
White paper

Data Bench: A new

proof-of-concept workload

for microservice transactions

Data Bench is a new proof-of-concept workload that can be used to measure the

response-time latency of microservice transactions. This is a new type of workload

that places the focus and analysis of computing environments on the handling,

processing, and movement of data. Currently in Phase 1 proof-of-concept, this

open-source implementation delivers all the required components for an

out-of-the-box workload, in a format that is easy to download and easy to use.

Data Bench provides a solid starting point for testing the interoperability and

delivery mechanisms of future transaction benchmarks for microservices.

AUTHORS

John Fowler

Software and Services Group

Intel Corporation

Erik O’Shaughnessy

Software and Services Group

Intel Corporation

Roy Moore

Software and Services Group

Intel Corporation

Marcus Heckel

Software and Services Group

Intel Corporation

Yingqi Lu

Software and Services Group

Intel Corporation

Jeff Garelick

Software and Services Group

Intel Corporation

INTRODUCTION

There are many benchmarks today that are used to measure various aspects

of microservices. Some measure the performance of microservices, some

measure Apache Kafka* publish/subscribe aspects, some analyze elements of

data storage or data movement. However, none of these benchmarks focus

on end-to-end transactions, or allow you to vary the implementation.

Here, we introduce a new open-source workload: Data Bench. Data Bench is

designed to help you tune, optimize, develop, and evaluate data-centric

computing environments. This workload places the focus and analysis on the

handling, processing and the movement of data. Specifically, Data Bench

measures the response-time latency for two transactions using Kafka, Apache

Spark*, and Apache Cassandra*. Note that other benchmarks use Twitter*,

click-stream, or other unstructured data types for big data processing. Unlike

those benchmarks, Data Bench uses contemporary online transaction

processing (OLTP) structured data for the transactions and the data stored

in Cassandra.

Data Bench represents the value and importance placed upon data by

companies, customers, data centers, and technology developers. It addresses

a critical need for developers who work in microservices. Currently in Phase 1

(proof of concept, or POC), this open-source workload offers an opportunity

for the developer community to collaborate in order to further develop a useful

method to analyze end-to-end transactions, especially for different

microservice implementations.

Data Bench: A new proof-of-concept workload for microservice transactions 2

DATA BENCH PHASE 1

The Phase 1 proof-of-concept Data

Bench workload has an architecture

based on microservices. This makes it

more useful for development and testing

in a container-based and scale-out

environment.

Data Bench provides a complete

implementation of a simple workload. To

provide this complete implementation,

Data Bench uses several distributed

processing applications. Data Bench also

uses the latest techniques in

publish/subscribe messaging (Kafka),

services, microservices (Apache Spark*),

and data management (Apache

Cassandra*). Data Bench uses Docker*

containers to deliver the workload

environment efficiently, consistently, and

with minimal additional configuration

required.

Use of Docker* containers

The use of containers is important in this

workload because distributed processing

involves replication of the compute

environment. It also requires the ability to

adjust to demands and interruptions of

processing. Any workload for

microservices must be able to deliver

these ready-to-go environments quickly,

accurately, and affordably.

New data model

Data Bench introduces a new data model

and new transaction definitions for

transactional processing. Data Bench

also provides all necessary data, scripts,

files, and configurations to help you test

your microservice application using this

workload.

This new workload incorporates testing

and integration of Kafka, Spark, and

Cassandra for the management and

processing of data and transactions. A

Docker container includes a simple, yet

effective driver to manage the initiation,

pacing, and timing of the individual

transactions.

Phase 1 implementation

The phase 1 POC implementation of Data

Bench delivers all components in a format

that is easy to download and easy to use.

The implementation includes a link to

several Docker file containers, one for

each of the main components: the driver,

Kafka, Spark, and Cassandra.

This Phase 1 release also includes

instructions for preloading the Cassandra

database, along with the Spark services

and Kafka topics. When Data Bench is

more developed, you should be able to

execute the entire workload right out of

the box.

WORKLOAD DESIGN

The Data Bench workload is designed to

vary the size of the dataset, the

percentage mix of individual transactions,

and the pacing of incoming transactions.

For example, Data Bench provides a mix

of heavy, medium, and lightweight

transactions. It also provides for periods

of average and above-average

throughput.

