

Intel Corporation

Linux* Power

Efficiency Analysis

Methods
A look at power efficiency analysis methods under Linux environments

Christophe Zeitouny, Cagdas Akturan

7/25/2013

1

Contents

1 Introduction .. 5

2 Analysis Overview ... 6

2.1 Rules .. 6

2.1.1 Be conservative ... 6

2.1.2 Be patient .. 6

2.1.3 “General” is most often the sum of “local” .. 6

2.1.4 A bottom-up approach works best ... 6

2.1.5 Proceed to active scenario slowly by allowing services and applications to run 6

3 Methodology ... 7

3.1 Important Statistics ... 8

3.2 Analysis Example ... 8

3.3 Focus Areas ... 16

3.3.1 Hardware Stack ... 16

3.3.2 Driver Stack ... 19

3.3.3 Application Stack ... 19

3.3.4 Kernel Stack ... 19

3.3.4.1 CPU Frequency Governor .. 20

4 Driver-level Analysis .. 21

4.1 Runtime Power Management Issues .. 21

4.1.1 Device Power Management Enable .. 21

4.1.2 Driver Support for Runtime Power Management... 22

4.2 Performance Issues ... 25

5 Device-level Analysis ... 28

5.1 Device Power Management .. 28

5.1.1 PCI/PCIe Devices ... 28

5.1.2 USB Devices ... 29

5.1.3 SATA Devices ... 29

5.2 Wake Sources .. 30

6 Application-level Analysis ... 34

2

6.1 Busy-Wait Problems .. 34

6.2 Non-Optimized Running State .. 35

6.3 IO Activity Analysis .. 35

6.4 Utilization Analysis .. 35

7 Conclusion ... 36

8 Glossary ... 37

9 Bibliography .. 39

10 Appendix A: List of Analysis Tools ... 40

11 Appendix B: Analysis Tricks ... 42

11.1 Converting a memory-mapped instruction pointer to the actual pointer 42

11.2 Disassembling with objdump .. 42

3

List of Figures

Figure 1: Investigative Process .. 7

Figure 2: Command-Line Output .. 8

Figure 3: BIOS ASPM Settings ... 17

Figure 4: Device ASPM Settings .. 18

Figure 5: Profiler Output ... 26

Figure 6: top Output ... 27

4

List of Tables

Table 1: Initial Summary Statistics .. 9

Table 2: Initial Processor Usage Statistics ... 9

Table 3: Initial IRQ Statistics .. 9

Table 4: Disk Usage Statistics .. 10

Table 5: Initial Processor C-State Statistics ... 11

Table 6: Initial Process Activity ... 12

Table 7: Initial PIDStat Output .. 13

Table 8: Final PIDStat Output .. 14

Table 9: Final Summary Statistics ... 14

Table 10: Final IRQ Statistics ... 15

Table 11: Final Processor C-State Statistics .. 15

Table 12: Final Process Activity ... 15

5

1 Introduction

The need for mobile devices with long lasting battery life has become more and more pronounced in an

ever-connected world. Both high-tech societies and people living in rural areas with limited power

resources can benefit greatly from more power-efficient computing devices. In this paper we provide a

methodology for identifying the power efficiency issues and optimizing the power consumption for

client platforms running on Linux*-based operating systems. The methods detailed here are applicable

to the kernel, drivers, and user-mode software stacks.

Power efficiency has rapidly become a must-have feature for an operating system (OS) that is targeting

mobile devices. For example, Windows 8
*[8] [9]

 has improved greatly on its predecessor’s power

management capabilities, which allowed for Windows 8
*
-powered tablets and detachable laptops.

Similarly, the Linux
*
 kernel has also been adapted to support many power-efficiency features available in

recent mobile platforms and devices. With the recent raging success of smartphones and tablets,

Linux*-based operating systems are being optimized for these new battery-constricted platforms.

Google’s Android* offering
[2] [5]

, Ubuntu*
[10]

, now available more widely on smartphones and tablets,

and the new Firefox* OS
[1]

 are three such examples. Intel’s recently released Ultrabook™ brand
[4]

 is

blurring the line between handhelds and laptops with many new power saving features that OS, driver,

and application developers can utilize.

Solving power management issues and optimizing power efficiency is an iterative process. In this paper

we start by outlining the high level methodology, followed by detailed power management analysis and

optimization guidance for hardware, kernel, device driver and application stack along with practical

examples.

6

2 Analysis Overview

Every optimization journey starts with the analysis of the current situation. Depending on the type of

the target optimization goal, various types of up-front analyses need to be performed to assess the

situation. For example, if the goal is to optimize the platform for longer gaming experience, several

experiments need to be performed. However in addition to experiments representing the target

scenarios, it is usually desirable to perform an idle analysis to make sure all power saving features on the

platform work as expected and the platform has clean baseline power.

Note that, especially when performing idle analysis, the data collection process should be as non-

intrusive as possible so as not to interfere with the platform’s power management functionality. Next,

we provide a few basic rules that should be followed when performing a complete system analysis.

2.1 Rules

2.1.1 Be conservative

If data collection is being performed on the target, especially for an idle scenario, frequent sampling can

be very disruptive. Analysis programs should be instructed to update as infrequently as possible.

2.1.2 Be patient

Most power efficiency features do not take effect immediately after boot. Therefore, most power-

efficiency problems require long-term monitoring. To perform such experiments, it is best to employ

automation tools that can collect data over long periods. The use of such tools ensures that the

experiments are repeatable, and that the results are reliable.

2.1.3 “General” is most often the sum of “local”

When performing a complete system analysis, there is usually no need to run all measurement tools at

once as long as the steady state of the workload is understood.

2.1.4 A bottom-up approach works best

If the goal is to investigate both system and user application efficiency problems, it is best to start the

analysis with a fresh-boot system where no extra services or user applications are started. Having a solid

baseline helps greatly when trying to pinpoint potential problems without having to weed through many

potential problems that can be due to user applications.

2.1.5 Proceed to active scenario slowly by allowing services and applications to run

If the platform idle baseline presents a clean power profile, the next step is to introduce startup services

and user applications in a controlled fashion. The reason why a bottom-up approach works best is that it

allows you to compare multiple measurements that have different services and applications running.

Usually by comparing these measurements it is easy to pinpoint the source of the power efficiency issue,

for example, a high number of GPU operations per second, a constantly decreasing amount of free

memory, etc.

7

3 Methodology

Determining the root causes of power management problems requires an iterative analysis of the

various system components. First, an understanding of the overall system behavior is needed. After

that, focused tests on the problem areas need to be done to gather detailed data that would uncover

the problem. During this process many software tools need to be employed in various stages. In the

below diagram we present the recommended methodology to follow in order to systematically make

progress towards determining the root causes of power management problems. In the following

sections we will demonstrate this methodology with a practical example and provide information on the

software tools that can be employed in various stages of analysis.

Figure 1: Investigative Process

8

3.1 Important Statistics

What follows is a list of system statistics that are essential to gathering a complete snapshot of the

system’s state:

• Processor utilization percentage by process

• Processor core and package C-states

• Processor P-states

• Processor wakeups per second

• Processor wakeups per process per second

• Interrupts per second for each registered IRQ

• Memory usage statistics by process

• Page faults per second

• Context switches per second

• Context switches per process per second

• Device power states

• Device link states

• GPU operations per second

• Network activity

• Disk activity

Unfortunately, it is often not possible to collect all the desired metrics using a single tool, and learning

the intricacies of many tools may be time consuming. Appendix A: List of Analysis Tools provides a short

summary of the Linux tools available today.

3.2 Analysis Example

To demonstrate how the metrics specified in the previous section can be used in a system analysis, the

following analysis will go through the details of uncovering a power efficiency issue on a mobile

platform.

