=common) or

/Qfp-trap-all:common (-fp-trap-all=common).

Floating-Point Contractions

Copyright © 2018, Intel Corporation. All rights reserved.

*Other brands and names may be claimed as the property of others

This refers primarily to the generation of fused multiply-add (FMA) instructions,

such as found in the Intel® AVX2 and Intel® AVX-512 instruction sets. FMA

generation is enabled by default. The compiler may generate a single FMA

instruction for a combined multiply and add operation,

 e.g. a = b*c + d.

This leads to faster, slightly more accurate calculations, but results may differ in

the last bit from separate multiply and add instructions, if all terms are positive,

or by much more, if there is a cancellation.

Floating-point contractions are enabled by default at optimization levels /O1

(-O1) and above when targeting processors that support the FMA instructions,

for example when compiling with switches such as /QxCORE-AVX2 (-xcore-

avx2). They are a common source of differences in floating-point results

compared to older processors. Generation of FMA instructions may be disabled

at the source file or function level by one of the following:

 /fp:strict (-fp-model strict)

 #pragma fp_contract(off) (C/C++)

 !DIR$ NOFMA (Fortran)

 /Qfma- (-no-fma) (this overrides the /fp or -fp-model setting)

When disabled, the compiler must generate separate multiply and add

instructions, with rounding of the intermediate result. Note that generation of

FMA instructions is not disabled by /fp:precise (-fp-model precise).

The Intel C/C++ compiler supports SIMD intrinsics for FMA generation, such as

_mm256_fmadd_pd() etc., for processors that support FMA instructions.

However, intrinsics may still be subject to further compiler optimization.

Writing an addition and a multiplication as separate assignments on

consecutive source lines does not prevent FMA instructions from being

generated. If needed for debugging, a “memory fence” intrinsic may be used to

prevent FMA generation by forcing an intermediate result to be stored to

memory, for example:

 t = a*b;

 _mm_mfence();

 result = t + c;

The fma() and fmaf() intrinsics from math.h should always give a result with a

single rounding, even on processors with no FMA instruction, though at some

cost in performance.

Copyright © 2018, Intel Corporation. All rights reserved.

*Other brands and names may be claimed as the property of others

FMA instructions may sometimes break the symmetry of an expression.

Consider:

c = a; d = -b;

result = a*b + c*d;

This will normally result in zero in the absence of FMA instructions.

If FMAs are supported, the compiler may convert this to either

 result = fma(c, d, (a*b)) or result = fma(a, b, (c*d))

Because of the different roundings, these may give results that are non-zero

and/or different from each other.

Typical Performance Impact of /fp:precise /fp:source

(-fp-model precise -fp-model source)

The options /fp:precise /fp:source /Qftz (-fp-model precise -fp-model source

-ftz) are recommended to improve floating-point reproducibility while limiting

performance impact, for typical applications where the preservation of

denormalized numbers is not important. The switch /fp:precise (-fp-model

precise) disables certain optimizations, and therefore tends to reduce

application performance. The performance impact may vary significantly from

one application to another. It tends to be greatest for applications with many

high level loop optimizations, since these often involve the reordering of

floating-point operations. The impact is illustrated by performance estimates

for the SPECCPU2017 speed Floating Point benchmark suite. With build

options including -O3 -xcore-avx2 -ipo, the geomean of the performance

reduction due to -fp-model precise -fp-model source was about 9%. The

geomean of the performance reduction due to -fp-model consistent -fp-model

source was about 12%. This was using the Intel Compiler 18.0 on an Intel Xeon®

E5-2680 v4 system with dual, 14-core processors at 2.40 GHz, 251GB memory

and 35MB cache running Linux*. The option -O3 is available for both Intel® and

non-Intel microprocessors but it may result in more optimizations for Intel

microprocessors than for non-Intel microprocessors. The option -xcore-avx2 is

available only for Intel microprocessors.

