

Intel® MPI Library for Linux* OS

Developer Guide

1. Introduction
The Intel® MPI Library Developer Guide explains how to use the Intel® MPI Library in some common usage

scenarios. It provides information regarding compiling, running, debugging, tuning, and analyzing MPI

applications, as well as troubleshooting information.

This Developer Guide helps a user familiar with the message passing interface start using the Intel® MPI Library.

For full information, see the Intel® MPI Library Developer Reference.

1.1. Introducing Intel® MPI Library
The Intel® MPI Library is a multi-fabric message-passing library that implements the Message Passing

Interface, version 3.1 (MPI-3.1) specification. It provides a standard library across Intel® platforms that:

 Delivers best in class performance for enterprise, divisional, departmental and workgroup high

performance computing. The Intel® MPI Library focuses on improving application performance on

Intel® architecture based clusters.

 Enables you to adopt MPI-3.1 functions as your needs dictate

1.2. Conventions and Symbols
The following conventions are used in this document:

This type style Document or product names.

This type style Commands, arguments, options, file names.

THIS_TYPE_STYLE Environment variables.

<this type style> Placeholders for actual values.

[items] Optional items.

{ item | item } Selectable items separated by vertical bar(s).

1.3. Related Information
To get more information about the Intel® MPI Library, explore the following resources:

 Intel® MPI Library Release Notes for updated information on requirements, technical support, and

known limitations.

 Intel® MPI Library Developer Reference for in-depth knowledge of the product features, commands,

options, and environment variables.

 Intel® MPI Library for Linux* OS Knowledge Base for additional troubleshooting tips and tricks,

compatibility notes, known issues, and technical notes.

For additional resources, see:

https://software.intel.com/en-us/articles/intel-mpi-library-release-notes
https://software.intel.com/en-us/mpi-developer-reference-linux
http://software.intel.com/en-us/articles/intel-mpi-library-for-linux-kb/all

Introduction

2

 Intel® MPI Library Product Web Site

 Intel® Software Documentation Library

 Intel® Software Products Support

http://www.intel.com/go/mpi
http://software.intel.com/en-us/intel-software-technical-documentation
https://software.intel.com/en-us/support

2. Installation and Prerequisites

2.1. Installation
If you have a previous version of the Intel® MPI Library for Linux* OS installed, you do not need to uninstall it

before installing a newer version.

Extract the l_mpi[-rt]_p_<version>.<package_num>.tar.gz package by using following command:

$ tar –xvzf l_mpi[-rt]_p_<version>.<package_num>.tar.gz

This command creates the subdirectory l_mpi[-rt]_p_<version>.<package_num>.

To start installation, run install.sh. The default installation path for the Intel® MPI Library is

/opt/intel/compilers_and_libraries_<version>.<update>.<package#>/linux/mpi.

There are two different installations:

 RPM-based installation – this installation requires root password. The product can be installed either

on a shared file system or on each node of your cluster.

 Non-RPM installation – this installation does not require root access and it installs all scripts, libraries,

and files in the desired directory (usually $HOME for the user).

Scripts, include files, and libraries for different architectures are located in different directories. By default, you

can find binary files and all needed scripts under <installdir>/intel64 directory.

2.2. Prerequisite Steps
Before you start using any of the Intel® MPI Library functionality, make sure to establish the proper

environment for Intel MPI Library. Follow these steps:

1. Set up the Intel MPI Library environment. Source the mpivars.[c]sh script:

$. <installdir>/intel64/bin/mpivars.sh

By default, <installdir> is

/opt/intel/compilers_and_libraries_<version>.<update>.<package>/linux/mpi.

2. To run an MPI application on a cluster, Intel MPI Library needs to know names of all its nodes. Create a

text file listing the cluster node names. The format of the file is one name per line, and the lines

starting with # are ignored. To get the name of a node, use the hostname utility.

A sample host file may look as follows:

$ cat ./hosts

this line is ignored

clusternode1

clusternode2

clusternode3

clusternode4

3. For communication between cluster nodes, in most cases Intel MPI Library uses the SSH protocol. You

need to establish a passwordless SSH connection to ensure proper communication of MPI processes.

Intel MPI Library provides the sshconnectivity.exp script that helps you do the job. It

automatically generates and distributes SSH authentication keys over the nodes.

Installation and Prerequisites

4

The script is located at

/opt/intel/parallel_studio_xe_<version>.<update>.<package>/bin by default. Run the

script and pass the previously created host file as an argument.

If the script does not work for your system, try generating and distributing authentication keys

manually.

After completing these steps, you are ready to use Intel MPI Library.

3. Compiling and Linking

3.1. Compiling an MPI Program
This topic describes the basic steps required to compile and link an MPI program, using the Intel® MPI Library

SDK.

To simplify linking with MPI library files, Intel MPI Library provides a set of compiler wrapper scripts with the

mpi prefix for all supported compilers. To compile and link an MPI program, do the following:

1. Make sure you have a compiler in your PATH environment variable. For example, to check if you have

the Intel® C Compiler, enter the command:

$ which icc

If the command is not found, add the full path to your compiler into the PATH. For Intel® compilers,

you can source the compilervars.[c]sh script to set the required environment variables.

2. Source the mpivars.[c]sh script to set up the proper environment for Intel MPI Library. For

example, using the Bash* shell:

$. <installdir>/intel64/bin/mpivars.sh

3. Compile your MPI program using the appropriate compiler wrapper script. For example, to compile a C

program with the Intel® C Compiler, use the mpiicc script as follows:

$ mpiicc myprog.c -o myprog

You will get an executable file myprog in the current directory, which you can start immediately. For

instructions of how to launch MPI applications, see Running an MPI Program.

NOTE

By default, the resulting executable file is linked with the multi-threaded optimized library. If you need to use

another library configuration, see Selecting Library Configuration.

For details on the available compiler wrapper scripts, see the Developer Reference.

See Also

Intel® MPI Library Developer Reference, section Command Reference > Compiler Commands

3.1.1. Compiling an MPI/OpenMP* Program
To compile a hybrid MPI/OpenMP* program using the Intel® compiler, use the -qopenmp option. For example:

$ mpiicc -qopenmp test.c -o testc

This enables the underlying compiler to generate multi-threaded code based on the OpenMP* pragmas in the

source. For details on running such programs, refer to Running an MPI/OpenMP* Program.

3.1.2. Adding Debug Information
If you need to debug your application, add the -g option to the compilation command line. For example:

$ mpiicc -g test.c -o testc

This adds debug information to the resulting binary, enabling you to debug your application. Debug

information is also used by analysis tools like Intel® Trace Analyzer and Collector to map the resulting trace file

to the source code.

Compiling and Linking

6

3.1.3. Test MPI Programs
Intel® MPI Library comes with a set of source files for simple MPI programs that enable you to test your

installation. Test program sources are available for all supported programming languages and are located at

<installdir>/test, where <installdir> is

/opt/intel/compilers_and_libraries_<version>.x.xxx/linux/mpi by default.

3.2. Compilers Support
Intel® MPI Library supports the GCC* and Intel® compilers out of the box. It uses binding libraries to provide

support for different glibc versions and different compilers. These libraries provide C++, Fortran 77, Fortran

90, and Fortran 2008 interfaces.

The following binding libraries are used for GCC* and Intel® compilers:

 libmpicxx.{a|so} – for g++ version 3.4 or higher

 libmpifort.{a|so} – for g77/gfortran interface for GCC and Intel® compilers

Your application gets linked against the correct GCC* and Intel® compilers binding libraries, if you use one of

the following compiler wrappers: mpicc, mpicxx, mpifc, mpif77, mpif90, mpigcc, mpigxx, mpiicc,

mpiicpc, or mpiifort.

For other compilers, PGI* and Absoft* in particular, there is a binding kit that allows you to add support for a

certain compiler to the Intel® MPI Library. This binding kit provides all the necessary source files, convenience

scripts, and instructions you need, and is located in the <install_dir>/binding directory.

To add support for the PGI* C, PGI* Fortran 77, Absoft* Fortran 77 compilers, you need to manually create the

appropriate wrapper script (see instructions in the binding kit Readme). When using these compilers, keep in

mind the following limitations:

 Your PGI* compiled source files must not transfer long double entities

 Your Absoft* based build procedure must use the -g77, -B108 compiler options

To add support for the PGI* C++, PGI* Fortran 95, Absoft* Fortran 95, and GNU* Fortran 95 (4.0 and newer)

compilers, you need to build extra binding libraries. Refer to the binding kit Readme for detailed instructions.

3.3. ILP64 Support
The term ILP64 denotes that integer, long, and pointer data entities all occupy 8 bytes. This differs from the

more conventional LP64 model, in which only long and pointer data entities occupy 8 bytes while integer

entities occupy 4 bytes. More information on the historical background and the programming model

philosophy can be found, for example, in http://www.unix.org/version2/whatsnew/lp64_wp.html

Intel® MPI Library provides support for the ILP64 model for Fortran applications. To enable the ILP64 mode,

do the following:

Use the Fortran compiler wrapper option -i8 for separate compilation and the -ilp64 option for separate

linking. For example:

$ mpiifort -i8 -c test.f

$ mpiifort -ilp64 -o test test.o

For simple programs, use the Fortran compiler wrapper option -i8 for compilation and linkage. Specifying -

i8 will automatically assume the ILP64 library. For example:

$ mpiifort -i8 test.f

When running the application, use the -ilp64 option to preload the ILP64 interface. For example:

Intel® MPI Library Developer Guide for Linux* OS

7

$ mpirun -ilp64 -n 2 ./myprog

The following limitations are present in the Intel MPI Library in regard to this functionality:

 Data type counts and other arguments with values larger than 231 - 1 are not supported.

 Special MPI types MPI_FLOAT_INT, MPI_DOUBLE_INT, MPI_LONG_INT, MPI_SHORT_INT,

MPI_2INT, MPI_LONG_DOUBLE_INT, MPI_2INTEGER are not changed and still use a 4-byte integer

field.

 Predefined communicator attributes MPI_APPNUM, MPI_HOST, MPI_IO, MPI_LASTUSEDCODE,

MPI_TAG_UB, MPI_UNIVERSE_SIZE, and MPI_WTIME_IS_GLOBAL are returned by the functions

MPI_GET_ATTR and MPI_COMM_GET_ATTR as 4-byte integers. The same holds for the predefined

attributes that may be attached to the window and file objects.

 Do not use the -i8 option to compile MPI callback functions, such as error handling functions, or

user-defined reduction operations.

 Do not use the -i8 option with the deprecated functions that store or retrieve the 4-byte integer

attribute (for example, MPI_ATTR_GET, MPI_ATTR_PUT, etc.). Use their recommended alternatives

instead (MPI_COMM_GET_ATTR, MPI_COMM_SET_ATTR, etc).

 If you want to use the Intel® Trace Collector with the Intel MPI Library ILP64 executable files, you must

use a special Intel Trace Collector library. If necessary, the mpiifort compiler wrapper will select the

correct Intel Trace Collector library automatically.

 There is currently no support for C and C++ applications.

4. Running Applications

4.1. Running Intel® MPI Library in Containers
A container is a self-contained execution environment platform that enable flexibility and portability of your

MPI application. It allows to package an application and its dependencies in a virtual container that can run on

an operating system, such as Linux*.

Singularity* is a lightweight container model aligned with the needs of High Performance Computing (HPC).

Singularity has a built-in support of MPI and allows you to leverage the resources of the host you are on,

including HPC interconnects, resource managers, and accelerators.

This chapter provides information on running Intel® MPI Library in a Singularity container built from a recipe

file. To run Intel® MPI Library in a Singularity environment, do the following:

1. Take prerequisite steps.

2. Create a Singularity recipe file.

3. Build a container from the recipe file.

4. Launch your MPI application from a Singularity container using a multiple node launch.

4.1.1. Prerequisite Steps
Before running Intel® MPI Library in a Singularity* container, make sure you have the following components

installed on each machine of a cluster:

1. Singularity. Refer to the official documentation for installation steps.

2. A container.

3. Intel MPI Library.

See Also

Singularity Official Documentation

4.1.2. Build a Singularity* Container for an MPI Application
There are several ways to build Singularity* containers described in the Singularity official documentation.