For this example we use PowerTOP, SAR, and PIDStat to gather the needed statistics tools (refer to

Appendix A: List of Analysis Tools for more information on these tools). PIDStat will only be used to get

the number of context switches per process per second. Using these three tools, most of the metrics

mentioned above can be gathered.

A simple example is shown below on how to collect these metrics:

Figure 2: Command-Line Output

9

In the above example all three tools were instructed to gather statistics for 10 measurements with a

duration of 10 seconds each. Assuming this is an idle analysis scenario, the first metric to check should

be the measurement averages to ensure there is no excessive activity. If there is no issue with the

average activity, we can start looking at the transient. While SAR and PIDStat automatically calculate

these averages, you will have to perform these calculations manually for the 10 PowerTOP reports. The

metrics provided hereafter are reformatted for clarity purposes. The actual format/nomenclature as

reported by the tools might vary.

We start first with the general system statistics given by PowerTOP:

Total Wakeups/s 107.2

Total GFX Wakes/s 29.91

Total CPU % 1.93

Table 1: Initial Summary Statistics

While 107 wakeups per second isn’t an excessive number, it is still elevated for a machine that is

supposed to be idle. Note also the high graphics activity. This could be due to either the compositor

(compiz in this case), or some application triggering the X server frequently. Next we look at the CPU

usage breakdown, as reported by SAR:

All Processors User 0.34 %

All Processors Nice 0.00 %

All Processors System 0.25 %

All Processors I/O Wait 0.02 %

All Processors Steal 0.00 %

All Processors IRQ 0.00 %

All Processors Soft IRQ 0.01 %

All Processors Guest 0.00 %

All Processors Idle 99.39 %

Table 2: Initial Processor Usage Statistics

The only thing to notice here is that the CPU is spending most of its time servicing user and kernel space

processes. Since IRQs aren’t taking up any significant portion of the CPU time, they are most likely just

fine. In fact User, System, I/O Wait, IRQ, and Soft IRQ are the main values you should be inspecting. If

any one of these is unreasonably high, then an issue most likely exists. In this case, however, no major

issues are apparent, and we can proceed through the report.

IRQ 1 irq/sec 0.01

IRQ 57 irq/sec 0.8

IRQ 58 irq/sec 1.68

Table 3: Initial IRQ Statistics

10

The next metric to check are the statistics for the hardware interrupts.

Tip:

To determine which device each interrupt number corresponds to, you can read /proc/interrupts.

In this case, IRQ 57 corresponds to the AHCI controller (SATA disks), and IRQ 58 is the Ethernet interface.

While the disk activity might be a bit worrying, the constant light Ethernet activity is expected from a

connected interface. To learn more about the disk activity, we should check the disk statistics.

Disk dev8-1 Transactions/s 0.89

Disk dev8-1 Read Sectors/s 0

Disk dev8-1 Write Sectors/s 23.36

Disk dev8-1 Avg. Req. Size 35.103

Disk dev8-1 Avg. Queue Length 0

Disk dev8-1 Avg. Wait (ms) 1.062

Disk dev8-1 Avg. Service Time (ms) 1.062

Disk dev8-1 Utilization (%) 0.08

Table 4: Disk Usage Statistics

From the table above, we can see that most of the disk activity is spent on writing. At this point we

should suspect that this activity is caused by the statistics collection process and isn’t actually something

to worry about. However, to confirm this, the fatrace utility can be utilized to further investigate the

source of the disk activity (see Appendix A: List of Analysis Tools for more information on fatrace).

Notice how the number of transactions per second for a disk should match up to (or at least be a

multiple of) the number of interrupts the corresponding AHCI controller is generating.

Tip:

To match up device IDs (of the form “devX:Y”) with actual disk partitions, run the lsblk utility.

As a quick review, here’s what we’ve gathered at this point:

• Total number of wakeups per second is slightly high, but not a significant cause for alarm.

• CPU is spending most of its time servicing user and kernel space programs.

• IRQ activity is normal. No device issues so far.

• Disk activity is most likely due to the actual statistics collection.

Moving on, we look at the processor C-State residency. In this case, we want the processor to be in C0

the least amount of time possible.

11

Package 0 C-State – POLL 0.00 %

Package 0 C-State - C1-HSW 0.02 %

Package 0 C-State - C3-HSW 0.20 %

Package 0 C-State - C6-HSW 0.08 %

Package 0 C-State - C7s-HSW 99.13 %

Table 5: Initial Processor C-State Statistics

Under optimal conditions, the processor should be spending more than 99% of its time in its deepest

sleep state when the system is idle. This is the case in this example. However we should always try to

maximize this residency, even if it looks “good enough.”

To be able to theorize on the possible cause for this issue, we must take another look at what we know

so far:

• Total wakeups per second is slightly elevated

o Processor is either waking up too often or the offending task is performing long

computations.

• Device activity is due to disk activity (IRQ 57) and idle network activity (IRQ 58)

o Since the processor is not spending significant time in “I/O Wait” (see Table 2), it is most

probably not the disk activity that is at fault here.

At this point, the list of suspects is (in descending order of plausibility):

• A user process that is waking up too often

• A user process that is performing extensive computations

• Very slow AHCI driver

• Kernel issue

12

To narrow down our search, we will have to look at the list of processes given by PowerTOP:

/usr/bin/gtk-window-decorator Wakeups 3.86

/usr/lib/gnome-settings-daemon/gnome-settings-daemon Wakeups 0.37

/usr/lib/unity/unity-panel-service Wakeups 0.29

[4] block(softirq) Wakeups 0.28

[7] sched(softirq) Wakeups 0.4

[rcu_sched] Wakeups 0.57

[usb-storage] Wakeups 3.88

blk_delay_work Wakeups 0.81

Clipit Wakeups 64.57

Compiz Wakeups 8.32

hrtimer_wakeup Wakeups 2.17

menu_hrtimer_notify Wakeups 2.94

od_dbs_timer Wakeups 13.07

tick_sched_timer Wakeups 3.22

Table 6: Initial Process Activity

Judging from the list above, the most apparent offender is clipit. Similarly, the PIDStat output in Table 7

leads to the same conclusion, with the addition of the X server as a potential problem too. However, in

most cases, the X server should be assumed to be as efficient as possible at idle (the same assumption

goes for the kernel). Exceptions to these assumptions do arise, but are extremely rare. We then

investigate the clipit process, which is a clipboard manager that displays an icon in the notification area.

Given that we know the function that the process is supposed to accomplish, we can start coming up

with theories as to what its effect on the platform could be. The thought process is as follows:

• It is a clipboard manager that is waking up 64.57 times per second

• The clipboard is usually maintained by the X server

• The application should then monitor the X server for any clipboard changes

• One (not very power efficient) way is to continuously poll the X server for the contents of the

clipboard and compare them to the latest

• The X server is waking up (or being woken up) 30.9 times every second

• Given our assumption that the X server is most likely not the culprit, we can assume that it is the

victim of the clipit application constantly requesting the clipboard contents

• The two major contributors to context switches are again clipit and the X server