The Data Bench workload is designed to

provide and/or include:

 Access the data already configured

and stored in Cassandra.

 Transactions to use the functionality of

Spark, in order to access and write

data to Cassandra, and distribute

transactions using Kafka.

 A computing environment and the

implementation in Docker containers

for separate stages of processing in

the workload. This is from transaction

generation (driver); to messaging

(Kafka); transaction processing

(Spark); and data storage and retrieval

(Cassandra). The computing

environment is implemented in Docker

containers for each environment.

 A small, but realistic, fixed-size

dataset that is implemented and

stored in a Cassandra cluster using a

simple and relevant schema.

Data Bench:

A new open source workload

Data Bench is a new, open-source

workload for measuring the

response-time latency of

microservice transactions. This new

workload places the focus and

analysis of computing environments

on the handling, processing, and

movement of data.

The workload consists of:

 A new data generator for scalable,

flexible, and realistic data for two

transactions.

 Scripts for generating tables and

for loading from flat files into

Apache Cassandra*.

 A fixed dataset size of a couple

hundred MB. When developed

further, Data Bench will provide the

ability to create datasets of any

size using a relational schema.

 A streaming transaction of market

ticker data called Market-Stream

 An interactive transaction with

moderate I/O loads and

processing, named Customer-

Valuation.

 A driver or transaction generator

for generating input data and

timing.

 A group of apache Spark* services

and microservices to implement the

transactions.

 Necessary Apache Kafka*

producers and consumers.

 Docker* containers for all of

the above.

This initial POC version of Data

Bench uses Kafka, Spark, and

Cassandra. However, Data Bench

can be customized for other

environments and configurations.

Data Bench: A new proof-of-concept workload for microservice transactions 3

 Two transactions exercise different

and challenging aspects of the Kafka-

Spark-Cassandra implementation.

 A representation of a market “ticker,”

to provide a steady stream of input

data as a Kafka producer to a cluster

of Kafka consumers. The ticker is

designed to represent an environment

with a steady stream of automatic or

non-iterative data collectors (such as

sensors and Internet-of-Things

devices).

 An interactive transaction that

retrieves the ever-changing valuation

of a customer’s portfolio, and returns

that information to the requester.

 A transaction generator (driver) as a

Kafka producer that generates the

input data for each transaction, and

sends the requests through Kafka to

the Spark consumers.

 A group of Spark services fronting a

Cassandra data manager for retrieving

and processing the defined workload.

 The necessary Kafka producers and

consumers to return any results of

executing the prescribed workload

transactions.

DATA BENCH COMPONENTS

The Data Bench proof-of-concept has

specific requirements, skills, and steps

that make it easier for you to implement.

This should help encourage you to try out

the workload and the underlying

technology without getting bogged down

in the configuration. With Data Bench,

Intel® provides all components necessary

to execute this workload. See Figure 1

(above) for an overview of the Phase 1

Data Bench workload design.

Data generator

Data Bench uses a new flexible, scalable,

representative, and freely available input

data generator both for the transactions

and for populating the tables.

The input data generator creates a

reasonably sized dataset. This data set is

based on artificial customer and market

financial data, in order to represent a

workload on the Kafka, Spark, and

Cassandra cluster.

Having realistic, scalable, and

interdependent data is a vital element to

any artificial transactional workload. The

data is crucial in order for the workload to

better emulate and represent compute

environments. However, access to real

data from existing environments or

customers is almost impossible to

acquire. That kind of data cannot be

distributed, and it is tightly coupled to an

implementation and/or software

environment.

For those and other reasons, Data Bench

uses the Transaction Processing

Performance Council’s (TPC) TPC

Benchmark* E data generator to create

the text files that populate the tables in

Cassandra. Data Bench uses only the

output of the TPC’s code. No TPC code is

used during the generation of transaction

input data or during transaction execution.

After the text files are generated, the

CUSTOMER and

CUSTOMER_ACCOUNT tables are

flattened and joined together to form a

new CUSTOMER_ACCOUNT table. It’s

that data which is used in this workload.

The Data Bench component that

generates the input data required for

every transaction, also uses the same

text files needed to populate the tables.

The text file is read into memory and

randomly selects which security symbol,

customer identification (ID), or customer

tax ID is used for any transaction.