This section demonstrates how to build a container for an MPI application from scratch using recipes.

Singularity recipes are files that include software requirements, environment variables, metadata, and other

useful details for designing a custom container.

Recipe File Structure

A recipe file consists of the header and sections. The header part defines the core operating system and core

packages to be installed. In particular:

 Bootstrap - specifies the bootstrap module.

 OSVersion - specifies the OS version. Required if only you have specified the %{OSVERSION} variable

in MirrorURL.

 MirrorURL - specifies the URL to use as a mirror to download the OS.

 Include - specifies additional packages to be installed into the core OS (optional).

https://www.sylabs.io/docs/

Intel® MPI Library Developer Guide for Linux* OS

9

The content of a recipe file is divided into sections that execute commands at different times during the build

process. The build process stops if a command fails. The main sections of a recipe are:

 %help - provides help information.

 %setup - executes commands on the host system outside of the container after the base OS is

installed.

 %post - executes commands within the container after the base OS has been installed at build time.

 %environment - adds environment variables sourced at runtime. If you need environment variables

sourced during build time, define them in the %post section.

Sample Recipe File

This recipe file illustrates how to install Intel MPI Benchmarks in a container. To run your own application,

customize the recipe with your application configuration and workload.

BootStrap: yum

OSVersion: 7

MirrorURL: <URL>

Include: yum

%setup

installing runtime for host machine ###

yum-config-manager --add-repo https://yum.repos.intel.com/mpi/setup/intel-mpi.repo

yum install intel-mpi-2019.1-053 -y

source

/opt/intel/compilers_and_libraries_2019.1.144/linux/mpi/intel64/bin/mpivars.sh -

ofi_internal

base=`pwd`

echo "Get IMB code"

rm -rf mpi-benchmarks

git clone https://github.com/intel/mpi-benchmarks.git

cd mpi-benchmarks

echo "Build the code "

CC=mpicc CXX=mpicxx make IMB-MPI1

Build benchmarks ###

mkdir -p $SINGULARITY_ROOTFS/benchmarks

if [! -x "$SINGULARITY_ROOTFS/benchmarks"]; then

 echo "failed to create benchmarks directory..."

 exit 1

fi

echo "Copy all the binaries and anything else needed to run your binaries"

cp $base/mpi-benchmarks/IMB-MPI1 $SINGULARITY_ROOTFS/benchmarks

chmod -R 777 $SINGULARITY_ROOTFS/benchmarks

install OPA ###

mkdir -p $SINGULARITY_ROOTFS/tempdir

if [! -x "$SINGULARITY_ROOTFS/tempdir"]; then

 echo "failed to create tempdir directory..."

 exit 1

fi

cp -r $base/IntelOPA-IFS.RHEL74-x86_64.10.8.0.2.1/. $SINGULARITY_ROOTFS/tempdir

if [! -x "$SINGULARITY_ROOTFS/tempdir/INSTALL"]; then

 echo "No INSTALL in directory..."

 exit 1

fi

exit 0

Running Applications

10

%post

installing runtime libs for virtual machines ###

yum -y install perl atlas libpsm2 infinipath-psm libibverbs qperf pciutils tcl tcsh

expect sysfsutils

yum -y install librdmacm libibcm perftest rdma bc elfutils-libelf-developenssh-

clients openssh-server

yum -y install libstdc++-devel gcc-gfortran rpm-buildx compat-rdma-devel libibmad

libibumad

yum -y install ibacm-devel libibumad-devel libibumad-static libuuid-devel pci-utils

which

yum -y install iproute net-tools libhfi1 opensm-libs numactl-libs numactl

yum install -y yum-utils

yum-config-manager --add-repo https://yum.repos.intel.com/mpi/setup/intel-mpi.repo

yum install -y intel-mpi-2019.1-053

install OPA driver ###

cd tempdir ; ./INSTALL --user-space -n ; cd ..; rm -rf tempdir

source

/opt/intel/compilers_and_libraries_2019.1.144/linux/mpi/intel64/bin/mpivars.sh

Build a Container

After the recipe file is created, use it to create a Singularity container. The example below shows how to build a

container with default parameters:

$ singularity build mpi.img ./Singularity_recipe_mpi

You can now launch your MPI application from a Singularity container.

4.1.3. Launch an MPI Application from a Singulairty* Container
For multiple node execution, use mpirun or other job manager (SLURM*, LFS*, TORQUE*) to launch the

parallel job:

$ mpirun -n <processes_num> -hostlist <hosts> singularity exec <container_name>

During this launch, one MPI rank corresponds to one Singularity environment (see image below).

Intel® MPI Library Developer Guide for Linux* OS

11

4.2. Selecting Library Configuration
You can specify a particular configuration of the Intel® MPI Library to be used, depending on your purposes.

This can be a library optimized for multi-threading debug or release version with the global or per-object lock.

To specify the configuration, source the mpivars.[c]sh script with release, debug, release_mt, or

debug_mt argument. For example:

$. <installdir>/intel64/bin/mpivars.sh release

You can use the following arguments:

Argument Definition

release Set this argument to use multi-threaded optimized library (with the global lock).

This is the default value

debug Set this argument to use multi-threaded debug library (with the global lock)

release_mt Set this argument to use multi-threaded optimized library (with per-object lock for

the thread-split model)

debug_mt Set this argument to use multi-threaded debug library (with per-object lock for

the thread-split model)

NOTE

You do not need to recompile the application to change the configuration. Source the mpivars.[c]sh script

with appropriate arguments before an application launch.

Alternatively, if your shell does not support sourcing with arguments, you can use the I_MPI_LIBRARY_KIND

environment variable to set an argument for mpivars.[c]sh. See the Intel® MPI Library Developer Reference

for details.

4.3. Running an MPI Program
Before running an MPI program, place it to a shared location and make sure it is accessible from all cluster

nodes. Alternatively, you can have a local copy of your program on all the nodes. In this case, make sure the

paths to the program match.

Run the MPI program using the mpirun command. The command line syntax is as follows:

$ mpirun -n <# of processes> -ppn <# of processes per node> -f <hostfile> ./myprog

For example:

$ mpirun -n 4 -ppn 2 -f hosts ./myprog

In the command line above:

 -n sets the number of MPI processes to launch; if the option is not specified, the process manager

pulls the host list from a job scheduler, or uses the number of cores on the machine.

 -ppn sets the number of processes to launch on each node; if the option is not specified, processes

are assigned to the physical cores on the first node; if the number of cores is exceeded, the next node

is used.

Running Applications

12

 -f specifies the path to the host file listing the cluster nodes; alternatively, you can use the -hosts

option to specify a comma-separated list of nodes; if hosts are not specified, the local node is used.

 myprog is the name of your MPI program.

The mpirun command is a wrapper around the mpiexec.hydra command, which invokes the Hydra process

manager. Consequently, you can use all mpiexec.hydra options with the mpirun command.

For the list of all available options, run mpirun with the -help option, or see the Intel® MPI Library Developer

Reference, section Command Reference > Hydra Process Manager Command.

NOTE

The commands mpirun and mpiexec.hydra are interchangeable. However, you are recommended to use

the mpirun command for the following reasons:

 You can specify all mpiexec.hydra options with the mpirun command.

 The mpirun command detects if the MPI job is submitted from within a session allocated using a job

scheduler like PBS Pro* or LSF*. Thus, you are recommended to use mpirun when an MPI program is

running under a batch scheduler or job manager.

See Also

Controlling Process Placement

Job Schedulers Support

4.4. Running an MPI/OpenMP* Program
To run a hybrid MPI/OpenMP* program, follow these steps:

1. Make sure the thread-safe (debug or release, as desired) Intel® MPI Library configuration is enabled

(release is the default version). To switch to such a configuration, source mpivars.[c]sh with the

appropriate argument, see Selecting Library Configuration for details. For example:

$ source mpivars.sh release

2. Set the I_MPI_PIN_DOMAIN environment variable to specify the desired process pinning scheme. The

recommended value is omp:

$ export I_MPI_PIN_DOMAIN=omp

This sets the process pinning domain size to be equal to OMP_NUM_THREADS. Therefore, if for example

OMP_NUM_THREADS is equal to 4, each MPI process can create up to four threads within the

corresponding domain (set of logical processors). If OMP_NUM_THREADS is not set, each node is

treated as a separate domain, which allows as many threads per MPI process as there are cores.

NOTE

For pinning OpenMP* threads within the domain, use the Intel® compiler KMP_AFFINITY environment

variable. See the Intel compiler documentation for more details.

3. Run your hybrid program as a regular MPI program. You can set the OMP_NUM_THREADS and

I_MPI_PIN_DOMAIN variables directly in the launch command. For example:

$ mpirun -n 4 -genv OMP_NUM_THREADS=4 -genv I_MPI_PIN_DOMAIN=omp ./myprog

Intel® MPI Library Developer Guide for Linux* OS

13

See Also

Intel® MPI Library Developer Reference, section Tuning Reference > Process Pinning > Interoperability with

OpenMP*.

4.5. MPMD Launch Mode
Intel® MPI Library supports the multiple programs, multiple data (MPMD) launch mode. There are two ways to

do this.

The easiest way is to create a configuration file and pass it to the -configfile option. A configuration file

should contain a set of arguments for mpirun, one group per line. For example:

$ cat ./mpmd_config

-n 1 -host node1 ./io <io_args>

-n 4 -host node2 ./compute <compute_args_1>

-n 4 -host node3 ./compute <compute_args_2>

$ mpirun -configfile mpmd_config

Alternatively, you can pass a set of options to the command line by separating each group with a colon:

$ mpirun -n 1 -host node1 ./io <io_args> :\

-n 4 -host node2 ./compute <compute_args_1> :\

-n 4 -host node3 ./compute <compute_args_2>

The examples above are equivalent. The io program is launched as one process on node1, and the compute

program is launched on node2 and node3 as four processes on each.

When an MPI job is launched, the working directory is set to the working directory of the machine where the

job is launched. To change this, use the -wdir <path>.

Use –env <var> <value> to set an environment variable for only one argument set. Using –genv instead

applies the environment variable to all argument sets. By default, all environment variables are propagated

from the environment during the launch.

4.6. Fabrics Control
The Intel® MPI Library switched from the Open Fabrics Alliance* (OFA) framework to the Open Fabrics

Interfaces* (OFI) framework and currently supports libfabric*.

Note

The supported fabric environment has changed since Intel® MPI Library 2017 Update 1. The dapl, tcp, tmi,

and ofa fabrics are now deprecated.

OFI is a framework focused on exporting communication services to applications. OFI is specifically designed

to meet the performance and scalability requirements of high-performance computing (HPC) applications

running in a tightly coupled network environment. The key components of OFI are application interfaces,

provider libraries, kernel services, daemons, and test applications.

Libfabric is a library that defines and exports the user-space API of OFI, and is typically the only software that

applications deal with directly. The libfabric's API does not depend on the underlying networking protocols, as

well as on the implementation of the particular networking devices, over which it may be implemented. OFI is

based on the notion of application centric I/O, meaning that the libfabric library is designed to align fabric

services with application needs, providing a tight semantic fit between applications and the underlying fabric

hardware. This reduces overall software overhead and improves application efficiency when transmitting or

receiving data over a fabric.

Running Applications

14

4.6.1. Selecting Fabrics
Intel® MPI Library enables you to select a communication fabric at runtime without having to recompile your

application. By default, it automatically selects the most appropriate fabric based on your software and

hardware configuration. This means that in most cases you do not have to bother about manually selecting a

fabric.

However, in certain situations specifying a particular communication fabric can boost performance of your

application. The following fabrics are available:

Fabric Network hardware and software used

shm Shared memory (for intra-node communication only).

ofi OpenFabrics Interfaces* (OFI)-capable network fabrics, such as Intel® True Scale Fabric, Intel®

Omni-Path Architecture, InfiniBand* and Ethernet (through OFI API).

Use the I_MPI_FABRICS environment variable to specify a fabric. The description is available in the

Developer Reference, section Tuning Reference > Fabrics Control.

4.6.2. libfabric* Support
By defaut, mpivars.[c]sh sets the environment to libfabric shipped with the Intel MPI Library.