13

UID PID cswch/s nvcswch/s Command

0 3 0.92 0.00 ksoftirqd/0

0 10 2.21 0.00 rcu_sched

0 13 1.30 0.00 ksoftirqd/1

0 18 0.48 0.00 ksoftirqd/2

0 23 0.90 0.00 ksoftirqd/3

0 38 2.33 0.00 kworker/1:1

0 58 2.54 0.00 kworker/0:1

0 83 1.27 0.00 kworker/3:1

0 261 5.87 0.01 usb-storage

0 273 0.12 0.00 kworker/0:1H

0 391 0.49 0.00 kworker/2:1H

0 1204 2.42 0.02 kworker/2:2

0 1392 30.90 0.83 /usr/bin/X :0 –core –auth

/var/run/lightdm/root/:0 tcp vt7 -novtswitch

0 1403 0.25 0.00 /usr/lib/accountsservice/accounts-daemon

1000 1874 0.37 0.02 /usr/lib/gnome-settings-daemon/gnome-

settings-daemon

1000 1910 25.10 1.33 compiz

1000 2006 3.98 0.11 /usr/bin/gtk-window-decorator

1000 2106 0.40 0.02 gnome-terminal

1000 2188 0.25 0.00 zeitgeist-datahub

1000 2215 36.09 0.91 clipit

1000 2224 0.25 0.00 /usr/lib/x86_64-linux-gnu/unity-lens-

applications/unity-applications-daemon

0 2296 2.34 0.00 kworker/2:3

1000 2333 0.20 0.00 update-notifier

1000 2369 0.10 0.20 pidstat -w -l 10 10

1000 2370 2.88 0.00 grep --color=auto ^Average:
Table 7: Initial PIDStat Output

We can then safely say that while we’re still not sure whether clipit is the sole contributor to the high

number of wakeups, it is still not behaving in a power efficient way. To support that theory, we ran a

new set of idle measurements with the clipit application not running.

14

UID PID cswch/s nvcswch/s Command

0 3 0.95 0.00 ksoftirqd/0

0 10 3.43 0.00 rcu_sched

0 13 2.01 0.00 ksoftirqd/1

0 18 0.66 0.00 ksoftirqd/2

0 23 1.17 0.00 ksoftirqd/3

0 38 1.73 0.00 kworker/1:1

0 58 2.19 0.00 kworker/0:1

0 83 1.39 0.00 kworker/3:1

0 261 5.84 0.00 usb-storage

0 273 0.18 0.00 kworker/0:1H

0 274 0.18 0.00 jbd2/sda1-8

0 391 0.49 0.00 kworker/2:1H

0 1204 2.26 0.00 kworker/2:2

0 1392 1.65 0.15 /usr/bin/X :0 -core -auth

/var/run/lightdm/root/:0 tcp vt7 -novtswitch

0 1403 0.25 0.00 /usr/lib/accountsservice/accounts-daemon

1000 1874 0.57 0.06 /usr/lib/gnome-settings-daemon/gnome-

settings-daemon

1000 1910 21.05 1.34 compiz

1000 2006 0.19 0.00 /usr/bin/gtk-window-decorator

1000 2106 0.59 0.00 gnome-terminal

1000 2188 0.25 0.00 zeitgeist-datahub

1000 2224 0.25 0.00 /usr/lib/x86_64-linux-gnu/unity-lens-

applications/unity-applications-daemon

0 2296 2.12 0.00 kworker/2:3

1000 2333 0.20 0.00 update-notifier

1000 2394 0.10 0.26 pidstat -w -l 10 10

1000 2395 2.79 0.00 grep --color =auto ^Average:
Table 8: Final PIDStat Output

A quick glance over the PIDStat output (Table 8) reveals that the X server is no longer causing 30.9

context switches per second. It is down to a more manageable 1.65. Looking at the PowerTOP output,

however, should give us a more comprehensive look at the machine:

Total Wakeups/s 30.19

Total GFX Wakes/s 0.08

Total CPU % 1.17

Table 9: Final Summary Statistics

The total number of wakeups per second was cut down to 30, which is a good number for a machine

running a full desktop environment. CPU utilization has also gone down from 1.93% to 1.17%. Similarly,

the number of graphics-related wakeups was slashed to nearly 0, which is likely due to the fact that the

X server is no longer being frequently polled.

15

IRQ 1 irq/sec 0.01

IRQ 57 irq/sec 0.62

IRQ 58 irq/sec 1.58

Table 10: Final IRQ Statistics

The status of the hardware interrupts is almost unchanged, which is understandable since the clipit

application was not making use of any devices.

Package 0 C-State – POLL 0.00 %

Package 0 C-State - C1-HSW 0.01 %

Package 0 C-State - C3-HSW 0.05 %

Package 0 C-State - C6-HSW 0.00 %

Package 0 C-State - C7s-HSW 99.64 %

Table 11: Final Processor C-State Statistics

Looking at the C-State residencies for the processor, we notice an improvement in power efficiency. The

CPU is now spending 99.64% of its time in C7.

/usr/bin/python /usr/lib/ubuntu-sso-client/ubuntu-sso-login Wakeups 0.25

/usr/bin/python3.3 /usr/share/oneconf/oneconf-service Wakeups 0.26

/usr/lib/gnome-settings-daemon/gnome-settings-daemon Wakeups 0.37

/usr/lib/udisks2/udisksd --no-debug Wakeups 0.1

/usr/lib/unity/unity-panel-service Wakeups 0.14

/usr/lib/x86_64-linux-gnu/unity-lens-applications/unity-applications-daemon Wakeups 0.26

[3] net_rx(softirq) Wakeups 0.44

[4] block(softirq) Wakeups 0.18

[7] sched(softirq) Wakeups 0.81

[rcu_sched] Wakeups 0.92

[usb-storage] Wakeups 4.01

blk_delay_work Wakeups 0.79

compiz Wakeups 3.37

hrtimer_wakeup Wakeups 1.01

menu_hrtimer_notify Wakeups 1.16

od_dbs_timer Wakeups 10.75

tick_sched_timer Wakeups 2.82

Table 12: Final Process Activity

At this point, we know which application causes the system to misbehave. For information on how to

analyze a specific application in hopes of optimizing its power efficiency, see the Application-level

Analysis section.

16

Note that the process activity list (Table 12) now points us to other potential issues, like od_dbs_timer

and [usb-storage]. Analyzing these issues is outside the scope of this example. This shows, however, that

the optimization process is iterative. Once a major issue is resolved, minor issues start having more of a

relative impact on the system.

3.3 Focus Areas

While the practical example in the previous section presented an application-level issue, power

efficiency problems can exist in any of the components on the platform’s hardware and software stacks.

This section breaks down these stacks and describes methods to analyze each.

3.3.1 Hardware Stack

The issues in the hardware stack are usually due to incompatibilities in the device configuration and

driver software managing the device. In this section we will merely introduce how to perform a quick

check on the hardware stack, as finding the root cause for hardware issues might be very complex and is

beyond the scope of this paper.

To investigate hardware issues, an understanding of the device hierarchy (child devices connected) and

device features is needed. Refer to manufacturer’s datasheets to identify what configurations the device

and its children support and how to configure them correctly for maximum power efficiency. Both lspci

and PowerTOP can be used to gather information about device hierarchy and configuration. For

example, the first screen shot below shows which low power link states are provided for a specific PCI

Express* (PCIe) bus in the BIOS, while the second screen shot shows what states are supported by the

device (using lspci). Notice that lspci reports that while the device supports both the L0s and L1 states,

ASPM is disabled for this device. This means that either the OS or the driver disabled it.

17

Figure 3: BIOS ASPM Settings

18

Figure 4: Device ASPM Settings

If the devices seem to be correctly configured, then the issue might be due to defective hardware or it

might be on the driver stack. If the issue is due to defective hardware, one way to find the root cause is

to compare the device against another identical device by attaching it to the same system and showing

that it is behaving correctly. Another way would be to instrument the device connections to check if all

the signals are triggered correctly. However, this type of troubleshooting is often not possible due to

lack of resources. It is then best to move on to checking the driver stack (see Driver Stack) and making

sure that the issue is not due to a faulty driver. If the device is configured properly and all the software

stacks above it are functioning according to specifications, yet the issue persists, then try downloading

new firmware and/or contacting the original device manufacturer.

If an issue is found in the hardware stack, the Device-level Analysis section offers information on how to

proceed.