Additional Remarks

The options /fp:precise /fp:source (-fp-model precise -fp-model source) should

also be used for debug builds at /Od (-O0). In particular, the evaluation method

may not default to “source” at /Od (-O0).

Copyright © 2018, Intel Corporation. All rights reserved.

*Other brands and names may be claimed as the property of others

Although the floating-point model described in this paper is also applicable to

Intel® MIC™ Architecture, there are some slight differences in implementation

for the Intel® Xeon Phi™ coprocessor x100 family. These are described in the

paper “Differences in floating-point arithmetic between Intel® Xeon® processors

and the Intel® Xeon Phi™ coprocessor“, see the “Further Information” section

below. There are no differences in the implementation of the floating-point

model between the Intel® Xeon Phi™ x200 processor family and the Intel® Xeon®

processor family.

Math Library Functions

As yet, no C, C++ or Fortran standard specifies the accuracy of mathematical

functions1 such as log() or sin(), or how the results should be rounded. Different

implementations of these functions may not have the same accuracy or be

rounded in the same way.

The Intel compiler may implement math functions in the following ways:

 By standard calls to the optimized Intel math library libm (on Windows)

or libimf (on Linux or OS X). These calls are mostly compatible with math

functions in the Microsoft C runtime library libc (Windows) or the GNU

library libm (Linux or OS X).

 By generating inline code that can be optimized in later stages of the

compilation

 By architecture-specific calling sequences (e.g. by passing arguments via

SIMD registers on IA-32 processors with support for Intel SSE2)

 By vector calls to the short vector math library (libsvml) for loops that

can be vectorized

 By scalar calls to the short vector math library (libsvml)

Calls may be limited to the first of these methods by the switch /fp:precise

(-fp-model precise) or by the more specific switches /Qfast-transcendentals-

(-no-fast-transcendentals). This makes the calling sequence generated by the

compiler consistent between different optimization levels or different compiler

versions. However, it does not ensure consistent behavior of the library function

itself. The value returned by a math library function may vary:

 Between one compiler release and another, due to algorithmic and

optimization improvements

1 With the exception of division and square root functions.

Copyright © 2018, Intel Corporation. All rights reserved.

*Other brands and names may be claimed as the property of others

 Between one run-time processor and another. The math libraries contain

function implementations that are optimized differently for different

processors. In the Intel® Compiler version 17 and earlier, the code

automatically detects what type of processor it is running on, and selects

the implementation accordingly. For example, a function involving

complex arithmetic might have implementations both with and without

Intel SSE3 instructions. The implementation that used Intel SSE3

instructions would be invoked only on a processor that was known to

support these. In the version 18 compiler, for processor targets

supporting at least Intel® AVX, the function implementation is

determined at compile time by the processor targeting switch (/Qx, /Qax

or /arch on Windows; -x, -ax or -m on Linux) for calls resolved by the

Short Vector Math Library (libsvml). It does not depend on the processor

on which the application is executed. Processor targeting at run-time, as

in the 17.0 and earlier compilers, can be enabled by the new option

/Qimf-force-dynamic-target (-fimf-force-dynamic-target).

 Math function calls potentially yield different results depending on

whether they are resolved from the Short Vector Math Library libsvml or

Intel’s optimized scalar libraries libm (Windows) or libimf (Linux). To

ensure that equivalent calls always yield the same results, resolution can

be restricted to libm (libimf) by /fp:precise (-fp-model precise) or /Qfast-

transcendentals- (-no-fast-transcendentals). This typically prevents

vectorization of loops containing such calls, which may result in

significant loss of performance. In the version 18 compiler, the switch

/Qimf-use-svml (-fimf-use-svml) will try instead to resolve all math

function calls only from libsvml, whenever SVML supports that particular

function. This allows loops containing such calls to be vectorized while

preserving identical results for scalar and vector calls, including calls

from within peel or remainder loops. The Intel Compiler Developer Guide

and Reference contains additional discussion of the side effects of this

option on accuracy, errno generation and floating-point exceptions.