To disable this, use the I_MPI_OFI_LIBRARY_INTERNAL environment variable or the -ofi_internal

option passed to the mpivars.[c]sh script:

$ source <installdir>/intel64/bin/mpivars.sh -ofi_internal=0 # do not set the

environment to libfabric from the Intel MPI Library

$ source <installdir>/intel64/bin/mpivars.sh -ofi_internal=1 # set the environment

to libfabric from the Intel MPI Library

$ source <installdir>/intel64/bin/mpivars.sh # a short form of -ofi-internal=1

NOTE

Set the I_MPI_DEBUG environment variable to 1 before running an MPI application to see the libfabric version

and provider.

Example

$ export I_MPI_DEBUG=1

$ mpiexec -n 1 IMB-MPI1 -help

[0] MPI startup(): libfabric version: 1.5.0

[0] MPI startup(): libfabric provider: psm2

...

See Also

For more information, see Working with libfabric* on Intel® MPI Library Cluster Systems.

Intel® MPI Library Developer Reference, section Environment Variables Reference > Environment Variables for

Fabrics Control > OFI-capable Network Fabrics Control

https://software.intel.com/en-us/articles/a-bkm-for-working-with-libfabric-on-a-cluster-system-when-using-intel-mpi-library

Intel® MPI Library Developer Guide for Linux* OS

15

4.6.3. OFI* Providers Support
Intel® MPI Library supports psm2, sockets, verbs, and RxM OFI* providers. Each OFI provider is built as a

separate dynamic library to ensure that a single libfabric* library can be run on top of different network

adapters. To specify the path to provider libraries, set the FI_PROVIDER_PATH environment variable.

To get a full list of environment variables available for configuring OFI, run the following command:

$ fi_info -e

psm2

The PSM2 provider runs over the PSM 2.x interface supported by the Intel® Omni-Path Fabric. PSM 2.x has all

the PSM 1.x features, plus a set of new functions with enhanced capabilities. Since PSM 1.x and PSM 2.x are

not application binary interface (ABI) compatible, the PSM2 provider works with PSM 2.x only and does not

support Intel True Scale Fabric.

The following runtime parameters can be used:

Name Description

FI_PSM2_INJECT_SIZE Define the maximum message size allowed for fi_inject and fi_tinject

calls. The default value is 64.

FI_PSM2_LAZY_CONN Control the connection mode established between PSM2 endpoints that OFI

endpoints are built on top of. When set to 0 (eager connection mode),

connections are established when addresses are inserted into the address vector.

When set to 1 (lazy connection mode), connections are established when

addresses are used the first time in communication.

NOTE

Lazy connection mode may reduce the start-up time on large systems at the

expense of higher data path overhead.

sockets

The sockets provider is a general purpose provider that can be used on any system that supports TCP sockets.

The provider is not intended to provide performance improvements over regular TCP sockets, but rather to

allow developers to write, test, and debug application code even on platforms that do not have high-

performance fabric hardware. The sockets provider supports all libfabric provider requirements and

interfaces.

The following runtime parameters can be used:

Name Description

FI_SOCKETS_IFACE Define the prefix or the name of the

network interface. By default, it uses

any.

verbs

The verbs provider enables applications using OFI to be run over any verbs hardware (InfiniBand*, iWarp*, and

so on). It uses the Linux Verbs API for network transport and provides a translation of OFI calls to appropriate

verbs API calls. It uses librdmacm for communication management and libibverbs for other control and data

transfer operations.

Running Applications

16

The verbs provider uses RxM utility provider to emulate FI_EP_RDM endpoint over verbs FI_EP_MSG

endpoint by default. The verbs provider with FI_EP_RDM endpoint can be used instead of RxM by setting the

FI_PROVIDER=^ofi_rxm runtime parameter.

The following runtime parameters can be used:

Name Description

FI_VERBS_INLINE_SIZE Define the maximum message

size allowed for fi_inject and

fi_tinject calls. The default

value is 64.

FI_VERBS_IFACE Define the prefix or the full

name of the network interface

associated with the verbs

device. By default, it is ib.

FI_VERBS_MR_CACHE_ENABLE Enable Memory Registration

caching. The default value is 0.

NOTE

Set the value to 1 to increase

bandwidth for medium and

large messages.

Dependencies

The verbs provider requires libibverbs (v1.1.8 or newer) and librdmacm (v1.0.16 or newer). If you are compiling

libfabric from source and want to enable verbs support, it is essential to have the matching header files for the

above two libraries. If the libraries and header files are not in default paths, specify them in the CFLAGS,

LDFLAGS, and LD_LIBRARY_PATH environment variables.

RxM

The RxM (RDM over MSG) provider (ofi_rxm) is a utility provider that supports FI_EP_RDM endpoint

emulated over FI_EP_MSG endpoint of the core provider.

RxM provider requires the core provider to support the following features:

 MSG endpoints (FI_EP_MSG)

 FI_MSG transport (to support data transfers)

 FI_RMA transport (to support rendezvous protocol for large messages and RMA transfers)

 FI_OPT_CM_DATA_SIZE of at least 24 bytes

The following runtime parameters can be used:

Name Description

FI_OFI_RXM_BUFFER_SIZE Define the transmit buffer size/inject size. Messages of smaller size are

transmitted via an eager protocol and those above would be transmitted via

a rendezvous protocol. Transmitted data is copied up to the specified size. By

default, the size is 16k.

Intel® MPI Library Developer Guide for Linux* OS

17

FI_OFI_RXM_SAR_LIMIT Сontrol the RxM SAR (Segmentation аnd Reassembly) protocol. Messages of

greater size are transmitted via rendezvous protocol.

FI_OFI_RXM_USE_SRX Control the RxM receive path. If the variable is set to 1, the RxM uses Shared

Receive Context of the core provider. The default value is 0.

NOTE

Setting this variable to 1 improves memory consumption, but may increase

small message latency as a side-effect.

4.7. Job Schedulers Support
Intel® MPI Library supports the majority of commonly used job schedulers in the HPC field.

The following job schedulers are supported on Linux* OS:

 Altair* PBS Pro*

 Torque*

 OpenPBS*

 IBM* Platform LSF*

 Parallelnavi* NQS*

 SLURM*

 Univa* Grid Engine*

The support is implemented in the mpirun wrapper script. mpirun detects the job scheduler under which it is

started by checking specific environment variables and then chooses the appropriate method to start an

application.

4.7.1. Altair* PBS Pro*, TORQUE*, and OpenPBS*
If you use one of these job schedulers, and $PBS_ENVIRONMENT exists with the value PBS_BATCH or

PBS_INTERACTIVE, mpirun uses $PBS_NODEFILE as a machine file for mpirun. You do not need to specify

the –machinefile option explicitly.

An example of a batch job script may look as follows:

#PBS –l nodes=4:ppn=4

#PBS –q queue_name

cd $PBS_O_WORKDIR

mpirun –n 16 ./myprog

4.7.2. IBM* Platform LSF*
If you use the IBM* Platform LSF* job scheduler, and $LSB_MCPU_HOSTS is set, it will be parsed to get the list

of hosts for the parallel job. $LSB_MCPU_HOSTS does not store the main process name, therefore the local

host name will be added to the top of the hosts list. Based on this host list, a machine file for mpirun is

generated with a unique name: /tmp/lsf_${username}.$$. The machine file is removed when the job is

complete.

For example, to submit a job, run the command:

$ bsub -n 16 mpirun -n 16 ./myprog

Running Applications

18

4.7.3. Parallelnavi NQS*
If you use Parallelnavi NQS* job scheduler and the $ENVIRONMENT, $QSUB_REQID, $QSUB_NODEINF options

are set, the $QSUB_NODEINF file is used as a machine file for mpirun. Also, /usr/bin/plesh is used as

remote shell by the process manager during startup.

4.7.4. SLURM*
If the $SLURM_JOBID is set, the $SLURM_TASKS_PER_NODE, $SLURM_NODELIST environment variables will

be used to generate a machine file for mpirun. The name of the machine file is

/tmp/slurm_${username}.$$. The machine file will be removed when the job is completed.

For example, to submit a job, run the command:

$ srun -N2 --nodelist=host1,host2 -A

$ mpirun -n 2 ./myprog

4.7.5. Univa* Grid Engine*
If you use the Univa* Grid Engine* job scheduler and the $PE_HOSTFILE is set, then two files will be

generated: /tmp/sge_hostfile_${username}_$$ and /tmp/sge_machifile_${username}_$$. The

latter is used as the machine file for mpirun. These files are removed when the job is completed.

4.7.6. SIGINT, SIGTERM Signals Intercepting
If resources allocated to a job exceed the limit, most job schedulers terminate the job by sending a signal to all

processes.

For example, Torque* sends SIGTERM three times to a job and if this job is still alive, SIGKILL will be sent to

terminate it.

For Univa* Grid Engine*, the default signal to terminate a job is SIGKILL. Intel® MPI Library is unable to

process or catch that signal causing mpirun to kill the entire job. You can change the value of the termination

signal through the following queue configuration:

1. Use the following command to see available queues:

$ qconf -sql

2. Execute the following command to modify the queue settings:

$ qconf -mq <queue_name>

3. Find terminate_method and change signal to SIGTERM.

4. Save queue configuration.

4.7.7. Controlling Per-Host Process Placement
When using a job scheduler, by default Intel MPI Library uses per-host process placement provided by the

scheduler. This means that the -ppn option has no effect. To change this behavior and control process

placement through -ppn (and related options and variables), use the

I_MPI_JOB_RESPECT_PROCESS_PLACEMENT environment variable:

$ export I_MPI_JOB_RESPECT_PROCESS_PLACEMENT=off

4.8. Controlling Process Placement
Placement of MPI processes over the cluster nodes plays a significant role in application performance. Intel®

MPI Library provides several options to control process placement.

Intel® MPI Library Developer Guide for Linux* OS

19

By default, when you run an MPI program, the process manager launches all MPI processes specified with -n

on the current node. If you use a job scheduler, processes are assigned according to the information received

from the scheduler.

4.8.1. Specifying Hosts
You can explicitly specify the nodes on which you want to run the application using the -hosts option. This

option takes a comma-separated list of node names as an argument. Use the -ppn option to specify the

number of processes per node. For example:

$ mpirun -n 4 -ppn 2 -hosts node1,node2 ./testc

Hello world: rank 0 of 4 running on node1

Hello world: rank 1 of 4 running on node1

Hello world: rank 2 of 4 running on node2

Hello world: rank 3 of 4 running on node2

To get the name of a node, use the hostname utility.

An alternative to using the -hosts option is creation of a host file that lists the cluster nodes. The format of

the file is one name per line, and the lines starting with # are ignored. Use the -f option to pass the file to

mpirun. For example:

$ cat ./hosts

#nodes

node1

node2

$ mpirun -n 4 -ppn 2 -f hosts ./testc

This program launch produces the same output as the previous example.

If the -ppn option is not specified, the process manager assigns as many processes to the first node as there

are physical cores on it. Then the next node is used. That is, assuming there are four cores on node1 and you

launch six processes overall, four processes are launched on node1, and the remaining two processes are

launched on node2. For example:

$ mpirun -n 6 -hosts node1,node2 ./testc

Hello world: rank 0 of 6 running on node1

Hello world: rank 1 of 6 running on node1

Hello world: rank 2 of 6 running on node1

Hello world: rank 3 of 6 running on node1

Hello world: rank 4 of 6 running on node2

Hello world: rank 5 of 6 running on node2

NOTE

If you use a job scheduler, specifying hosts is unnecessary. The processes manager uses the host list provided

by the scheduler.

4.8.2. Using Machine File
A machine file is similar to a host file with the only difference that you can assign a specific number of

processes to particular nodes directly in the file. Contents of a sample machine file may look as follows:

$ cat ./machines

node1:2

node2:2

Specify the file with the -machine option. Running a simple test program produces the following output:

$ mpirun -machine machines ./testc

Hello world: rank 0 of 4 running on node1

Hello world: rank 1 of 4 running on node1

Running Applications

20

Hello world: rank 2 of 4 running on node2

Hello world: rank 3 of 4 running on node2

4.8.3. Using Argument Sets
Argument sets are unique groups of arguments specific to a particular node. Combined together, the

argument sets make up a single MPI job. You can provide argument sets on the command line, or in a

configuration file. To specify a node, use the -host option.