19

3.3.2 Driver Stack

An issue in the driver stack usually presents itself in two possible ways:

• Bad/non-existent device power management

• Slow device performance, which also leads to decreased battery life

Therefore, the first step in discovering a driver issue is to inspect the platform at idle and check for any

device activity. If the device is not being used, then it should be at sleep and/or reporting the longest

supported latency. This could be determined by launching PowerTOP. If the device is going to sleep

properly, then the driver is doing its job at power management. If not, see the Driver-level Analysis

section for instructions on how to debug this.

Regardless of the outcome of the previous measurements, we still need to determine if the driver is

inefficient. This can be done easily if a benchmark for the device already exists. Running the benchmark

and comparing the results against the theoretical limits of the device can provide a general idea whether

the device is performing well enough. If the benchmark falls short of the theoretical limit of the device,

the same benchmark should be run on the same machine, however under a different operating system.

If the second operating system produces a better benchmark score, then it is safe to assume that the

Linux driver for that device is not as efficient as it could be. See Driver-level Analysis for more

information on how to debug such an issue.

3.3.3 Application Stack

See Important Statistics

 for an example on how to diagnose application-level issues. There are, however, some other tricks you

can try in order to identify application-level power efficiency problems.

For example, the eventstat utility could be used to analyze the kernel timers and determine which

applications are scheduling which timers. These timers force the processor to wake up to service them.

The fewer and farther between the timers are, the more power efficient the platform becomes.

One other tool that could be of use is pidstat, which collects many useful statistics about a running

process. One of these is the number of voluntary context switches per second that the process is

performing. A context switch occurs whenever the process performs a system call. Context switches are

expensive and should be minimized, at least at idle.

3.3.4 Kernel Stack

Given how well-maintained the Linux kernel is, the large majority of issues you could encounter with it

are due to either regressions or unimplemented functionality. The kernel should only be suspected after

checking the hardware, driver, and application-level stacks without finding any possible cause for the

observed behavior.

20

Proper testing of kernel issues is a tedious process that involves checking the behavior on older kernels

until one is found to exhibit the proper expected behavior. The issue is then denoted as a regression.

This process can be somewhat automated by using the Phoronix Test Suite
[7]

.

If, however, a kernel that exhibits the proper behavior is not found, the issue is most likely an

unimplemented feature.

In both cases, it is best to search for an existing bug report for the issue before notifying the kernel

maintainers. Additionally, adding whatever collected information to an existing bug report might help

the maintainers reproduce the bug on their end, which would speed up the bug fixing process.

3.3.4.1 CPU Frequency Governor

The processor frequency is (for the most part) controlled by what’s known as a P-State driver, namely

cpufreq (for recent kernels and Intel processors, see intel_pstate below). This driver accepts different

policies, known as governors. As of this paper, the four most well-known governors are:

• Performance: Activates the highest frequency at all times

• Ondemand: Sets the frequency based on the active workload

• Conservative: Same as ondemand, but places more weight on the low operating frequencies

• Powersave: Sets the processor to the lowest available frequency at all times

Note however that both the performance and powersave governors are detrimental to the system’s

battery life. While the reason is obvious for the performance governor, it is slightly more complicated

for powersave. The latter forces the processor to operate at a very low frequency, which means that

workloads take longer to execute. This forces the processor to stay active for longer, therefore burning

through more power than it would have, had it been allowed to jump to a higher frequency. The

ondemand governor is therefore the most optimal one.

Recent Linux kernels (starting with kernel 3.9) will incorporate a new scaling driver called intel_pstate

that offers greater performance and power efficiency than cpufreq on recent Intel platforms. This new

driver offers two governors:

• Performance: Activates the highest frequency at all times

• Powersave (default): Sets the frequency based on the active workload. This is the recommended

setting for this driver, and does not suffer from the same drawbacks as powersave on cpufreq.

Tip:

The following command sets the governor for a specific CPU core:

echo ondemand > /sys/devices/system/cpu/cpuX/cpufreq/scaling_governor

21

4 Driver-level Analysis

As mentioned earlier, the two most prominent driver-level issues are: broken power management and

poor driver performance. Each issue is explained in detail below.

4.1 Run-time Power Management Issues

4.1.1 Device Power Management Enable

If a device does not seem to be going to sleep, the first thing that should be checked is whether the

kernel is instructed to enable run-time power management for this device.

Information about the device’s power management status is stored under the power directory in the

device’s sysfs entry. For a PCI device, this can be found under:

/sys/bus/pci/devices/XXXX:XX:XX.X/power

Where XXXX:XX:XX.X is to be replaced by the device’s PCI domain, bridge, bus, device, and function

numbers respectively. These can be determined by running the lspci command as root.

Under the power directory, the control interface determines whether or not run-time power

management is enabled for that device. Reading that interface can produce two possible outputs:

• on: The device is set to be always on and run-time power management is disabled

• auto: Run-time power management is enabled for this device

Fortunately, this interface is also writable. Writing one of the two commands above will set the run-time

power management status for the device. Therefore, if it was set to on, it should be set to auto, and the

original measurements should be rerun to see if the device now successfully goes to sleep.

Another interface to check is autosuspend_delay_ms, located under the same power directory. This

interface controls how long (in milliseconds) the device should be idle before it is suspended. Some

devices do not implement this interface, in which case an error is generated when the interface is read.

If, however, the interface can be read, you should make sure it is not returning a negative number.

Writing to this interface will set the autosuspend delay.

Tip:

For more information about the different interfaces in the power directory, see

https://www.kernel.org/doc/Documentation/ABI/testing/sysfs-devices-power

22

Most Ethernet devices offer Wake-on-LAN functionality that allows the device to wake the machine

upon receipt of a specially crafted packet. This functionality requires parts of the Ethernet device to

remain active even when the device is in its deepest sleep state, which negatively affects the battery life

of the system (even when the system is completely turned off). If this functionality is not needed, you

can use the ethtool utility to disable it, like so:

ethtool -s ethX wol d

4.1.2 Driver Support for Run-time Power Management

The PCI Express specification
[6]

 requires that all compliant devices support at least the D0 and D3 sleep

states. Whether transition to these is supported at run time is not dictated by the specification. It would

therefore prove helpful to first check the Device-level Analysis section to make sure the hardware

supports this feature.

Tip:

To determine which driver is loaded for a specific piece of hardware, run lspci -k as root

The source for the numerous device drivers usually resides in the drivers directory in the kernel source

tree. The official kernel source repository can be found at http://www.kernel.org. However, many

websites offer the kernel code online (e.g., http://lxr.free-electrons.com). The advantage that these

websites offer is that they allow you to easily find the references to a certain function, variable, or data

structure within the code. This makes the cross-referencing process a breeze, which speeds up code

inspection time.

In the following example, we’ll be investigating a Broadcom Corporation NetXtreme BCM5751 Gigabit

Ethernet PCI Express card. The current symptoms are:

• Reports that D3hot and D3cold are both supported

• Only goes into D3 when the interface is brought down using ifconfig eth0 down

• The driver in use is tg3

What we need to figure out from the driver source is whether or not the driver implements support for

suspending/resuming the device, and whether this is allowed at run time.

For PCI devices, the first thing to do would be to look for a structure of type pci_driver (defined in

/include/linux/pci.h). Every PCI device driver has to fill this structure with specific information

at initialization time. One of the uses of this structure is to declare the driver’s suspend and resume

functions. Historically, pointers to these two functions would be stored under “suspend” and “resume,”

respectively.