Figure 1. Design for Phase 1 of the new Data Bench workload.

http://www.tpc.org/

Data Bench: A new proof-of-concept workload for microservice transactions 4

Driver

As shown in Figure 1 (previous page),

Data Bench includes a workload driver as

part of the environment. The driver is a

single system, written in Python Software

Foundation Python* with Linux

Foundation Kubernetes* command and

control. There are separate containers for

the customer generator and Market-

Stream generator.

The driver provides:

 Input generation for the transactions

 Pacing of transactions

 Collection and tracking of response-

time latencies per transaction

 Generation of cumulative performance

reports, based on transaction

throughput

The driver’s processes use Kafka APIs

(application programming interfaces) to

send and receive messages with the

Kafka brokers and topics. The driver is

packaged in Docker file containers, and

comes preloaded, preconfigured, and

ready to run.

Spark services used to

manage two transactions

The Spark services manage the

execution of the transactions. In this

POC, the workload defines and measures

the response-time latency for two

transactions: Market-Stream and

Customer-Valuation. The workload

provides a mix of heavy, medium, and

lightweight transactions for both Market-

Stream and Customer-Valuation.

Transaction: Market-Stream

The Market-Stream transaction

represents a continually changing security

ticker. In other words, it is a constant

stream of ticker updates coming from the

generator. The data stream includes

individual symbols, a unique ID, a price

quote, and the quantity traded.

In this Phase 1 workload, the generator

selects a security symbol, and generates

a new price and a quantity. The generator

then requests a unique identifier for the

transaction, and submits this to the Kafka

topic for Market-Stream via the

producer API.

A Spark service consumer then retrieves

the entry from the Kafka topic. The

service processes the ticker symbol by

updating the appropriate fields in the

Cassandra LAST_TRADE table, and by

inserting a new row into the

MARKET_STREAM_TXN.

 The LAST_TRADE table is the

definitive source of the last price

quoted and traded for any security in

the system.

 The MARKET_STREAM_TXN table is

used to track each of the individual

ticker updates made, and then

determine the latency of the individual

transactions.

In this POC, Data Bench uses a steady

stream of data (variable controlled

submission rate) with an initial rate of 20

tickers per second. A ticker consists of

information from the driver, as described

in Table 1 (next page).

In this Phase 1 workload, the Spark

service retrieves the incoming structure,

and acts on the Cassandra tables, as

described in Table 2 (next page).

Data Bench transactions:

Market-Stream and Customer-Valuation

The Data Bench workload implements a series of transactions on a small cluster.

The workload distributes and balances the load of the individual transactions: heavy,

medium, and lightweight; and provides periods of average and above-average

throughput. The new data generator in the workload is used to populate the tables.

Market-Stream

transaction overview:

 A streaming transaction that

represents a continually changing

security ticker

 A constant stream of updates to

Apache Cassandra* tables, as

pricing changes come from the

Market Generator (you can

customize the rate of updates)

 Future updates to tables will trigger

other transactions and/or actions

on the data

 The transaction is representative

of the environment, with con-

tinuous input arriving at constant

or variable rates

Customer-Valuation

transaction overview:

 Retrieves a customer’s profile, and

summarizes the overall standing

for each account, based on current

market values. For every account,

this transaction returns:

 Cash balance and value

 Quantity for each security

 Gain and/or loss from the

purchase price as compared to

current market prices

 The value of the portfolio

constantly changes as the market

itself changes

Data Bench: A new proof-of-concept workload for microservice transactions 5

Transaction: Customer-Valuation

The Customer-Valuation transaction is

interactive. In other words, the data is

returned to the originator of the

transaction, and is timed by the driver.

Currently, in this POC, the transaction

computes a customer’s overall value for:

 All of the securities held

 Cash balance for each account

 Value for each account

 Total cost for the security in each

account

 Value for each security in an account

based on the last trade price of the

security.

The transaction also selects all of the

columns from the

CUSTOMER_ACCOUNT table based on

either the customer_id or the

customer_tax_id from the input.

Data Bench retrieves the security

symbols, purchase price, and total

quantity matching the customer’s account

IDs from the HOLDING table. The last

trade price is read from the

LAST_TRADE table for each security and

returned.

The input for the transaction is typically

the customer_id (for the customer) 70%

of the time; or the customer_tax_id 30%

of the time. If one field is populated, the

other must be 0 (zero).