On the command line, argument sets should be separated by a colon ':'. Global options (applied to all

argument sets) should appear first, and local options (applied only to the current argument set) should be

specified within an argument set. For example:

$ mpirun -genv I_MPI_DEBUG=2 -host node1 -n 2 ./testc : -host node2 -n 2 ./testc

In the configuration file, each argument set should appear on a new line. Global options should appear on the

first line of the file. For example:

$ cat ./config

-genv I_MPI_DEBUG=2

-host node1 -n 2 ./testc

-host node2 -n 2 ./testc

Specify the configuration file with the -configfile option:

$ mpirun -configfile config

Hello world: rank 0 of 4 running on node1

Hello world: rank 1 of 4 running on node1

Hello world: rank 2 of 4 running on node2

Hello world: rank 3 of 4 running on node2

See Also

Controlling Process Placement with the Intel® MPI Library (online article)

Job Schedulers Support

4.9. Java* MPI Applications Support
Intel® MPI Library provides an experimental feature to enable support for Java MPI applications. Java bindings

are available for a subset of MPI-2 routines. For a full list of supported routines, refer to the Developer

Reference, section Miscellaneous > Java* Bindings for MPI-2 Routines.

4.9.1. Running Java* MPI applications
Follow these steps to set up the environment and run your Java* MPI application:

1. Source mpivars.sh from the Intel® MPI Library package to set up all required environment variables,

including LIBRARY_PATH and CLASSPATH.

2. Build your Java MPI application as usual.

3. Update CLASSPATH with the path to the jar application or pass it explicitly with the –cp option of the

java command.

4. Run your Java MPI application using the following command:

$ mpirun <options> java <app>

where:

o <options> is a list of mpirun options

o <app> is the main class of your Java application

https://software.intel.com/en-us/articles/controlling-process-placement-with-the-intel-mpi-library

Intel® MPI Library Developer Guide for Linux* OS

21

For example:

$ mpirun -n 8 -ppn 1 –f ./hostfile java mpi.samples.Allreduce

Sample Java MPI applications are available in the <install_dir>/test folder.

4.9.2. Development Recommendations
You can use the following tips when developing Java* MPI applications:

 To reduce memory footprint, you can use Java direct buffers as buffer parameters of collective

operations in addition to using Java arrays. This approach allows you to allocate the memory out of

the JVM heap and avoid additional memory copying when passing the pointer to the buffer from JVM

to the native layer.

 When you create Java MPI entities such as Group, Comm, Datatype, and similar, memory is allocated

on the native layer and is not tracked by the garbage collector. Therefore, this memory must be

released explicitly. Pointers to the allocated memory are stored in a special pool and can be

deallocated using one of the following methods:

o entity.free(): frees the memory backing the entity Java object, which can be an instance of

Comm, Group, etc.

o AllocablePool.remove(entity): frees the memory backing the entity Java object, which

can be an instance of Comm, Group, etc.

o AllocablePool.cleanUp(): explicitly deallocates the memory backing all Java MPI objects

created by that moment.

o MPI.Finalize(): implicitly deallocates the memory backing all Java MPI objects and that has not

been explicitly deallocated by that moment.

5. Debugging
This section explains how to debug MPI applications using the debugger tools

5.1. Debugging
Intel® MPI Library supports the GDB* and Allinea* DDT debuggers for debugging MPI applications. Before

using a debugger, make sure you have the application debug symbols available. To generate debug symbols,

compile your application with the -g option.

5.1.1. GDB*: The GNU* Project Debugger
Use the following command to launch the GDB* debugger with Intel® MPI Library:

$ mpirun -gdb -n 4 ./testc

You can work with the GDB debugger as you usually do with a single-process application. For details on how

to work with parallel programs, see the GDB documentation at http://www.gnu.org/software/gdb/.

You can also attach to a running job with:

$ mpirun -n 4 -gdba <pid>

Where <pid> is the process ID for the running MPI process.

5.1.2. DDT* Debugger
You can debug MPI applications using the Allinea* DDT* debugger. Intel does not provide support for this

debugger, you should obtain the support from Allinea*. According to the DDT documentation, DDT supports

the Express Launch feature for the Intel® MPI Library. You can debug your application as follows:

$ ddt mpirun -n <# of processes> [<other mpirun arguments>] <executable>

If you have issues with the DDT debugger, refer to the DDT documentation for help.

5.2. Using -gtool for Debugging
The -gtool runtime option can help you with debugging, when attaching to several processes at once.

Instead of attaching to each process individually, you can specify all the processes in a single command line.

For example:

$ mpirun -n 16 -gtool "gdb:3,5,7-9=attach" ./myprog

The command line above attaches the GNU* Debugger (GDB*) to processes 3, 5, 7, 8 and 9.

See Also

Intel® MPI Library Developer Reference, section Command Reference > Hydra Process Manager Command >

Global Options > gtool Options

6. Analysis and Tuning
Intel® MPI Library provides a variety of options for analyzing MPI applications. Some of these options are

available within the Intel MPI Library, while some require additional analysis tools. For such tools, Intel MPI

Library provides compilation and runtime options and environment variables for easier interoperability.

6.1. Displaying MPI Debug Information
The I_MPI_DEBUG environment variable provides a convenient way to get detailed information about an MPI

application at runtime. You can set the variable value from 0 (the default value) to 1000. The higher the value,

the more debug information you get. For example:

$ mpirun -genv I_MPI_DEBUG=2 -n 2 ./testc

[1] MPI startup(): Internal info: pinning initialization was done

[0] MPI startup(): Internal info: pinning initialization was done

...

NOTE

High values of I_MPI_DEBUG can output a lot of information and significantly reduce performance of your

application. A value of I_MPI_DEBUG=5 is generally a good starting point, which provides sufficient

information to find common errors.

By default, each printed line contains the MPI rank number and the message. You can also print additional

information in front of each message, like process ID, time, host name and other information, or exclude some

information printed by default. You can do this in two ways:

 Add the '+' sign in front of the debug level number. In this case, each line is prefixed by the string

<rank>#<pid>@<hostname>. For example:

$ mpirun -genv I_MPI_DEBUG=+2 -n 2 ./testc

[0#3520@clusternode1] MPI startup(): Multi-threaded optimized library

...

To exclude any information printed in front of the message, add the '-' sign in a similar manner.

 Add the appropriate flag after the debug level number to include or exclude some information. For

example, to include time but exclude the rank number:

$ mpirun -genv I_MPI_DEBUG=2,time,norank -n 2 ./testc

11:59:59 MPI startup(): Multi-threaded optimized library

...

For the list of all available flags, see description of I_MPI_DEBUG in the Developer Reference.

To redirect the debug information output from stdout to stderr or a text file, use the

I_MPI_DEBUG_OUTPUT environment variable:

$ mpirun -genv I_MPI_DEBUG=2 -genv I_MPI_DEBUG_OUTPUT=/tmp/debug_output.txt -n 2

./testc

Note that the output file name should not be longer than 256 symbols.

See Also

Intel® MPI Library Developer Reference, section Miscellaneous > Other Environment Variables > I_MPI_DEBUG

Analysis and Tuning

24

6.2. Tracing Applications
Intel® MPI Library provides a variety of options for analyzing MPI applications. Some of these options are

available within the Intel MPI Library, while some require additional analysis tools. For such tools, Intel MPI

Library provides compilation and runtime options and environment variables for easier interoperability.

Intel® MPI Library provides tight integration with the Intel® Trace Analyzer and Collector, which enables you to

analyze MPI applications and find errors in them. Intel® MPI Library has several compile- and runtime options

to simplify the application analysis. Apart from the Intel Trace Analyzer and Collector, there is also a tool

called Application Performance Snapshot intended for a higher level MPI analysis.

Both of the tools are available as part of the Intel® Parallel Studio XE Cluster Edition. Before proceeding to the

next steps, make sure you have these product installed.

6.2.1. High-Level Performance Analysis
For a high-level application analysis, Intel provides a lightweight analysis tool Application Performance

Snapshot (APS), which can analyze MPI and non-MPI applications. The tool provides general information

about the application, such as MPI and OpenMP* utilization time and load balance, MPI operations usage,

memory and disk usage, and other information. This information enables you to get a general idea about the

application performance and identify spots for a more thorough analysis.

Follow these steps to analyze an application with the APS:

1. Set up the environment for the compiler, Intel MPI Library and APS:

$ source

<psxe_installdir>/compilers_and_libraries_<version>.<update>.<package>/linux/

bin/compilervars.sh intel64

$ source <psxe_installdir>/performance_snapshots/apsvars.sh

2. Run your application with the -aps option of mpirun:

$ mpirun -n 4 -aps ./myprog

APS will generate a directory with the statistics files aps_result_<date>-<time>.

3. Launch the aps-report tool and pass the generated statistics to the tool:

$ aps-report ./aps_result_<date>-<time>

You will see the analysis results printed in the console window. Also, APS will generate an HTML report

aps_report_<date>_<time>.html containing the same information.

For more details, refer to the Application Performance Snapshot User's Guide.

6.2.2. Tracing Applications
To analyze an application with the Intel Trace Analyzer and Collector, first you need generate a trace file of

your application, and then open this file in Intel® Trace Analyzer to analyze communication patterns, time

utilization, etc. Tracing is performed by preloading the Intel® Trace Collector profiling library at runtime, which

intercepts all MPI calls and generates a trace file. Intel MPI Library provides the -trace (-t) option to simplify

this process.

Complete the following steps:

1. Set up the environment for the Intel MPI Library and Intel Trace Analyzer and Collector:

$ source <mpi_installdir>/intel64/bin/mpivars.sh

$ source <itac_installdir>/intel64/bin/itacvars.sh

2. Trace your application with the Intel Trace Collector:

Intel® MPI Library Developer Guide for Linux* OS

25

$ mpirun -trace -n 4 ./myprog

As a result, a trace file .stf is generated. For the example above, it is myprog.stf.

3. Analyze the application with the Intel Trace Analyzer:

$ traceanalyzer ./myprog.stf &

The workflow above is the most common scenario of tracing with the Intel Trace Collector. For other tracing

scenarios, see the Intel Trace Collector documentation.

See Also

Application Performance Snapshot User's Guide

Intel® Trace Collector User and Reference Guide

6.3. Interoperability with Other Tools through -gtool
To simplify interoperability with other analysis tools, Intel® MPI Library provides the -gtool option (also

available as the I_MPI_GTOOL environment variable). By using the -gtool option you can analyze specific

MPI processes with such tools as Intel® VTune™ Amplifier XE, Intel® Advisor, Valgrind* and other tools through

the mpiexec.hydra or mpirun commands.

Without the -gtool option, to analyze an MPI process with the VTune Amplifier, for example, you have to

specify the relevant command in the corresponding argument set:

$ mpirun -n 3 ./myprog : -n 1 amplxe-cl -c advanced-hotspots -r ah -- ./myprog

The -gtool option allows you to specify a single analysis command for all argument sets (separated by

colons ':') at once. Even though it is allowed to use -gtool within a single argument set, it is not

recommended to use it in several sets at once and combine the two analysis methods (with -gtool and

argument sets).

For example, to analyze processes 3, 5, 6, and 7 with the VTune Amplifier, you can use the following command

line:

$ mpirun -n 8 -gtool "amplxe-cl -collect hotspots -r result:3,5-7" ./myprog

The -gtool option also provides several methods for finer process selection. For example, you can easily

analyze only one process on each host, using the exclusive launch mode:

$ mpirun -n 8 -ppn 4 -hosts node1,node2 -gtool "amplxe-cl -collect hotspots -r

result:all=exclusive" ./myprog

You can also use the -gtoolfile option to specify -gtool parameters in a configuration file. All the same

rules apply. Additionally, you can separate different command lines with section breaks.

For example, if gtool_config_file contains the following settings:

env VARIABLE1=value1 VARIABLE2=value2:3,5,7-9; env VARIABLE3=value3:0,11

env VARIABLE4=value4:1,12

The following command sets VARIABLE1 and VARIABLE2 for processes 3, 5, 7, 8, and 9 and sets VARIABLE3

for processes 0 and 11, while VARIABLE4 is set for processes 1 and 12:

$ mpirun -n 16 -gtoolfile gtool_config_file a.out

6.3.1. Using -gtool for Debugging
The -gtool runtime option can help you with debugging, when attaching to several processes at once.