23

struct pci_driver {

 struct list_head node;

 const char *name;

 const struct pci_device_id *id_table;

 int (*probe) (struct pci_dev *dev, const struct pci_device_id *id);

 void (*remove) (struct pci_dev *dev);

 int (*suspend) (struct pci_dev *dev, pm_message_t state);

 int (*suspend_late) (struct pci_dev *dev, pm_message_t state);

 int (*resume_early) (struct pci_dev *dev);

 int (*resume) (struct pci_dev *dev);

 void (*shutdown) (struct pci_dev *dev);

 int (*sriov_configure) (struct pci_dev *dev, int num_vfs);

 const struct pci_error_handlers *err_handler;

 struct device_driver driver;

 struct pci_dynids dynids;

};

Code 1: PCI/PCIe Driver Main Structure

However, these pointers are deprecated and are only meant for suspend/resume functions that are

called when the whole system transitions to a sleep state. In order to support run-time power

management, new PCI drivers have to set the driver field to point to a valid structure of type

device_driver (defined in /include/linux/device.h). Within that structure, the pm field

needs to point to a valid structure of type dev_pm_ops (defined in /include/linux/pm.h). This

last structure holds callbacks for all possible device power management statuses. The four interesting

ones are: suspend, resume, runtime_suspend, and runtime_resume. The runtime variants are called

when run-time power management is required.

Now that we know which power management functions need to be implemented by the driver so it can

successfully change its power status at run time, we have to look for them in the driver implementation.

What follows is a comprehensive list of possible scenarios:

24

• The driver uses the deprecated suspend and resume fields in the pci_driver structure

o No run-time power management

• The driver explicitly initializes a valid dev_pm_ops structure, but does not set the

runtime_suspend and runtime_resume fields.

o No run-time power management

• The driver initializes a valid dev_pm_ops structure using the SIMPLE_DEV_PM_OPS macro

o No run-time power management (this is the case in our example)

• The driver initializes a valid dev_pm_ops structure using the UNIVERSAL_DEV_PM_OPS macro

o Run-time power management callbacks are the same as those for static power

management

• The driver explicitly initializes a valid dev_pm_ops structure and sets the runtime_suspend and

runtime_resume fields.

o Run-time power management callbacks are present and correctly set

Starting with the “easy case” where run-time power management is properly implemented in the driver,

the next thing to look for would be conditional entry points for device suspend. This requires us to check

for any conditions in the driver code, and whether these conditions are easily matched with actual usage

scenarios that could be mitigated. For example, a storage controller might not go into suspend mode

unless all the disks connected to it are in full suspend. At this point, it would be reasonable to figure out

why these conditions are not being met.

In the case where the run-time power management routines are not implemented in the driver, two

possibilities exist:

• The device/platform does not support run-time power management

• The driver author omitted implementing the routines

First, we must make sure that both the device and the platform support run-time power management.

See Device-level Analysis.

After completing the steps in Device-level Analysis, if the device is deemed to support run-time suspend

then the power management function can (and should) be implemented. You can either do that

yourself, or notify the original developer/maintainer for the device driver.

To implement run-time power management, the original device datasheet will be needed, along with a

sizable amount of knowledge, discipline, and patience. If the driver handles multiple devices, special

checks will have to be added to make sure the driver doesn’t try to suspend a device that does not

support it.

25

Tip:

To learn more about implementing run-time power management in drivers, see

https://www.kernel.org/doc/Documentation/power/runtime_pm.txt

4.2 Performance Issues

If the device driver is not as optimized as it could be, device performance might suffer drastically. This

matters for power efficiency since a slower device will take more time to perform the requested action,

therefore spending more time being active.

The process of diagnosing performance issues consists of running a device benchmark, collecting

performance data, and diagnosing the bottlenecks.

The process starts by determining a valid and consistent benchmark for the specific device under test.

Some useful (albeit somewhat antiquated) lists of benchmarks available on Linux are:

• http://ltp.sourceforge.net/tooltable.php

• http://lbs.sourceforge.net/

• http://www.acnc.com/content.php?id=14

Once a consistent device benchmark is found, the next step is to profile the system while running it. This

can be done using the Perf tools, as presented in Appendix A: List of Analysis Tools. Profiling the system

while running the benchmark provides information that pinpoints the most time-consuming function

calls.

Tip:

It is easier to make sense of the data if the profiling is run on a kernel that was built with debugging

symbols included.

Consider the following example:

The following command was run on the system as a basic storage drive benchmark:

dd if=/dev/zero of=~/tempfile bs=1 count=500M

This command creates a file called tempfile and fills it with 500 MB of zeroes, one byte at a time. The file

is written on an encrypted home partition.

26

While the original command was executing, we ran perf top in a separate terminal. The following is a

screen shot of the output.

Figure 5: Profiler Output

Note that aes_encrypt is the most time-consuming function in terms of CPU time. However, we still

need to make sure that the disk drive isn’t the real bottleneck in this case. Since this is an I/O operation,

we could check the I/O Wait time reported by SAR. This indicates how much time the CPU is wasting

while waiting for I/O operations to complete.

In this case, we just ran “top” since it also provides the same information.

27

Figure 6: top Output

There are many important things to note from this screen shot:

• “dd” is using 100% of one CPU thread on the system.

• The system is not spending any significant time waiting for I/O operations (indicated by

0.0%wa).

• 25% of the time for the four CPU threads (which correlates to 100% on one thread) is spent in

kernel space. This is corroborated by the information given in the first screen shot.

This allows us to ascertain that in this specific situation, the bottleneck is the disk encryption code in the

kernel.

Once an issue is found with very high reproducibility, the intensive process of optimization can begin.

Some recommendations to keep in mind while performing code optimization:

• Devise a series of tests that point out any issues with the modified code

• Find more benchmarks to run. Optimizing for one benchmark could degrade performance on a

different one.

• Always test the modified code on a DIFFERENT machine (or a virtual machine). In this case,

breaking the hard drive encryption/decryption code could render the home partition

inaccessible.

28

5 Device-level Analysis

In order for device power management to be supported on a device-level, a couple of critical conditions

should be satisfied:

• The device itself should support run-time power management

• If the device generates wakeup events, its interrupt pin should be connected and configured

5.1 Device Power Management

5.1.1 PCI/PCIe Devices

All PCI Express devices are required by the specification
[6]

 to support at least two power states: D0 and

D3. Furthermore, support for the ASPM link state L0s is also mandatory. To advertise these features to

the OS, PCIe devices are required to implement two structures in their configuration space: the Power

Management structure and the PCI Express Capability structure.

The former advertises the power management features supported by the device. What follows is some

of the information reported by this structure:

• Current D-state

• Support for PME under different states

• Current PME status

• Support for the optional D1 and D2 states

Whether the device supports PME or not is an important piece of information for investigating power

management issues. The next section goes into more detail about this.

The PCI Express Capability structure, on the other hand, advertises, among other things, the supported

ASPM link states and whether ASPM is enabled on this device. ASPM support, while not critical, is good

to have on a device. By powering down the serial interface, it also helps reduce the PCI root port’s

power consumption.

The simplest way to see these structures is by running lspci -vvvv on the system. Each advertised

structure is listed under a Capabilities node. The supported features are followed by a + sign, while

unsupported ones have a - sign. For example: if PME(D0+,D1-,D2-,D3hot+,D3cold+) is listed under the

Power Management structure, you can deduce that a PME is supported only when the device is in D0,

D3hot, or D3cold. The PME-Enable flag indicates whether PME is enabled at the moment. This will be

useful in the next section.

Similarly, the ASPM features are listed under the LnkCap section in the PCI Express Capability structure.

The LnkCtl section lists the current link status. The enabled ASPM states can be changed in the system

29

BIOS, which would affect the behavior of the device. For this reason, the BIOS should be checked first to

make sure none of the ASPM features are disabled.