The variations in the results of math functions discussed above are small. The

expected accuracy is maintained both for different compiler releases and for

implementations optimized for different processors and is governed by the

/Qimf-max-error or /Qimf-precision:high | medium | low

(-fimf-max-error or -fimf-precision=high | medium | low) switches.

There is no direct way to enforce bit-for-bit consistency between math libraries

coming from different compiler releases. It may sometimes be possible to use

Copyright © 2018, Intel Corporation. All rights reserved.

*Other brands and names may be claimed as the property of others

the runtime library from the higher compiler version in conjunction with both

compilers when checking for consistency of compiler generated code.

The switch /Qimf-arch-consistency:true (-fimf-arch-consistency=true) may be

used to ensure bit-wise consistency between results returned by math library

functions on different processor types of the same architecture, including

between results on Intel processors and on compatible, non-Intel processors.

This switch does not ensure bit-wise consistency between different

architectures, such as between IA-32 and Intel 64. This switch may result in

reduced performance, since it results in calls to less optimized functions that

can execute on a wide range of processors.

Because the version 18 compiler defaults to compile-time targeting of SVML

math functions for Intel AVX and higher instruction sets, (see above), another

approach becomes possible. The options /Qxcore-avx2 /Qimf-use-svml

(-xcore-avx2 -fimf-use-svml) would give consistent math function results on

different, Intel processors supporting at least Intel AVX2. This might result in

better performance than /Qimf-arch-consistency:true (-fimf-arch-

consistency=true), since it would allow the use of more optimized math

functions, for example making use of FMA instructions.

Adoption of a formal standard with specified rounding for the results of math

functions would encourage further improvements in floating-point consistency,

including between different architectures, but would likely come at an

additional cost in performance.

The Intel compiler contains additional options to control the accuracy of results

returned by math functions, such as /Qimf-precision (-fimf-precision) and

/Qimf-max-error (-fimf-max-error), that may have an indirect impact on

reproducibility. For more details of these options, see the Intel Compiler User

and Reference Guides.

Vectorization of loops containing math functions such as log() or sin() is

normally disabled by /fp:precise (-fp-model precise), since vectorization would

result in a function call to a different math library, libsvml, that returns different,

slightly less accurate results than the default optimized Intel math library (libm

or libimf, see above). This could also lead to differences in results between

vectorized and non-vectorized loops, and consequently to differences between

different optimization levels.

The version 18 compiler implements a new option, /Qimf-use-svml (Windows)

or -fimf-use-svml (Linux or OS X). This causes the Short Vector Math Library

Copyright © 2018, Intel Corporation. All rights reserved.

*Other brands and names may be claimed as the property of others

(libsvml) to be used for all math functions, including for scalar calls that would

otherwise have been resolved from the default Intel math library libm or libimf.

This has the advantage that math function calls yield the same result, whether

or not they are part of a vectorized loop. Consequently, vectorization of loops

containing math functions is not disabled when compiling with /fp:precise

/Qimf-use-svml (-fp-model precise -fimf-use-svml). The disadvantage is that

the accuracy of scalar math function calls of better than 1 ulp, corresponding to

the option /Qimf-precision:high (-fimf-precision=high), is very slightly worse

than if they were resolved from the default optimized Intel math library libm or

libimf.

The Short Vector Math Library is optimized for throughput, unlike libm and

libimf which are optimized for latency. libsvml only supports the default

rounding mode of round-to-nearest even, does not set error codes in the

integer global variable errno and may sometimes raise exceptions that would

not be seen with libm or libimf. For some functions, this may result in slightly

better performance for scalar calls than for the default library; for other

functions, performance may be worse.