Instead of attaching to each process individually, you can specify all the processes in a single command line.

For example:

$ mpirun -n 16 -gtool "gdb:3,5,7-9=attach" ./myprog

https://software.intel.com/en-us/application-snapshot-user-guide
https://software.intel.com/en-us/itc-user-and-reference-guide

Analysis and Tuning

26

The command line above attaches the GNU* Debugger (GDB*) to processes 3, 5, 7, 8 and 9.

NOTE

Do not use the -gdb and -gtool options together. Use one option at a time.

See Also

Intel® MPI Library Developer Reference, section Command Reference > mpiexec.hydra > Global Options > gtool

Options

6.4. MPI Tuning
Intel® MPI Library provides a tuning utility mpitune, which allows you to automatically adjust Intel® MPI

Library parameters, such as collective operation algorithms, to your cluster configuration or application. The

tuner iteratively launches a benchmarking application with different configurations to measure performance

and stores the results of each launch. Based on these results, the tuner generates optimal values for the

parameters that are being tuned.

NOTE

The mpitune usage model has changed since the 2018 release. Tuning parameters should now be specified

in configuration files rather than as command-line options.

Configuration file format

All tuner parameters should be specified in two configuration files, passed to the tuner with the --config-

file option. A typical configuration file consists of the main section, specifying generic options, and search

space sections for specific library parameters (for example, for specific collective operations). Configuration

files differ in mode and dump-file fields only. To comment a line, use the hash symbol #.

Additionally, you can specify MPI options to simplify mpitune usage. MPI options are useful for Intel® MPI

Benchmarks that have special templates for mpitune located at <installdir>/etc/tune_cfg. The

templates require no changes in configuration files to be made.

For example, to tune the Bcast collective algorithm, use the following option:

$ mpitune –np 2 –ppn 2 –hosts HOST1 –m analyze –c /path/to/Bcast.cfg

Experienced users can change configurations files to use this option for other applications.

Output format

Starting the Intel® MPI Library 2019 release, the tuner presents results in a JSON tree view, where the

comm_id=-1 layer is added automatically for each tree:

{

 "coll=Reduce": {

 "ppn=2": {

 "comm_size=2": {

 "comm_id=-1": {

 "msg_size=243": {

 "REDUCE=8": {}

 },

 "msg_size=319": {

 "REDUCE=11": {}

 },

 "msg_size=8192": {

 "REDUCE=8": {}

Intel® MPI Library Developer Guide for Linux* OS

27

 },

 "msg_size=28383": {

 "REDUCE=9": {}

 },

 "msg_size=-1": {

 "REDUCE=1": {}

 }

 }

 }

 }

 }

}

To add the resulting JSON tree to the library, use the I_MPI_TUNING environment variable.

Old output format

The old output format is only valid for Intel® MPI Library 2018 and prior versions:

I_MPI_ADJUST_BCAST=2:0-0;1:1-64;2:65-509;1:510-8832;3:8833-0

Use the resulting variable value with the application launch to achieve performance gain.

See Also

For details on the mpitune configuration options, refer to the Developer Reference, section Command

Reference > mpitune.

7. Troubleshooting
This section provides the troubleshooting information on typical MPI failures with corresponding output

messages and behavior when a failure occurs.

If you encounter errors or failures when using the Intel® MPI Library, take the following general

troubleshooting steps first:

1. Check the System Requirements section and the Known Issues section in the Intel® MPI Library Release

Notes.

2. Check accessibility of the hosts. Run a simple non-MPI application (for example, the hostname utility)

on the problem hosts using mpirun. For example:

$ mpirun -ppn 1 -n 2 -hosts node01,node02 hostname

node01

node02

This may help reveal an environmental problem (such as, the MPI remote access mechanism is not

configured properly), or a connectivity problem (such as, unreachable hosts).

3. Run the MPI application with debug information enabled: set the environment variables

I_MPI_DEBUG=6 and/or I_MPI_HYDRA_DEBUG=on. Increase the integer value of debug level to get

more information. This action helps narrow down to the problematic component.

4. If you have the availability, download and install the latest version of Intel MPI Library from the official

product page and check if your problem persists.

5. If the problem still persists, you can submit a ticket via Intel® Premier Support or ask experts on the

community forum.

7.1. Error Message: Bad Termination

NOTE

The values in the tables below may not reflect the exact node or MPI process where a failure can occur.

7.1.1. Case 1

Error Message

===

= BAD TERMINATION OF ONE OF YOUR APPLICATION PROCESSES

= RANK 1 PID 27494 RUNNING AT node1

= KILLED BY SIGNAL: 11 (Segmentation fault)

===

or:

===

https://software.intel.com/en-us/intel-mpi-library
https://software.intel.com/en-us/intel-mpi-library
http://premier.intel.com/
https://software.intel.com/en-us/forums/intel-clusters-and-hpc-technology

Intel® MPI Library Developer Guide for Linux* OS

29

= BAD TERMINATION OF ONE OF YOUR APPLICATION PROCESSES

= RANK 1 PID 27494 RUNNING AT node1

= KILLED BY SIGNAL: 8 (Floating point exception)

===

Cause

One of MPI processes is terminated by a signal (for example, Segmentation fault or Floating point

exception) on the node01.

Solution

Find the reason of the MPI process termination. It can be the out-of-memory issue in case of Segmentation

fault or division by zero in case of Floating point exception.

7.1.2. Case 2

Error Message

==

= BAD TERMINATION OF ONE OF YOUR APPLICATION PROCESSES

= RANK 1 PID 20066 RUNNING AT node01

= KILLED BY SIGNAL: 9 (Killed)

==

Cause

One of MPI processes is terminated by a signal (for example, SIGTERM or SIGKILL) on the node01 due to:

 the host reboot;

 an unexpected signal received;

 out-of-memory manager (OOM) errors;

 killing by the process manager (if another process was terminated before the current process);

 job termination by the Job Scheduler (PBS Pro*, SLURM*) in case of resources limitation (for example,

walltime or cputime limitation).

Solution

1. Check the system log files.

2. Try to find the reason of the MPI process termination and fix the issue.

Troubleshooting

30

7.2. Error Message: No such file or Directory

Error Message

[proxy:0:0@node1] HYD_spawn

(../../../../../src/pm/i_hydra/libhydra/spawn/hydra_spawn.c:113): execvp error on

file {path to binary file}/{binary file} (No such file or directory)

Cause

Wrong path to the binary file or the binary file does not exist on the node01. The name of the binary file is

misprinted or the shared space cannot be reached.

Solution

Check the name of the binary file and check if the shared path is available across all the nodes.

7.3. Error Message: Permission Denied

7.3.1. Case 1

Error Message

[proxy:0:0@node1] HYD_spawn

(../../../../../src/pm/i_hydra/libhydra/spawn/hydra_spawn.c:113): execvp error on

file {path to binary file}/{binary file} (Permission denied)

Cause

You do not have permissions to execute the binary file.

Solution

Check your execute permissions for {binary file} and for folders in {path to binary file}.

7.3.2. Case 2

Error Message

[proxy:0:0@node1] HYD_spawn

(../../../../../src/pm/i_hydra/libhydra/spawn/hydra_spawn.c:113): execvp error on

file {path to binary file}/{binary file} (Permission denied)

Cause

You exceeded the limitation of 16 groups on Linux* OS.

Solution

Try reducing the number of groups.

Intel® MPI Library Developer Guide for Linux* OS

31

7.4. Error Message: Fatal Error

7.4.1. Case 1

Error Message

Abort(1094543) on node 0 (rank 0 in comm 0): Fatal error in PMPI_Init: Other MPI

error, error stack:

MPIR_Init_thread(653)......:

MPID_Init(860).............:

MPIDI_NM_mpi_init_hook(698): OFI addrinfo() failed

(ofi_init.h:698:MPIDI_NM_mpi_init_hook:No data available)

Cause

The current provider cannot be run on these nodes. The MPI application is run over the psm2 provider on the

non-Intel® Omni-Path card or over the verbs provider on the non-InfiniBand*, non-iWARP, or non-RoCE card.

Solution

1. Change the provider or run MPI application on the right nodes. Use FI_INFO to get information about

the current provider.

2. Check if services are running on nodes (opafm for Intel® Omni-Path and opensmd for InfiniBand).

7.4.2. Case 2

Error Message

Abort(6337423) on node 0 (rank 0 in comm 0): Fatal error in PMPI_Init_thread:

Other MPI error, error stack:

…

MPIDI_OFI_send_handler(704)............: OFI tagged inject failed

(ofi_impl.h:704:MPIDI_OFI_send_handler:Transport endpoint is not connected)

Cause

OFI transport uses IP interface without access to remote ranks.

Solution

Set FI_SOCKET_IFACE If the socket provider is used or FI_TCP_IFACE and FI_VERBS_IFACE in case of TCP

and verbs providers, respectively. To retrieve the list of configured and active IP interfaces, use, the ifconfig

utility.

7.4.3. Case 3

Error Message

Abort(6337423) on node 0 (rank 0 in comm 0): Fatal error in PMPI_Init_thread:

Other MPI error, error stack:

…

Troubleshooting

32

MPIDI_OFI_send_handler(704)............: OFI tagged inject failed

(ofi_impl.h:704:MPIDI_OFI_send_handler:Transport endpoint is not connected)

Cause

Ethernet is used as an interconnection network.

Solution

Run FI_PROVIDER = sockets mpirun … to overcome this problem.

7.5. Error Message: Bad File Descriptor

Error Message

[mpiexec@node00] HYD_sock_write

(../../../../../src/pm/i_hydra/libhydra/sock/hydra_sock_intel.c:353): write error

(Bad file descriptor)

[mpiexec@node00] cmd_bcast_root

(../../../../../src/pm/i_hydra/mpiexec/mpiexec.c:147): error sending cwd cmd to

proxy

[mpiexec@node00] stdin_cb (../../../../../src/pm/i_hydra/mpiexec/mpiexec.c:324):

unable to send response downstream

[mpiexec@node00] HYDI_dmx_poll_wait_for_event

(../../../../../src/pm/i_hydra/libhydra/demux/hydra_demux_poll.c:79): callback

returned error status

[mpiexec@node00] main (../../../../../src/pm/i_hydra/mpiexec/mpiexec.c:2064): error

waiting for event

or:

[mpiexec@host1] wait_proxies_to_terminate

(../../../../../src/pm/i_hydra/mpiexec/intel/i_mpiexec.c:389): downstream from host

host2 exited with status 255

Cause

The remote hydra_pmi_proxy process is unavailable due to:

 the host reboot;

 an unexpected signal received;

 out-of-memory manager (OOM) errors;

 job termination by the Job Scheduler (PBS Pro*, SLURM*) in case of resources limitation (for example,

walltime or cputime limitation).

Solution

1. Check the system log files.

2. Try to find the reason of the hydra_pmi_proxy process termination and fix the issue.

Intel® MPI Library Developer Guide for Linux* OS

33

7.6. Error Message: Too Many Open Files

Error Message

[proxy:0:0@host1] HYD_spawn

(../../../../../src/pm/i_hydra/libhydra/spawn/intel/hydra_spawn.c:57): pipe error

(Too many open files)

[proxy:0:0@host1] launch_processes

(../../../../../src/pm/i_hydra/proxy/proxy.c:509): error creating process

[proxy:0:0@host1] main (../../../../../src/pm/i_hydra/proxy/proxy.c:860): error

launching_processes

Cause

Too many processes per node are launched on Linux* OS.

Solution

Specify fewer processes per node by the -ppn option or the I_MPI_PERHOST environment variable.

7.7. Problem: MPI Application Hangs

Problem

MPI application hangs without any output.

7.7.1. Case 1

Cause

Application does not use MPI in a correct way.

Solution

Run your MPI application with the -mpi-check option to perform correctness checking. The correctness

checker is specifically designed to find MPI errors, and provides tight integration with the Intel® MPI Library. In

case of a deadlock, the checker will set up a one-minute timeout and show the state of each rank.

For more information, refer to this page.