5.1.2 USB Devices

Similar to PCIe devices, USB devices also support multiple power management states. These states span

from U0 to U3, where U0 is an active state and U3 indicates that the device is in its deepest sleep state.

The intermediary U1 and U2 states are only supported by USB 3.0 devices, and are automatically

negotiated between the device and the host. Consequently, there is currently no reliable method for

software to determine when a device has entered U1 or U2.

Enabling power management for USB devices follows the same process as for PCI devices, as they share

the same power interface under sysfs (refer to the Device Power Management Enable section).

5.1.3 SATA Devices

The SATA specification describes a power management feature for SATA devices, referred to as ALPM

(Advanced Link Power Management). This feature allows the attached disk to switch between five

distinct power phases:

• Active: Device is active and consuming the nominal amount of power.

• Partial: Device is in partial sleep. Wakeup latency is low (<10 µs). Marginal amount of power

saving.

• Slumber: Device is sleeping, but power is maintained. Higher wakeup latency (<10ms). More

power saving.

• DevSleep: Device is completely turned off, but power is maintained. Marginally higher wakeup

latency (<20ms). Considerably higher power savings.

• RTD3: Device is completely turned off. Very high wakeup latency, with zero power consumption.

Thankfully, the hdparm utility provides Linux users with a simple command to get/set the ALPM policy

for a SATA disk.

Tip:

hdparm -C /dev/sdX reads the disk drive’s current state

hdparm -B /dev/sdX reads the disk drive’s current APM policy

hdparm -B <policy> /dev/sdX sets the disk drive’s APM policy. A lower policy indicates more aggressive

power management

30

5.2 Wake Sources

There are only two ways a device can be woken up from a sleep state:

• The device generates a PME (a power management interrupt) that signals the OS to wake it up

• The operating system explicitly wakes the device by sending it an #RST signal

Since most devices on a machine act as interface devices, they had to be given a way to signal the

operating system when any change occurred to their interface.

• SD card readers generate a PME whenever a card is inserted/removed

• USB controllers generate a PME when a device is plugged/unplugged

• Ethernet controllers generate a PME whenever a packet is received, a cable is unplugged, etc.

One way to determine under which conditions the device generates an interrupt is to check the device

datasheet.

The reason why we are discussing device interrupts is because an improperly configured interrupt will

cause the device to not be able to wake up from a sleep state. It is therefore imperative to make sure

the interrupt mechanism is working properly before attempting to force the device to sleep (using driver

modifications).

There are two ways for a device to signal a wakeup interrupt to the CPU. It could use either the legacy

GPE mechanism or the native PCIe PME signaling route.

Native PCIe PME signaling involves routing the WAKE# pin of every PCIe device into its root bridge. This

means that in order to signal a wakeup event, the device asserts its WAKE# pin, which notifies the root

bridge of a wakeup event. The root bridge then sends an in-band interrupt message (using INTx or

MSI/MSI-X) to the system, notifying it of this event. Given that the root bridge is generating in-band

interrupt messages, this method does not require any special ACPI configuration. It does, however,

require proper routing of the WAKE# signals to the root bridge (through a multiplexer).

The legacy GPE mechanism is inherited from PCI/PCI-X devices, where each device’s WAKE# pin is

routed directly to one of the GPIO pins on the platform. This setup bypasses the root bridge and is

difficult to implement practically due to special routing considerations in the electrical board layout.

Signaling PME events using GPEs requires some ACPI configuration to notify the OS of the correlation

between each GPE and its corresponding device.

The first step in determining whether the device is properly configured to generate PME events is to find

out which mechanism the platform is using to route PME interrupts. One quick way to do that is to read

the contents of /proc/interrupts. If any line contains PCIe PME, the operating system is using

native PCIe PME signaling. If not, then it is using the legacy GPE events.

31

If the operating system is using native PME signaling, the device PMEs should be automatically routed,

and should work without any configuration. If, however, wakeup events are not working, then the most

likely problem is with the way the root bridge forwards the PME to the system. If the root bridge is in

D0, the interrupt is usually forwarded using MSI/MSI-X, which should also work perfectly without any

special configuration. For this reason, you should try forcing the root bridge into D0 mode (see Device

Power Management Enable for instructions). If this does not solve the problem and other devices under

the same root port work perfectly, it could be a hardware issue with the device, which is out of the

scope of this document.

If the operating system is using the legacy GPE method, each PCI/PCIe device should have a

corresponding configuration in the DSDT ACPI table. Since each device is connected to the system via a

specific GPE pin, this relationship should be advertised to the operating system so that it can correctly

identify the device that generated a specific interrupt. To do that, the DSDT table should implement the

_PRW method for each PCI/PCIe port. This function should return the address of the GPE pin that this

device is connected to. See Code 2: Sample _PRW Implementation for a sample _PRW implementation

for an onboard Ethernet controller. The sample method notifies the system that this controller is

connected to GPE 0x0D.

Device (GLAN)

{

 Name (_ADR, 0x00190000)

 Method (_PRW, 0, NotSerialized)

 {

 Return (GPRW (0x0D, 0x04))

 }

}

Code 2: Sample _PRW Implementation

Furthermore, multiple devices can share the same GPE pin. To determine which device generated that

interrupt, the operating system calls the associated _Lxx method, where xx is the GPE pin number. For

example, if multiple devices are connected to pin 0x0D, then whenever that pin is asserted, the

operating system calls the _L0D ACPI function. This function should determine which device generated

an interrupt and report it back to the system using the Notify() mechanism. This is more clearly

illustrated in the following example:

32

Scope (_SB.PCI0) {

Device (GLAN) {

 Name (_ADR, 0x00190000)

 Method (_PRW, 0, NotSerialized) {

 Return (GPRW (0x0D, 0x04))

 }

}

Device (RP01) {

 Name (_ADR, 0x001D0000)

 Method (_PRW, 0, NotSerialized) {

 Return (GPRW (0x0D, 0x04))

 }

}

}

Scope (_GPE) {

 Method (_L0D, 0, NotSerialized) {

 If (LEqual (_SB.PCI0.RP01.PMES, One)) {

 Notify (_SB.PCI0.RP01, 0x02)

 }

 If (LEqual (_SB.PCI0.GLAN.PMES, One)) {

 Notify (_SB.PCI0.GLAN, 0x02)

 }

 }

}

Code 3: Sample Code for Sharing GPEs

33

The example above is only intended for illustrative purposes. It is not guaranteed to be functional, or

even compilable. For a complete reference on the _PRW and _Lxx methods, see the ACPI specification

document
[3]

.

If the legacy GPE interrupt mechanism is not properly functional, it is best to decode and check the

platform’s ACPI tables. If any error is found in the DSDT table, it is possible to perform the proper

modifications and recompile the tables.

Tip:

To extract the DSDT ACPI table on a running Linux system, you can either use the acpidump utility or run

the following command as root:

cat /sys/firmware/acpi/tables/DSDT > dsdt.dat

The DSDT table can then be decompiled and recompiled using the iasl tool.

34

6 Application-level Analysis

Once the analysis focus has been narrowed down to one specific application, some more in-depth

measurements of its running processes need to be performed. There are a multitude of tools that can

help with this process. First, however, we must distinguish between the different power efficiency

problems an application could suffer from. In this section we will introduce two types of issues that are

commonly seen during our investigations and provide pointers and examples on how to debug them.

6.1 Busy-Wait Problems

One of the most predominant software problems on an idle machine is a busy-wait bug. A busy-wait

condition occurs when the software is repeatedly checking a certain condition until it is satisfied. This

keeps the CPU awake and is extremely power-hungry.

One busy-wait example we have encountered involved a service that is supposed to turn off the

touchpad when the user is typing on the keyboard. However, in the absence of a touchpad, the service

was stuck in a busy-wait loop, waiting for a touchpad to be connected to the system.