Table 3 describes the Customer-

Valuation fields.

Table 1. Ticker information from the driver

Field name Field type Description

Transaction Name String Set to MarketStream

UUID Unique ID System-generated unique
string identifier

MST_DTS Date / timestamp Date/time when submitted

MST_TXN_CNTR Integer Transaction counter

LT_PRICE Decimal Price of the trade

LT_QTY Integer Number of securities traded

LT_S_SYMB String Security symbol traded

Table 2. Spark service actions on Apache Cassandra* tables

Table name Column Action

LAST_TRADE

LT_S_SYMB Access

LT_PRICE Update

LT_VOL Update

LT_DTS Update

MARKET_STREAM_TXN

MST_ID Insert

MST_START_DTS Insert

MST_END_DTS Insert

MST_S_SYMB Insert

MST_PRICE Insert

MST_QTY Insert

Table 3. Customer-Valuation transaction fields

Field name Field type Description

Transaction Name String Set to CustomerValuation

UUID Unique ID System-generated unique
string identifier

MST_DTS Date / timestamp Date/time when submitted

MST_TXN_CNTR Integer Transaction counter

customer_id Int64 Customer ID

customer_tax_id Int64 Customer Tax ID

Data Bench: A new proof-of-concept workload for microservice transactions 6

Input structure

The input structure is passed to the driver

process/procedure that acts as the Kafka

producer. The producer marks the

beginning timestamp and a unique

transaction identifier for the transaction,

and logs for processing later. The driver

then produces the transactions as a

message to a Kafka topic for processing.

CA_C_ID compare action

Data Bench identifies the CA_C_ID

compare action by either the customer_id

or the customer_tax_id from the input

structure. If the customer_tax_id is

provided, then the CA_C_ID is returned.

All of the rows from the

CUSTOMER_ACCOUNT table are

retrieved for the CA_C_ID.

Next, the rows from HOLDING for the

individual CA_IDs are returned. Data

Bench uses these to compute:

 Customer’s overall value

 Account’s current value

 Purchase value for each security held

by the customer

LT_PRICE

Data Bench retrieves the LT_PRICE for

each security symbol in the customer’s

holdings from the LAST_TRADE table.

This is used to compute:

 Current value of each security

 Total value for each account

 Current total value for the customer

In turn, the workload uses that information

to populate the output structure, with the

fields described in Table 5.

The driver retrieves the output structure

from the Customer-Valuation Spark

service via the Kafka consumer APIs. The

transaction is now complete.

Table 5. Output structure

Field name Field type Description

Transaction Name String Set to CustomerValuation

UUID Unique ID System-generated unique string
identifier

UUID_reply Unique ID Unique ID of the response returned

txn_sequence Int Sequence number for transaction

asset_total[acct_id] Double Array of totals, 1 per account

cash_bal[acct_id] Double Array of cash balance, 1 per account

acct_id[acct_id] Int64 Array of account ID, for customer ID

symbol[max][acct_id]*
String Arrays of security symbols per

account, for each account ID

h_qty[max][acct_id]
Int32 Arrays of security quantities per

account, for each account ID

h_cost[max][acct_id]
Double Arrays of security cost per security

symbol, for each account ID

h_val[max][acct_id]
Double Arrays of current security value per

security symbol, for each account ID

acct_name[acct_id] String Array of customer account names

customer_id Int64 Customer ID

customer_acct_id[acct_id] Int64 Array of customer account IDs

first_name String Customer first name

middle_name Char Customer middle initial

last_name String Customer last name

Table 4. Operations performed on Cassandra tables by the Customer-
Valuation service

Table name Column Action

CUSTOMER_ACCOUNT

CA_ID Return

CA_C_ID Compare

CA_BAL Return

CA_F_NAME Return

CA_L_NAME Return

CA_M_NAME Return

CA_TAX_ID Return

HOLDING

H_CA_ID Compare

H_S_SYMB Return

H_PRICE Return

H_QTY Return

LAST_TRADE
LT_S_SYMB Compare

LT_PRICE Return

* For symbol[max][acct_id], max = 10. This is the maximum number of
securities per account

Data Bench: A new proof-of-concept workload for microservice transactions 7

Cassandra

For this Phase 1 workload, the data

manager is Cassandra. Data Bench

uses a Docker file container, for which

Cassandra is already configured and

loaded with the base number of rows.