7.7.2. Case 2

Cause

The remote service (for example, SSH) is not running on all nodes or it is not configured properly.

Solution

Check the state of the remote service on the nodes and connection to all nodes.

https://software.intel.com/en-us/itc-user-and-reference-guide-correctness-checking
https://software.intel.com/en-us/itc-user-and-reference-guide-correctness-checking
https://software.intel.com/en-us/itc-user-and-reference-guide-correctness-checking-of-mpi-applications

Troubleshooting

34

7.7.3. Case 3

Cause

The Intel® MPI Library runtime scripts are not available, so the shared space cannot be reached.

Solution

Check if the shared path is available across all the nodes.

7.7.4. Case 4

Cause

Different CPU architectures are used in a single MPI run.

Solution

Set export I_MPI_PLATFORM=<arch> , where <arch> is the oldest platform you have, for example skx.

Note that usage of different CPU architectures in a single MPI job negatively affects application performance,

so it is recommended not to mix different CPU architecture in a single MPI job.

7.8. Problem: Password Required

Problem

Password required.

Cause

The Intel® MPI Library uses SSH mechanism to access remote nodes. SSH requires password and this may

cause the MPI application hang.

Solution

1. Check the SSH settings.

2. Make sure that the passwordless authorization by public keys is enabled and configured.

7.9. Problem: Cannot Execute Binary File

Problem

Cannot execute a binary file.

Cause

Wrong format or architecture of the binary executable file.

Solution

Check the accuracy of the binary file and command line options.

8. Additional Supported Features

8.1. Asynchronous Progress Control
Intel® MPI Library supports asynchronous progress threads that allow you to manage communication in

parallel with application computation and, as a result, achieve better communication/computation

overlapping. This feature is supported for the release_mt and debug_mt versions only.

NOTE

Asynchronous progress has a full support for MPI point-to-point operations, blocking collectives, and a partial

support for non-blocking collectives (MPI_Ibcast, MPI_Ireduce, and MPI_Iallreduce).

To enable asynchronous progress, pass 1 to the I_MPI_ASYNC_PROGRESS environment variable. You can

define the number of asynchronous progress threads by setting the I_MPI_ASYNC_PROGRESS_THREADS

environment variable. The I_MPI_ASYNC_PROGRESS_ID_KEY variable sets the MPI info object key that is

used to define the progress thread_id for a communicator.

Setting the I_MPI_ASYNC_PROGRESS_PIN environment variable allows you to control the pinning of the

asynchronous progress threads. In case of N progress threads per process, the first N logical processors from

the list will be assigned to the threads of the first local process, while the next N logical processors - to the

second local process and so on.

Example

For example, If the thread affinity is 0,1,2,3 with 2 progress threads per process and 2 processes per node,

then the progress threads of the first local process are pinned to logical processors 0 and 1, while the progress

threads of the second local process are pinned to processors 2 and 3.

The code example is available below or in the async_progress_sample.c file in the doc/examples

 subdirectory of the package.

For more information on environment variables, refer to the Intel® MPI Library Developer Reference, section

Environment Variable Reference > Environment Variable Reference for Asynchronous Progress Control.

8.2. Multiple Endpoints Support
The traditional MPI/OpenMP* threading model has certain performance issues. Thread safe access to some

MPI objects, such as requests or communicators, requires an internal synchronization between threads; the

performance of the typical hybrid application, which uses MPI calls from several threads per rank, is often

lower than expected.

The PSM2 Multiple Endpoints (Multi-EP) support in the Intel® MPI Library makes it possible to eliminate most

of the cross-thread synchronization points in the MPI workflow, at the cost of some limitations on what is

allowed by the standard MPI_THREAD_MULTIPLE thread support level. The Multi-EP support, implemented

with MPI_THREAD_SPLIT (thread-split) programming model, implies several requirements to the application

program code to meet, and introduces a few runtime switches. These requirements, limitations, and usage

rules are discussed in the sections below.

8.2.1. MPI_THREAD_SPLIT Programming Model
This feature is supported for the release_mt and debug_mt versions only.

Additional Supported Features

36

The communication patterns that comply with the thread-split model must not allow cross-thread access to

MPI objects to avoid thread synchronization and must disambiguate message matching, so that threads could

be separately addressed and not more than one thread could match the message at the same time. Provided

that, the user must notify the Intel MPI Library that the program complies with thread-split model, that is, it is

safe to apply the high performance optimization.

Each MPI_THREAD_SPLIT-compliant program can be executed correctly with a thread-compliant MPI

implementation under MPI_THREAD_MULTIPLE, but not every MPI_THREAD_MULTIPLE-compliant program

follows the MPI_THREAD_SPLIT model.

This model allows MPI to apply optimizations that would not be possible otherwise, such as binding specific

hardware resources to concurrently communicating threads and providing lockless access to MPI objects.

Since MPI_THREAD_SPLIT is a non-standard programming model, it is disabled by default and can be

enabled by setting the environment variable I_MPI_THREAD_SPLIT. If enabled, the threading runtime control

must also be enabled to enable the programming model optimizations (see Threading Runtimes Support).

Setting the I_MPI_THREAD_SPLIT variable does not affect behavior at other threading levels such as SINGLE

and FUNNELED. To make this extension effective, request the MPI_THREAD_MULTIPLE level of support at

MPI_Init_thread().

NOTE

Thread-split model has support for MPI point-to-point operations and blocking collectives.

MPI_THREAD_SPLIT Model Description

As mentioned above, an MPI_THREAD_SPLIT-compliant program must be at least a thread-compliant MPI

program (supporting the MPI_THREAD_MULTIPLE threading level). In addition to that, the following rules

apply:

1. Different threads of a process must not use the same communicator concurrently.

2. Any request created in a thread must not be accessed by other threads, that is, any non-blocking

operation must be completed, checked for completion, or probed in the same thread.

3. Communication completion calls that imply operation progress such as MPI_Wait(), MPI_Test()

being called from a thread don’t guarantee progress in other threads.

The model implies that each process thread has a distinct logical thread number thread_id. thread_id

must be set to a number in the range 0 to NT-1, where NT is the number of threads that can be run

concurrently. thread_id can be set implicitly, or your application can assign it to a thread. Depending on the

assignment method, there are two usage submodels:

1. Implicit model: both you and the MPI implementation know the logical thread number in advance via a

deterministic thread number query routine of the threading runtime. The implicit model is only

supported for OpenMP* runtimes via omp_get_thread_num().

2. Explicit model: you pass thread_id as an integer value converted to a string to MPI by setting an MPI

Info object (referred to as info key in this document) to a communicator. The key thread_id must be

used. This model fits task-based parallelism, where a task can be scheduled on any process thread.

The I_MPI_THREAD_ID_KEY variable sets the MPI info object key that is used to explicitly define the

thread_id for a thread (thread_id by default).

Within the model, only threads with the same thread_id can communicate. To illustrate it, the following

communication pattern complies to the MPI_THREAD_SPLIT model: Suppose Comm A and Comm B are two

distinct communicators, aggregating the same ranks. The system of these two communicators will fit the

MPI_THREAD_SPLIT model only if all threads with thread_id #0 use Comm A, while all threads with

thread_id #1 use Comm B.

Intel® MPI Library Developer Guide for Linux* OS

37

8.2.2. Threading Runtimes Support
The MPI thread-split programming model has special support of the OpenMP* runtime, but you may use any

other threading runtime. The support differs in the way you communicate with the MPI runtime to set up

thread_id for a thread and the way you set up the number of threads to be run concurrently. If you choose

the OpenMP runtime support, make sure you have the OpenMP runtime library, which comes with the recent

Intel® compilers and GNU* gcc compilers, and link the application against it.

The support is controlled with the I_MPI_THREAD_RUNTIME environment variable. Since the threading

runtime support is a non-standard functionality, you must enable it explicitly using the generic or openmp

argument for the OpenMP* runtime support.

You can set the maximum number of threads to be used in each process concurrently with the

I_MPI_THREAD_MAX environment variable. This helps the MPI implementation allocate the hardware

resources efficiently. By default, the maximum number of threads per rank is 1.

OpenMP* Threading Runtime

The OpenMP runtime supports the both implicit and explicit submodels. By default, the Intel MPI Library

assumes that thread_id is set with the omp_get_thread_num() function call defined in the OpenMP

standard. This scenario corresponds to the implicit submodel. You can use the explicit submodel by setting

the thread_id info key for a communicator, which is particularly useful for OpenMP tasks.

By default, the maximum number of threads is set with the omp_get_max_threads() function. To override

this function, set either I_MPI_THREAD_MAX or OMP_NUM_THREADS environment variable.

8.2.3. Code Change Guide
The example in this section shows you one of the ways to change a legacy program to effectively use the

advantages of the MPI_THREAD_SPLIT threading model. The original code is available in the

thread_split.cpp file in the doc/examples subdirectory of the package.

Additional Supported Features

38

In the original code, the functions work_portion_1(), work_portion_2(), and work_portion_3()

represent a CPU load that modifies the content of the memory pointed to by the in and out pointers. In this

particular example, these functions perform correctness checking of the MPI_Allreduce() function.

Changes Required to Use the OpenMP* Threading Model

1. To run MPI functions in a multithreaded environment, MPI_Init_thread() with the argument equal

to MPI_THREAD_MULTIPLE must be called instead of MPI_Init().

2. According to the MPI_THREAD_SPLIT model, in each thread you must execute MPI operations over

the communicator specific to this thread only. So, in this example, the MPI_COMM_WORLD

communicator must be duplicated several times so that each thread has its own copy of

MPI_COMM_WORLD.

NOTE

The limitation is that communicators must be used in such a way that the thread with thread_id n on

one node communicates only with the thread with thread_id m on the other. Communications

between different threads (thread_id n on one node, thread_id m on the other) are not supported.

3. The data to transfer must be split so that each thread handles its own portion of the input and output

data.

4. The barrier becomes a two-stage one: the barriers on the MPI level and the OpenMP level must be

combined.

5. Check that the runtime sets up a reasonable affinity for OpenMP threads. Typically, the OpenMP

runtime does this out of the box, but sometimes, setting up the OMP_PLACES=cores environment

variable might be necessary for optimal multi-threaded MPI performance.

Changes Required to Use the POSIX Threading Model

1. To run MPI functions in a multithreaded environment, MPI_Init_thread() with the argument equal

to MPI_THREAD_MULTIPLE must be called instead of MPI_Init().

2. You must execute MPI collective operation over a specific communicator in each thread. So the

duplication of MPI_COMM_WORLD should be made, creating a specific communicator for each thread.

3. The info key thread_id must be properly set for each of the duplicated communicators.

NOTE

The limitation is that communicators must be used in such a way that the thread with thread_id n on

one node communicates only with the thread with thread_id m on the other. Communications

between different threads (thread_id n on one node, thread_idi">m on the other) are not

supported.

4. The data to transfer must be split so that each thread handles its own portion of the input and output

data.

5. The barrier becomes a two-stage one: the barriers on the MPI level and the POSIX level must be

combined.