Now that we know what we should be looking for, we can start investigating ways to look for it.

As busy-wait loops are by definition repeatedly executing the same code, we can make the following

assumption: The code inside the loop may include a syscall, a library call, or only the software’s own

code. It follows then that to accurately determine whether the program is executing a busy-wait loop, it

suffices to monitor the system and library calls it is making. In the rare cases where only internal calls

are made, we can use a profiler to monitor the code execution.

To get a list of the system calls placed by a running process, we can use the strace tool, for example:

strace -i -p NNNN

In the above command, NNNN is the PID of the process we need to analyze. The -i parameter instructs

strace to output the instruction pointer at which the system call was placed. By visually monitoring for

repeating sequences of syscalls that start at the same instruction pointer, we can tell whether the

process is executing the same code indefinitely. Armed with the instruction pointer, we are indeed able

to locate where exactly in the assembly code the program is looping. See Converting a memory-mapped

instruction pointer to the actual pointer, followed by Disassembling with objdump. If the program

being inspected was built with debugging symbols enabled, then the disassembly should be more

informative and will allow us to more easily determine the cause of this behavior in the original source

code.

Monitoring the library calls placed by a program follows the same process as monitoring the system

calls, except that you should use the ltrace tool instead.

35

As for profiling, you can use the Perf tools available on Linux. For example, the following command

should work perfectly for this purpose:

perf top --call-graph --pid NNNN

In the above example, NNNN is the process PID. The top-ranking function call, or one of its parents, is

the guilty function of the busy-wait bug. This method benefits greatly from rebuilding the process with

debugging symbols enabled.

6.2 Non-Optimized Running State

A non-optimized application can manifest itself by generally being nonresponsive. On a system analysis

level, this could manifest itself in a few different ways: high CPU C0 residency, high number of context

switches per second, high number of page faults per second, etc. In the following sections, we list the

types of analysis that can be performed to pinpoint the issues.

6.3 IO Activity Analysis

Using fatrace, all file accesses made by the process can be monitored. This helps determine whether the

program is accessing the disk too often (which, apart from consuming CPU cycles, may keep the drive

from achieving more power-efficient sleep states). A sample call to fatrace would be:

fatrace --timestamp | grep \(NNNN\)

Where NNNN is the process PID. Judging from the timestamps and the expected program behavior, you

can make some guesses on whether the program is behaving correctly or not. One popular bug in this

case would be repeatedly opening and closing the same file instead of holding it open for as long as the

program needs it. Another popular, “not-so-power-efficient” behavior is constantly flushing a file

handle. This circumvents the operating system’s built-in opportunistic flushing mechanism that buffers

multiple file accesses and executes them when it is most appropriate to do so.

6.4 Utilization Analysis

Another approach to analyzing the program’s efficiency is using the Perf tools (outlined in Appendix A:

List of Analysis Tools). The functions with the highest residency should be optimized first. Keep in mind,

however, that knowing that a program is spending 76% of its time in one function isn’t very helpful if

you don’t know how much processor time the program is consuming. There will always be a function

that is used more than the others. Even if the program only calls it once every two seconds, and the

execution time is only 1 millisecond.

Therefore, when optimizing an application using the profiler, PowerTOP and SAR should be used

regularly to determine if the application is still inefficient.

36

7 Conclusion

Increasing the battery life of mobile devices offers more than environmental rewards. It brings about a

better user experience for the users by allowing them to be more and more mobile. As we showed in

this paper with examples, to achieve maximum power efficiency, all of the system components should

be working in perfect harmony. This suggests that serious effort is needed on all fronts from platform

hardware to user applications running on the platform. On the hardware level, chip vendors are working

hard on enabling new power-saving technologies. However, more often than not, these features require

special support from the operating system. Even then, one power-hungry application may be able to

break most of the platform’s power conservation features.

The methodology we described in this paper simplifies the process of power optimization and turns it

into a set of targeted measurements and decision steps. The measurements and tools described in the

paper do not require purchasing additional hardware resources or software tools, making power

efficiency analysis and optimization accessible to all stakeholders from driver developers for peripheral

devices, to application developers, to helpful hobbyists. Therefore power management analysis and

optimization should be a standard step in kernel, driver, and application development.

37

8 Glossary

ACPI Advanced Configuration and Power Interface. See http://www.acpi.info/

ASPM Active State Power Management is a feature of the PCIe bus that allows it to

downclock its numerous serial lanes to conserve power. The default running

state is L0, with L0s and L1 being power-saving states. Whenever a device is in

D3, however, the link state shifts to either L2 or L3. A properly functioning

ASPM mechanism allows for great power savings since it allows both the

device and the root PCIe bridge to consume less power.

Context Switch The execution of instructions on the processor has to run within a context.

Among other things, a context holds a process’s registers and stack entries.

This allows the operating system to switch between two running processes

without losing their state during the transition. Usually the kernel has its own

context. This means that whenever a process calls on a kernel function, the

scheduler has to switch to the kernel’s context before running that function.

This is the most common cause of “voluntary context switches.” “Involuntary

context switches,” on the other hand, occur whenever the scheduler decides

to switch out the running process in favor of another process. This is the basic

mechanism that allows multiple applications to run simultaneously on a

system. Context switches, while not prohibitively expensive when in low

numbers, can slow down a machine considerably if they occur too often.

Device Power States PCIe devices support three general power states: D0, D3 hot, and D3 cold. The

intermediary D1 and D2 states are optional and, more often than not, are

ignored by the hardware manufacturers. A device in the D0 state is fully

powered on and active. A device in the D3 hot state is suspended, yet still

powered using the PCIe bus. A device in the D3 cold state is also suspended;

however, power is only supplied via the Vaux rail of the PCIe bus.

DSDT Differentiated System Description Table is part of the ACPI configuration for a

system. It includes a platform-specific configuration that defines how the

operating system is to interact with the hardware.

GPE General Purpose Event

IRQ Interrupt ReQuest denotes an interrupt, whether hardware or software.

Page Fault A page fault occurs whenever a running process requests data that is not

immediately available in the closest memory space. Usually, a page fault is

mentioned in reference to a missing page in the RAM memory space. The

occurrence of a page fault forces the kernel to perform some changes in the

TLB entries. It may also force it to fetch some data from disk, which is a slow

operation.

38

PID Process ID, a unique number assigned to each running process that allows it to

be uniquely recognized and addressed.

PME Power Management Event is an interrupt raised by a device that indicates to

the system it should change its power state.

Processor C-States Processor idle states ranging from C0 to Cn, where C0 denotes an active

processor. The deeper the C-State, the more features are disabled on the

processor, allowing it to achieve lower power levels.

Processor P-States Processor frequency states ranging from P0 to Pn, where P0 denotes a

processor running at its rated frequency. The deeper the P-State, the more the

processor is downclocked to achieve lower power levels. Note however that P-

states only apply when the processor is in C0, actively executing instructions.

Processor Wakeups/s The number of times the processor is woken up from an idle state. The

processor wakes up whenever hardware or software interrupts are generated.

Hardware interrupts are generated by input devices, PCIe devices, etc.

Software interrupts, on the other hand, are generated by software timers

expiring.

SCI System Control Interrupt indicates an interrupt raised by a hardware device

that indicates a system-level change. Examples include PME and platform

power events.

Syscall Short for “System Call.” Denotes a call to a kernel function from a user-space

program. For example, calling read() on a file descriptor results in a

sys_read syscall that forces a context switch to execute this function in the

kernel.