The switch /Qimf-use-svml (-fimf-use-svml) introduced in the version 18.0

compiler is designed to be value-safe and should therefore be preferred to

/Qfast-transcendentals (-fast-transcendentals) for re-enabling vectorization of

transcendental math functions in the presence of /fp:precise (-fp-model

precise).

/fp:precise (-fp-model precise) also implies the switches /Qprec-sqrt (-prec-

sqrt) and /Qprec-div (-prec-div) that ensure the generation of consistent,

correctly rounded results for square roots and for division. In some cases, this

may disable vectorization of loops containing division or square root functions.

The switches /Qprec-sqrt- (-no-prec-sqrt) and /Qprec-div- (-no-prec-div) may

be used to re-enable vectorization. The accuracy of the generated code

sequences may be also be controlled using the switch /Qimf-precision (-fimf-

precision).

Many math library functions are more highly optimized for Intel

microprocessors than for other microprocessors. While the math libraries in the

Intel® Compiler offer optimizations for both Intel and compatible, non-Intel

microprocessors, depending on the options you select, your code and other

factors, you likely will get extra performance on Intel microprocessors.

Copyright © 2018, Intel Corporation. All rights reserved.

*Other brands and names may be claimed as the property of others

Bottom Line

Compiler options let you control the tradeoffs between accuracy,

reproducibility and performance. Use /fp:precise /fp:source (Windows) or -fp-

model precise -fp-model source (Linux or OS X) to improve the consistency and

reproducibility of floating-point results while limiting the impact on

performance1. If reproducibility between different processor types of the same

architecture is important, use also /Qimf-arch-consistency:true (Windows) or -

fimf-arch-consistency=true (Linux or OS X). For best reproducibility between

different processors, at least one of which supports FMA instructions, use also

/Qfma- (Windows) or -no-fma (Linux or OS X).

In the version 17 and later compilers, best reproducibility may be obtained with

the single switch /fp:consistent (Windows) or -fp-model consistent (Linux or OS

X), which sets all of the above options.

With the version 18 compiler, for applications with vectorizable loops

containing math functions, it may be possible to improve performance whilst

maintaining best reproducibility by adding /Qimf-use-svml (-fimf-use-svml).

Further Information

• Microsoft Visual C++* Floating-Point Optimization

http://msdn2.microsoft.com/en-us/library/aa289157(vs.71).aspx

• Intel® MKL Conditional Numerical Reproducibility:

https://software.intel.com/en-us/articles/introduction-to-the-

conditional-numerical-reproducibility-cnr

• Differences in Floating-Point Arithmetic Between Intel® Xeon® Processors

and the Intel® Xeon Phi™ Coprocessor:

https://software.intel.com/en-us/articles/differences-in-floating-point-

arithmetic-between-intel-xeon-processors-and-the-intel-xeon

• The Intel® C++ and Fortran Compiler User and Reference Guides,

 “Floating-Point Operations” section.

• Goldberg, David: "What Every Computer Scientist Should Know About

Floating-Point Arithmetic“ Computing Surveys, March 1991, pg. 203

1 /fp:source implies also /fp:precise

http://msdn2.microsoft.com/en-us/library/aa289157(vs.71).aspx
https://software.intel.com/en-us/articles/introduction-to-the-conditional-numerical-reproducibility-cnr
https://software.intel.com/en-us/articles/introduction-to-the-conditional-numerical-reproducibility-cnr
https://software.intel.com/en-us/articles/differences-in-floating-point-arithmetic-between-intel-xeon-processors-and-the-intel-xeon
https://software.intel.com/en-us/articles/differences-in-floating-point-arithmetic-between-intel-xeon-processors-and-the-intel-xeon

Copyright © 2018, Intel Corporation. All rights reserved.

*Other brands and names may be claimed as the property of others

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel

microprocessors for optimizations that are not unique to Intel microprocessors. These

optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations.