6. The affinity of POSIX threads can be set up explicitly to reach optimal multithreaded MPI performance.

9. Code Examples
This section contains examples that are also available in the doc/examples subdirectory of the package.

9.1. async_progress_sample.c
#define PROGRESS_THREAD_COUNT 4

MPI_Comm comms[PROGRESS_THREAD_COUNT];

MPI_Request requests[PROGRESS_THREAD_COUNT];

MPI_Info info;

int idx;

/* create “per-thread” communicators and assign thread id for each communicator */

for (idx = 0; idx < PROGRESS_THREAD_COUNT; idx++)

{

 MPI_Comm_dup(MPI_COMM_WORLD, &comms[idx]);

 char thread_id_str[256] = { 0 };

 sprintf(thread_id_str, "%d", idx);

 MPI_Info_create(&info);

 MPI_Info_set(info, "thread_id", thread_id_str);

 MPI_Comm_set_info(comms[idx], info);

 MPI_Info_free(&info);

 }

/* distribute MPI operations between communicators – i.e. between progress threads

*/

for (idx = 0; idx < PROGRESS_THREAD_COUNT; idx++)

{

 MPI_Iallreduce(…, comms[idx], &requests[idx]);

}

MPI_Waitall(PROGRESS_THREAD_COUNT, requests, …)

See Also

Asynchronous Progress Control

9.2. thread_split.cpp
*/

#include <mpi.h>

#include <stdlib.h>

#include <string.h>

#include <stdio.h>

#include <vector>

#include <string>

#include <utility>

#include <assert.h>

#include <sys/time.h>

// Choose threading model:

enum { THR_OPENMP = 1, THR_POSIX = 2, THR_NONE = 0 } threading = THR_POSIX;

template <typename T> MPI_Datatype get_mpi_type();

template <> MPI_Datatype get_mpi_type<char>() { return MPI_CHAR; }

template <> MPI_Datatype get_mpi_type<int>() { return MPI_INT; }

template <> MPI_Datatype get_mpi_type<float>() { return MPI_FLOAT; }

template <> MPI_Datatype get_mpi_type<double>() { return MPI_DOUBLE; }

int main_threaded(int argc, char **argv);

template <typename T>

Code Examples

40

bool work_portion_2(T *in, size_t count, size_t niter, int rank, int nranks)

{

 memset(in, 0, sizeof(T) * count);

}

template <typename T>

bool work_portion_1(T *in, size_t count, size_t niter, int rank, int nranks);

template <> bool work_portion_1<char>(char *in, size_t count, size_t niter, int

rank, int nranks) { return true; }

template <> bool work_portion_1<int>(int *in, size_t count, size_t niter, int rank,

int nranks)

{

 for (size_t i = 0; i < count; i++) {

 in[i] = (int)(niter * (rank+1) * i);

 }

 return true;

}

template <typename T>

bool work_portion_3(T *in, size_t count, size_t niter, int rank, int nranks);

template <> bool work_portion_3<char>(char *out, size_t count, size_t niter, int

rank, int nranks) { return true; }

template <> bool work_portion_3<int>(int *out, size_t count, size_t niter, int

rank, int nranks)

{

 bool result = true;

 for (size_t i = 0; i < count; i++) {

 result = (result && (out[i] == (int)(niter * nranks*(nranks+1)*i/2)));

 }

 return result;

}

int main_threaded_openmp(int argc, char **argv);

int main_threaded_posix(int argc, char **argv);

int main(int argc, char **argv)

{

 if (argc > 1) {

 if (!strcasecmp(argv[1], "openmp")) threading = THR_OPENMP;

 if (!strcasecmp(argv[1], "posix")) threading = THR_POSIX;

 if (!strcasecmp(argv[1], "none")) threading = THR_NONE;

 }

 if (threading == THR_OPENMP) {

 main_threaded_openmp(argc, argv);

 return 0;

 } else if (threading == THR_POSIX) {

 main_threaded_posix(argc, argv);

 return 0;

 }

 printf("No threading\n");

 int rank, nranks;

 MPI_Init(&argc, &argv);

 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 MPI_Comm_size(MPI_COMM_WORLD, &nranks);

 typedef int type;

 size_t count = 1024*1024;

 int niter = 100;

 type *in = (type *)malloc(count * sizeof(type));

 type *out = (type *)malloc(count * sizeof(type));

 for (int j = 1; j < niter+1; j++) {

 work_portion_1<type>(in, count, j, rank, nranks);

 work_portion_2<type>(out, count, j, rank, nranks);

 MPI_Allreduce(in, out, count, get_mpi_type<type>(), MPI_SUM,

Intel® MPI Library Developer Guide for Linux* OS

41

MPI_COMM_WORLD);

 assert(work_portion_3<type>(out, count, j, rank, nranks));

 MPI_Barrier(MPI_COMM_WORLD);

 }

 MPI_Finalize();

 return 0;

}

#include <omp.h>

void omp_aware_barrier(MPI_Comm &comm, int thread)

{

 assert(thread != 0 || comm != MPI_COMM_NULL);

#pragma omp barrier

 if (thread == 0)

 MPI_Barrier(comm);

#pragma omp barrier

}

struct offset_and_count { size_t offset; size_t count; };

int main_threaded_openmp(int argc, char **argv)

{

 printf("OpenMP\n");

 int rank, nranks, provided = 0;

 MPI_Init_thread(&argc, &argv, MPI_THREAD_MULTIPLE, &provided);

 assert(provided == MPI_THREAD_MULTIPLE);

 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 MPI_Comm_size(MPI_COMM_WORLD, &nranks);

 typedef int type;

 size_t count = 1024 * 1024;

 int niter = 100;

 type *in = (type *)malloc(count * sizeof(type));

 type *out = (type *)malloc(count * sizeof(type));

 // Divide workload for multiple threads.

 // Save (offset, count) pair for each piece

 size_t nthreads = 8;

 if (argc > 2) {

 nthreads = atoi(argv[2]);

 }

 size_t nparts = (count > nthreads) ? nthreads : count;

 // Use nparts, it might be less than nthreads

 size_t base = count / nparts;

 size_t rest = count % nparts;

 size_t base_off = 0;

 std::vector<offset_and_count> offs_and_counts(nparts);

 for (size_t i = 0; i < nparts; i++) {

 offs_and_counts[i].offset = base_off; // off

 base_off += (offs_and_counts[i].count = base + (i<rest?1:0)); // size

 }

 // Duplicate a communicator for each thread

 std::vector<MPI_Comm> comms(nparts, MPI_COMM_NULL);

 for (size_t i = 0; i < nparts; i++) {

 MPI_Comm &new_comm = comms[i];

 MPI_Comm_dup(MPI_COMM_WORLD, &new_comm);

 }

 // Go into parallel region, use precalculated (offset, count) pairs to separate

workload

 // use separated communicators from comms[]

 // use omp_aware_barrier instead of normal MPI_COMM_WORLD barrier

#pragma omp parallel num_threads(nparts)

 {

 int thread = omp_get_thread_num();

Code Examples

42

 offset_and_count &offs = offs_and_counts[thread];

 MPI_Comm &comm = comms[thread];

 for (int j = 1; j < niter+1; j++) {

 if (!offs.count) { omp_aware_barrier(comm, thread); continue; }

 work_portion_1<type>(in + offs.offset, offs.count, j, rank, nranks);

 work_portion_2<type>(out + offs.offset, offs.count, j, rank, nranks);

 MPI_Allreduce(in + offs.offset, out + offs.offset, offs.count,

get_mpi_type<type>(), MPI_SUM, comm);

 assert(work_portion_3<type>(out + offs.offset, offs.count, j, rank,

nranks));

 omp_aware_barrier(comm, thread);

 }

 }

 MPI_Finalize();

 return 0;

}

#include <pthread.h>

#include <sys/time.h>

#include <sched.h>

void pthreads_aware_barrier(MPI_Comm &comm, pthread_barrier_t &barrier, int thread)

{

 assert(thread != 0 || comm != MPI_COMM_NULL);

 pthread_barrier_wait(&barrier);

 if (thread == 0)

 MPI_Barrier(comm);

 pthread_barrier_wait(&barrier);

}

struct global_data {

 typedef int type;

 type *in, *out;

 int niter;

 size_t count;

 int rank, nranks;

 pthread_barrier_t barrier;

};

struct thread_local_data {

 size_t offset;

 size_t count;

 int thread_id;

 MPI_Comm *comm;

 global_data *global;

};

void *worker(void *arg_ptr)

{

 thread_local_data &thr_local = *((thread_local_data *)arg_ptr);

 global_data &global = *(thr_local.global);

 global_data::type *in = global.in;

 global_data::type *out = global.out;

 int &niter = global.niter;

 int &rank = global.rank;

 int &nranks = global.nranks;

 pthread_barrier_t &barrier = global.barrier;

 size_t &offset = thr_local.offset;

 size_t &count = thr_local.count;

 int &thread = thr_local.thread_id;

 MPI_Comm &comm = *(thr_local.comm);

 cpu_set_t mask;

 CPU_ZERO(&mask);

 CPU_SET(thread, &mask);

Intel® MPI Library Developer Guide for Linux* OS

43

 int res = sched_setaffinity(0, sizeof(mask), &mask);

 if (res == -1)

 printf("failed set_thread_affinity()\n");

 for (int j = 1; j < global.niter+1; j++) {

 if (!thr_local.count) { pthreads_aware_barrier(comm, barrier, thread);

continue; }

 work_portion_1<global_data::type>(in + offset, count, j, rank, nranks);

 work_portion_2<global_data::type>(out + offset, count, j, rank, nranks);

 MPI_Allreduce(in + offset, out + offset, count,

get_mpi_type<global_data::type>(), MPI_SUM, comm);

 assert(work_portion_3<global_data::type>(out + offset, count, j, rank,

nranks));

 pthreads_aware_barrier(comm, barrier, thread);

 }

}

int main_threaded_posix(int argc, char **argv)

{

 printf("POSIX\n");

 int provided = 0;

 global_data global;

 MPI_Init_thread(&argc, &argv, MPI_THREAD_MULTIPLE, &provided);

 assert(provided == MPI_THREAD_MULTIPLE);

 MPI_Comm_rank(MPI_COMM_WORLD, &global.rank);

 MPI_Comm_size(MPI_COMM_WORLD, &global.nranks);

 global.count = 1024 * 1024;

 global.niter = 100;

 global.in = (global_data::type *)malloc(global.count *

sizeof(global_data::type));

 global.out = (global_data::type *)malloc(global.count *

sizeof(global_data::type));

 // Divide workload for multiple threads.

 // Save (offset, count) pair for each piece

 size_t nthreads = 8;

 if (argc > 2) {

 nthreads = atoi(argv[2]);

 }

 size_t nparts = ((global.count > nthreads) ? nthreads : global.count);

 pthread_barrier_init(&global.barrier, NULL, nparts);

 // Use nparts, it might be less than nthreads

 size_t base = global.count / nparts;

 size_t rest = global.count % nparts;

 size_t base_off = 0;

 std::vector<thread_local_data> thr_local(nparts);

 for (size_t i = 0; i < nparts; i++) {

 thr_local[i].offset = base_off; // off

 base_off += (thr_local[i].count = base + (i<rest?1:0)); // size

 thr_local[i].thread_id = i;

 }

 // Duplicate a communicator for each thread

 std::vector<MPI_Comm> comms(nparts);

 MPI_Info info;

 MPI_Info_create(&info);

 char s[16];

 for (size_t i = 0; i < nparts; i++) {

 MPI_Comm &new_comm = comms[i];

 MPI_Comm_dup(MPI_COMM_WORLD, &new_comm);

 snprintf(s, sizeof s, "%d", i);

 MPI_Info_set(info, "thread_id", s);

 MPI_Comm_set_info(new_comm, info);

Code Examples

44

 thr_local[i].comm = &new_comm;

 thr_local[i].global = &global;

 }

 // Start parallel POSIX threads

 std::vector<pthread_t> pids(nparts);

 for (size_t i = 0; i < nparts; i++) {

 pthread_create(&pids[i], NULL, worker, (void *)&thr_local[i]);

 }

 // Wait for all POSIX threads to complete

 for (size_t i = 0; i < nparts; i++) {

 pthread_join(pids[i], NULL);

 }

 MPI_Info_free(&info);

 MPI_Finalize();

 return 0;

}

See Also

Code Change Guide

9.3. thread_split_omp_for.c
#include <mpi.h>

#include <omp.h>

#define n 2

MPI_Comm split_comm[n];

int main()

{

 int i, provided;

 MPI_Init_thread(NULL, NULL, MPI_THREAD_MULTIPLE, &provided);

 for (i = 0; i < n; i++)

 MPI_Comm_dup(MPI_COMM_WORLD, &split_comm[i]);

#pragma omp parallel for num_threads(n)

 for (i = 0; i < n; i++) {

 int j = i;

 MPI_Allreduce(MPI_IN_PLACE, &j, 1, MPI_INT, MPI_SUM, split_comm[i]);

 printf("Thread %d: allreduce returned %d\n", i, j);

 }

 MPI_Finalize();

}

See Also

Threading Runtimes Support

9.4. thread_split_omp_task.c
#include <mpi.h>

#include <omp.h>

#define n 2

MPI_Comm split_comm[n];

int main()

{

 MPI_Info info;

 int i, provided;

 char s[16];