39

9 Bibliography

[1] Firefox OS - Mozilla | MDN. (2013, May 19). Retrieved from https://developer.mozilla.org/en-

US/docs/Mozilla/Firefox_OS

[2] Google Corporation. (2013, January 26). Android. Retrieved from http://www.android.com

[3] Hewlett-Packard, Intel, Microsoft, Phoenix, and Toshiba. (2011, December 6). ACPI. Retrieved from

http://www.acpi.info/spec.htm

[4] Intel Corporation. (2013, May 21). Ultrabook(TM) Inspired by Intel. Retrieved from Intel Corporation

Website: http://www.intel.com/content/www/us/en/sponsors-of-tomorrow/ultrabook.html

[5] Open Handset Alliance. (2012, February 2). Android Overview | Open Handset Alliance. Retrieved

from Open Handset Alliance: http://www.openhandsetalliance.com/android_overview.html

[6] PCI-SIG. (2013). PCI-SIG - PCI Express. Retrieved from

http://www.pcisig.com/specifications/pciexpress/

[7] Phoronix Media. (2013). Phoronix Test Suite - Linux Testing & Benchmarking Platform, Automated

Testing Framework, Open-Source Benchmarking. Retrieved from http://www.phoronix-test-

suite.com/

[8] Sinofsky, S. (2011, November 8). Building a power-smart general-purpose Windows. Retrieved from

http://blogs.msdn.com/b/b8/archive/2011/11/08/building-a-power-smart-general-purpose-

windows.aspx

[9] Sinofsky, S. (2012, February 7). Improving power efficiency for applications. Retrieved from

http://blogs.msdn.com/b/b8/archive/2012/02/07/improving-power-efficiency-for-applications.aspx

[10] Ubuntu. (2013). The world's most popular free OS | Ubuntu. Retrieved from

http://www.ubuntu.com

40

10 Appendix A: List of Analysis Tools

Tool Usage

PowerTOP Intel-developed open-source tool that gathers information about:

- CPU usage of the running processes: usage, wakeups/sec, power estimate

- Total GPU operations/sec

- CPU idle-state residencies: C0 …. Cn

- CPU frequency-state residencies: P0 … Pn

- Device idle-state residencies

Use PowerTOP to also determine the most power-hungry processes.

Website: https://01.org/powertop/

SAR SAR is an open-source tool that is part of the sysstat package. It is more comprehensive

than PowerTOP in that it shows many more system statistics:

- Individual interrupts

- Memory

- Swap

- Page faults

- Disk I/O

- Network I/O

- Context switches

- Thermal

- Fans

- etc.

SAR is designed to collect data in the background using helper programs that are run as

cron jobs every X minutes. However, you can request fresh data at any time using the sar

command. If frequent data is needed, make sure to only request the minimal set of needed

data. The more information is requested, the more work SAR has to perform in order to

collect the results and, subsequently, the more impact it has on the results.

Website: http://sebastien.godard.pagesperso-orange.fr/

Eventstat Lists all the currently scheduled kernel timers along with the processes that scheduled

them

Fatrace A utility that provides disk I/O information per process on a file-access level.

Website: http://www.piware.de/2012/02/fatrace-report-system-wide-file-access-events/

PIDStat A utility that was developed by the author of SAR as a means to provide process-specific

statistics. These statistics range from processor/memory usage to context switches, stack

size, etc. As such, the amount of data reported by this utility can very easily become

cumbersome. You must either carefully pick the statistics to collect, or filter the results to a

few suspected processes.

Website: http://sebastien.godard.pagesperso-orange.fr/

STrace A Linux tool that collects information about all the system calls (and signals) that a process

is making. Tracing system calls is very helpful in determining, for example, whether the

program is stuck in an active-idle state where it is polling for events.

41

LTrace A tool that traces library calls made by a process. Its usage is almost identical to strace. One

extra parameter that is helpful is “-C”, which provides demangling

(http://en.wikipedia.org/wiki/Name_mangling) for library calls.

Lsof A tool that displays information about all open file descriptors on the system. Note that a

file descriptor on Linux does not necessarily describe an actual file. A file descriptor can

point to a file, a socket, or a pipe (among others). After running strace, you could be left

wondering what those file descriptors the process is polling actually point to. Thankfully,

this information is provided by lsof.

Perf Tools Perf is a set of performance analysis tools for Linux. These tools are very versatile and allow

you to monitor hardware (CPU/PMU) counters and software behavior. The three tools of

interest in this case are:

- Perf-top

- Perf-record

- Perf-report

Perf-top is best used when you suspect that the issue lies on the software-side. Since Perf-

top displays relative CPU usage statistics, it gives no information regarding how much the

process is actually hogging the CPU. It is therefore recommended to first run a different

analysis tool (e.g., PowerTOP) to determine if there are any problems on the platform. If

the CPU usage is high at idle, perf-top will come in handy in investigating that usage.

When analyzing a program, notice a function call that exhibits a high CPU usage in perf-top.

You must then check LTrace output for this same program to determine whether this is

due to the function being called at a very high frequency (which indicates a problem with

the calling program), due to the function inherently requiring a lot of CPU time (which

indicates either a problem with the function itself), or both.

Website: https://perf.wiki.kernel.org/index.php/Main_Page

42

11 Appendix B: Analysis Tricks

11.1 Converting a memory-mapped instruction pointer to the actual pointer

When a program is executed, the Linux kernel loads it into a memory location and begins executing the

instructions from the program’s entry point. GDB, STrace, and LTrace tools all deal with memory-

mapped instruction pointers since they are tracing processes that are already in memory. However, you

may want to know where exactly in the program the instruction is located, which is helpful when trying

to optimize the program’s code. When Linux kernel loads the program into memory, it stores the

memory location that it was loaded into inside a special file under /proc/<pid>/mem. This file stores

all the information about the memory mapping of the process. To find out where the actual process is

located, execute the following command:

root$> cat /proc/<pid>/mem | grep /path/to/process | grep x

This results in an output that resembles:

7f29c1c0f000-7f29c60e8000 r-xp 00000000 08:05 1839248 /path/to/process

The first two hexadecimal numbers are the actual memory range where the process resides.

All this means is that if converting a memory-mapped instruction pointer given by GDB or perf-top (e.g.,

0x00007f29c21cae11) to an actual instruction pointer is needed, you should subtract 0x7f29c1c0f000

(the base of the memory range) from it.

See Disassembling with objdump for an example explaining how to use objdump to disassemble a

process.

11.2 Disassembling with objdump

Objdump is one of the Linux tools that can be used to disassemble objects from object files. We will

focus only on -D option that is used as follows:

root$> objdump –C –D /path/to/process > disassembled.log

The above command disassembles the program, demangles

(http://en.wikipedia.org/wiki/Name_mangling) the function names, and stores the output in a file called

disassembled.log. It is now easy to look for the needed instruction pointer inside the disassembled.log

file using any text editor.

43

Notices

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS

OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS

DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL

ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO

SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A

PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER

INTELLECTUAL PROPERTY RIGHT.

UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR

ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL

INJURY OR DEATH MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not

rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel

reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities

arising from future changes to them. The information here is subject to change without notice. Do not finalize a

design with this information.

The products described in this document may contain design defects or errors known as errata which may cause

the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your

product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature,

may be obtained by calling 1-800-548-4725, or go to: http://www.intel.com/design/literature.htm

Software and workloads used in performance tests may have been optimized for performance only on Intel

microprocessors. Performance tests, such as SYSmark* and MobileMark*, are measured using specific computer

systems, components, software, operations, and functions. Any change to any of those factors may cause the

results to vary. You should consult other information and performance tests to assist you in fully evaluating your

contemplated purchases, including the performance of that product when combined with other products.

Any software source code reprinted in this document is furnished under a software license and may only be used

or copied in accordance with the terms of that license.

Intel, the Intel logo, and Ultrabook are trademarks of Intel Corporation in the U.S. and/or other countries.

Copyright © 2013 Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