Intel does not guarantee the availability, functionality, or effectiveness of any

optimization on microprocessors not manufactured by Intel. Microprocessor-dependent

optimizations in this product are intended for use with Intel microprocessors. Certain

optimizations not specific to Intel microarchitecture are reserved for Intel

microprocessors. Please refer to the applicable product User and Reference Guides for

more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

Intel, Xeon, Xeon Phi and the Intel logo are trademarks or registered trademarks

of Intel Corporation or its subsidiaries in the United States and other countries.

Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate

performance of Intel products as measured by those tests. Any difference in system hardware or software design or

configuration may affect actual performance. Buyers should consult other sources of information to evaluate the performance

of systems or components they are considering purchasing. For more information on performance tests and on the performance

of Intel products, visit Intel http://www.intel.com/performance/resources/limits.htm

*Other names and brands may be claimed as the property of others. The linked sites are not under the control of Intel and Intel

is not responsible for the content of any linked site or any link contained in a linked site. Intel reserves the right to terminate any

link or linking program at any time. Intel does not endorse companies or products to which it links and reserves the right to note as

such on its web pages. If you decide to access any of the third party sites linked to this Site, you do this entirely at your own risk.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY

ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN

INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL

DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR

WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,

COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, life sustaining

applications. Intel may make changes to specifications and product descriptions at any time, without notice.

http://www.intel.com/performance/resources/limits.htm

Copyright © 2018, Intel Corporation. All rights reserved.

*Other brands and names may be claimed as the property of others

Appendix

Quick summary of main floating-point switches:

Primary Switch Description

/fp:keyword

-fp-model keyword

fast[=1|2], precise, except, strict, consistent, source

 [double, extended - C/C++ only]

Controls floating-point semantics

Other Switches

/Qftz[-] -[no-]ftz Flushes denormal results to zero

/Qimf-use-svml

-fimf-use-svml

Use the Short Vector Math Library to resolve all

(including scalar) calls to math library functions

/Qprec-div[-] -[no-]prec-div Improves precision of floating-point divides

/Qprec-sqrt[-]

-[no-]prec-sqrt

Improves precision of square root calculations

/Qfp-speculation keyword

-fp-speculation keyword

fast, safe, strict, off

floating-point speculation control

/fpe:0 -fpe0 Unmask floating-point exceptions (Fortran only)

and disable generation of denormalized numbers

/Qfp-trap:common

-fp-trap=common

Unmask common floating-point exceptions

(C/C++ only)

/Qimf-arch-consistency:true

-fimf-arch-consistency=true

Math library functions produce consistent results

on different processor types of the same

architecture

/Qfma[-] -[no-]fma Enable[Disable] use of fused multiply-add (FMA)

instructions

/Qopt-dynamic-align[-]

-q[no-]opt-dynamic-align

Enable[Disable] dynamic data alignment

optimizations, that could possibly cause slight run-

to-run variations in floating-point results

/Qprotect-parens[-]

-f[no-]protect-parens

[Don’t] Require the compiler to respect paren-

theses for the order of evaluation of expressions.

/Qimf-precision:name

-fimf-precision=name

high, medium, low

Controls accuracy of math library functions

/Qimf-force-dynamic-target

-fimf-force-dynamic-target

Enables run-time dispatch of math functions. Code

path depends on processor on which executed.

/Qprec -mp1 More consistent comparisons & transcendentals

/Qfast-transcendentals[-]

-[no-]fast-transcendentals

Enable[Disable] optimization of math functions

that might not be value-safe

Copyright © 2018, Intel Corporation. All rights reserved.

*Other brands and names may be claimed as the property of others

/Qsimd-honor-fp-model[-]

-q[no-]simd-honor-fp-

model

Tells the compiler to obey the selected floating-

point model when vectorizing SIMD loops.

/Qsimd-serialize-fp-

reduction[-]

-q[no-]simd-serialize-fp-

reduction

Tells the compiler to serialize floating-point

reductions when vectorizing SIMD loops.