Intel® MPI Library Developer Guide for Linux* OS

45

 MPI_Init_thread(NULL, NULL, MPI_THREAD_MULTIPLE, &provided);

 MPI_Info_create(&info);

 for (i = 0; i < n; i++) {

 MPI_Comm_dup(MPI_COMM_WORLD, &split_comm[i]);

 sprintf(s, "%d", i);

 MPI_Info_set(info, "thread_id", s);

 MPI_Comm_set_info(split_comm[i], info);

 }

#pragma omp parallel num_threads(n)

 {

#pragma omp task

 {

 int j = 1;

 MPI_Allreduce(MPI_IN_PLACE, &j, 1, MPI_INT, MPI_SUM, split_comm[1]);

 printf("OMP thread %d, logical thread %d: allreduce returned %d\n",

 omp_get_thread_num(), 1, j);

 }

#pragma omp task

 {

 int j = 0;

 MPI_Allreduce(MPI_IN_PLACE, &j, 1, MPI_INT, MPI_SUM, split_comm[0]);

 printf("OMP thread %d, logical thread %d: allreduce returned %d\n",

 omp_get_thread_num(), 0, j);

 }

 }

 MPI_Info_free(&info);

 MPI_Finalize();

}

See Also

Threading Runtimes Support

9.5. thread_split_pthreads.c
#include <mpi.h>

#include <pthread.h>

#define n 2

int thread_id[n];

MPI_Comm split_comm[n];

pthread_t thread[n];

void *worker(void *arg)

{

 int i = *((int *) arg), j = i;

 MPI_Comm comm = split_comm[i];

 MPI_Allreduce(MPI_IN_PLACE, &j, 1, MPI_INT, MPI_SUM, comm);

 printf("Thread %d: allreduce returned %d\n", i, j);

}

int main()

{

 MPI_Info info;

 int i, provided;

 char s[16];

 MPI_Init_thread(NULL, NULL, MPI_THREAD_MULTIPLE, &provided);

 MPI_Info_create(&info);

 for (i = 0; i < n; i++) {

 MPI_Comm_dup(MPI_COMM_WORLD, &split_comm[i]);

 sprintf(s, "%d", i);

Code Examples

46

 MPI_Info_set(info, "thread_id", s);

 MPI_Comm_set_info(split_comm[i], info);

 thread_id[i] = i;

 pthread_create(&thread[i], NULL, worker, (void *) &thread_id[i]);

 }

 for (i = 0; i < n; i++) {

 pthread_join(thread[i], NULL);

 }

 MPI_Info_free(&info);

 MPI_Finalize();

}

See Also

Threading Runtimes Support

2

Contents
1. Introduction .. 1

1.1. Introducing Intel® MPI Library ... 1

1.2. Conventions and Symbols .. 1

1.3. Related Information .. 1

2. Installation and Prerequisites ... 3

2.1. Installation ... 3

2.2. Prerequisite Steps .. 3

3. Compiling and Linking .. 5

3.1. Compiling an MPI Program .. 5

3.1.1. Compiling an MPI/OpenMP* Program .. 5
3.1.2. Adding Debug Information... 5
3.1.3. Test MPI Programs ... 6

3.2. Compilers Support ... 6

3.3. ILP64 Support .. 6

4. Running Applications .. 8

4.1. Running Intel® MPI Library in Containers ... 8

4.1.1. Prerequisite Steps .. 8
4.1.2. Build a Singularity* Container for an MPI Application ... 8
4.1.3. Launch an MPI Application from a Singulairty* Container .. 10

4.2. Selecting Library Configuration .. 11

4.3. Running an MPI Program ... 11

4.4. Running an MPI/OpenMP* Program ... 12

4.5. MPMD Launch Mode .. 13

4.6. Fabrics Control ... 13

4.6.1. Selecting Fabrics .. 14
4.6.2. libfabric* Support .. 14
4.6.3. OFI* Providers Support ... 15

4.7. Job Schedulers Support ... 17

4.7.1. Altair* PBS Pro*, TORQUE*, and OpenPBS* ... 17
4.7.2. IBM* Platform LSF* ... 17
4.7.3. Parallelnavi NQS* .. 18
4.7.4. SLURM* .. 18
4.7.5. Univa* Grid Engine* .. 18
4.7.6. SIGINT, SIGTERM Signals Intercepting ... 18
4.7.7. Controlling Per-Host Process Placement ... 18

4.8. Controlling Process Placement ... 18

4.8.1. Specifying Hosts .. 19
4.8.2. Using Machine File .. 19
4.8.3. Using Argument Sets ... 20

4.9. Java* MPI Applications Support ... 20

4.9.1. Running Java* MPI applications .. 20
4.9.2. Development Recommendations .. 21

5. Debugging..22

Intel® MPI Library Developer Guide for Linux* OS

3

5.1. Debugging... 22

5.1.1. GDB*: The GNU* Project Debugger .. 22
5.1.2. DDT* Debugger .. 22

5.2. Using -gtool for Debugging ... 22

6. Analysis and Tuning ..23

6.1. Displaying MPI Debug Information .. 23

6.2. Tracing Applications .. 24

6.2.1. High-Level Performance Analysis .. 24
6.2.2. Tracing Applications .. 24

6.3. Interoperability with Other Tools through -gtool ... 25

6.3.1. Using -gtool for Debugging .. 25

6.4. MPI Tuning.. 26

7. Troubleshooting ...28

7.1. Error Message: Bad Termination... 28

7.1.1. Case 1 ... 28
7.1.2. Case 2 ... 29

7.2. Error Message: No such file or Directory ... 30

7.3. Error Message: Permission Denied .. 30

7.3.1. Case 1 ... 30
7.3.2. Case 2 ... 30

7.4. Error Message: Fatal Error ... 31

7.4.1. Case 1 ... 31
7.4.2. Case 2 ... 31
7.4.3. Case 3 ... 31

7.5. Error Message: Bad File Descriptor .. 32

7.6. Error Message: Too Many Open Files ... 33

7.7. Problem: MPI Application Hangs .. 33

7.7.1. Case 1 ... 33
7.7.2. Case 2 ... 33
7.7.3. Case 3 ... 34
7.7.4. Case 4 ... 34

7.8. Problem: Password Required ... 34

7.9. Problem: Cannot Execute Binary File .. 34

8. Additional Supported Features ..35

8.1. Asynchronous Progress Control ... 35

8.2. Multiple Endpoints Support ... 35

8.2.1. MPI_THREAD_SPLIT Programming Model ... 35
8.2.2. Threading Runtimes Support ... 37
8.2.3. Code Change Guide .. 37

9. Code Examples ...39

9.1. async_progress_sample.c .. 39

9.2. thread_split.cpp ... 39

9.3. thread_split_omp_for.c ... 44

9.4. thread_split_omp_task.c .. 44

9.5. thread_split_pthreads.c .. 45

Legal Information ... 4

Legal Information

4

Legal Information
No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this

document.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of

merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from

course of performance, course of dealing, or usage in trade.

This document contains information on products, services and/or processes in development. All information

provided here is subject to change without notice. Contact your Intel representative to obtain the latest

forecast, schedule, specifications and roadmaps.

The products and services described may contain defects or errors known as errata which may cause

deviations from published specifications. Current characterized errata are available on request.

Intel technologies features and benefits depend on system configuration and may require enabled hardware,

software or service activation. Learn more at Intel.com, or from the OEM or retailer.

Intel, the Intel logo, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other

countries.

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations

that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction

sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any

optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this

product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel

microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and

Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

* Other names and brands may be claimed as the property of others.

Copyright 2003-2019 Intel Corporation.

This software and the related documents are Intel copyrighted materials, and your use of them is governed by

the express license under which they were provided to you (License). Unless the License provides otherwise,

you may not use, modify, copy, publish, distribute, disclose or transmit this software or the related documents

without Intel's prior written permission.

This software and the related documents are provided as is, with no express or implied warranties, other than

those that are expressly stated in the License.

	Intel® MPI Library for Linux* OS Developer Guide
	1. Introduction
	1.1. Introducing Intel® MPI Library
	1.2. Conventions and Symbols
	1.3. Related Information

	2. Installation and Prerequisites
	2.1. Installation
	2.2. Prerequisite Steps

	3. Compiling and Linking
	3.1. Compiling an MPI Program
	3.1.1. Compiling an MPI/OpenMP* Program
	3.1.2. Adding Debug Information
	3.1.3. Test MPI Programs

	3.2. Compilers Support
	3.3. ILP64 Support

	4. Running Applications
	4.1. Running Intel® MPI Library in Containers
	4.1.1. Prerequisite Steps
	4.1.2. Build a Singularity* Container for an MPI Application
	Recipe File Structure
	Sample Recipe File
	Build a Container

	4.1.3. Launch an MPI Application from a Singulairty* Container

	4.2. Selecting Library Configuration
	4.3. Running an MPI Program
	4.4. Running an MPI/OpenMP* Program
	4.5. MPMD Launch Mode
	4.6. Fabrics Control
	4.6.1. Selecting Fabrics
	4.6.2. libfabric* Support
	4.6.3. OFI* Providers Support

	4.7. Job Schedulers Support
	4.7.1. Altair* PBS Pro*, TORQUE*, and OpenPBS*
	4.7.2. IBM* Platform LSF*
	4.7.3. Parallelnavi NQS*
	4.7.4. SLURM*
	4.7.5. Univa* Grid Engine*
	4.7.6. SIGINT, SIGTERM Signals Intercepting
	4.7.7. Controlling Per-Host Process Placement

	4.8. Controlling Process Placement
	4.8.1. Specifying Hosts
	4.8.2. Using Machine File
	4.8.3. Using Argument Sets

	4.9. Java* MPI Applications Support
	4.9.1. Running Java* MPI applications
	4.9.2. Development Recommendations

	5. Debugging
	5.1. Debugging
	5.1.1. GDB*: The GNU* Project Debugger
	5.1.2. DDT* Debugger

	5.2. Using -gtool for Debugging

	6. Analysis and Tuning
	6.1. Displaying MPI Debug Information
	6.2. Tracing Applications
	6.2.1. High-Level Performance Analysis
	6.2.2. Tracing Applications

	6.3. Interoperability with Other Tools through -gtool
	6.3.1. Using -gtool for Debugging

	6.4. MPI Tuning

	7. Troubleshooting
	7.1. Error Message: Bad Termination
	7.1.1. Case 1
	Error Message
	Cause
	Solution

	7.1.2. Case 2
	Error Message
	Cause
	Solution

	7.2. Error Message: No such file or Directory
	Error Message
	Cause
	Solution

	7.3. Error Message: Permission Denied
	7.3.1. Case 1
	Error Message
	Cause
	Solution

	7.3.2. Case 2
	Error Message
	Cause
	Solution

	7.4. Error Message: Fatal Error
	7.4.1. Case 1
	Error Message
	Cause
	Solution

	7.4.2. Case 2
	Error Message
	Cause
	Solution

	7.4.3. Case 3
	Error Message
	Cause
	Solution

	7.5. Error Message: Bad File Descriptor
	Error Message
	Cause
	Solution

	7.6. Error Message: Too Many Open Files
	Error Message
	Cause
	Solution

	7.7. Problem: MPI Application Hangs
	Problem
	7.7.1. Case 1
	Cause
	Solution

	7.7.2. Case 2
	Cause
	Solution

	7.7.3. Case 3
	Cause
	Solution

	7.7.4. Case 4
	Cause
	Solution

	7.8. Problem: Password Required
	Problem
	Cause
	Solution

	7.9. Problem: Cannot Execute Binary File
	Problem
	Cause
	Solution

	8. Additional Supported Features
	8.1. Asynchronous Progress Control
	8.2. Multiple Endpoints Support
	8.2.1. MPI_THREAD_SPLIT Programming Model
	MPI_THREAD_SPLIT Model Description

	8.2.2. Threading Runtimes Support
	OpenMP* Threading Runtime

	8.2.3. Code Change Guide
	Changes Required to Use the OpenMP* Threading Model
	Changes Required to Use the POSIX Threading Model

	9. Code Examples
	9.1. async_progress_sample.c
	9.2. thread_split.cpp
	9.3. thread_split_omp_for.c
	9.4. thread_split_omp_task.c
	9.5. thread_split_pthreads.c

	Legal Information