Tables 6, 7, 8, and 9 (next page)

describe the schemas used by the

Cassandra tables for

CUSTOMER_ACCOUNT, HOLDING,

LAST_TRADE, and

MARKET_STREAM_TRANSACTION.

Table 6. Schema for CUSTOMER_ACCOUNT

Column name Column type Description

CA_C_ID Int64 Customer ID

CA_ID Int64 Customer Account ID

CA_TAX_ID Text Customer Tax ID

CA_B_ID Int64 ID of Broker for Customer Account

CA_NAME Text Name of the Customer Account

CA_BAL Decimal Cash balance for the account

CA_L_NAME Text Last name of the customer

CA_F_NAME Text First name of the customer

CA_M_NAME Text Middle initial of the customer

Primary key: CA_C_ID, CA_ID

Table 7. Schema for HOLDING

Field name Field type Description

H_T_ID Int64 Trade ID associated with security

H_CA_ID Int64 Customer Account for security

H_S_SYMB Text Security Symbol

H_DTS Date Timestamp Date / Time of trade

H_PRICE Decimal Value of security at trade

H_QTY Int32 Number of security with trade

Primary key: H_T_ID, H_CA_ID

Table 8. Schema for LAST_TRADE

Field name Field type Description

LT_S_SYMB Text Security symbol

LT_DTS Date Timestamp Date/time of last update to symbol

LT_OPEN_PRICE Decimal Value of symbol at open of exchange

LT_VOL Int64 Total number of shares since open

Primary key: LT_S_SYMB

Data Bench: A new proof-of-concept workload for microservice transactions 8

SUMMARY

Data Bench is a new, open-source, data-

centric workload that focuses on and

analyses the handling, processing, and

movement of data. It provides a mix of

heavy, medium, and lightweight

transactions, as well as periods of

average and above-average throughput.

Data Bench is designed to help you tune,

optimize, develop, and evaluate your

microservices computing environment.

With no comparable workload in industry

that can handle the movement and

storage of microservices data, Data

Bench fills a critical need.

Even better, Data Bench is not just a

workload that measures the response-

time latency of microservice transactions.

It also has the hooks necessary to take

measurements at various stages in the

transaction flow. In turn, this makes it

easier for you to find bottlenecks and

other areas that could benefit from

additional work.

This Phase 1, proof-of-concept

implementation of Data Bench delivers all

the required components of a benchmark

in a format that is easy to download and

easy to use.

Right now, Data Bench is a fairly simple

workload and, as a proof-of-concept, is

not yet well-tuned or stressful. Rather,

this Phase 1 Data Bench provides a solid

starting point for testing the Kafka-Spark-

Cassandra interoperability and delivery

mechanism for future benchmarks.

To learn more about Data Bench and how to

contribute to the workload, visit the Data Bench repository:

https://github.com/Data-Bench/data-bench

Table 9. Schema for MARKET_STREAM_TRANSACTION

Field Name Field Type Description

MST_ID Int64 Unique ID of the Market-Stream transaction

MST_START_DTS Date Timestamp Date/Time of the start of transaction

MST_END_DTS Date Timestamp Date/Time of the end of transaction

MST_S_SYMB Text Security symbol

MST_PRICE Decimal Price of symbol

MST_QTY Int32 Number of shares in transaction

Primary key: MST_ID, MST_S_SYMB

https://github.com/Data-Bench/data-bench
http://software.intel.com/bigdata

Data Bench: A new proof-of-concept workload for microservice transactions 9

Any software source code reprinted in this document is furnished under a software license and may only be used or copied in accordance with the terms
of that license.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN
INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death.
SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND
HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH,
HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY
OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION
CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR
WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics
of any features or instructions marked "reserved" or "undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for
conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with
this information.
No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose,
and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

This document contains information on products, services and/or processes in development. All information provided here is subject to change without
notice. Contact your Intel representative to obtain the latest forecast, schedule, specifications and roadmaps.

The products and services described may contain defects or errors known as errata which may cause deviations from published specifications. Current
characterized errata are available on request.

Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725 or by visiting

www.intel.com/design/literature.htm.

This sample source code is released under the Intel Sample Source Code License Agreement.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

© 2017 Intel Corporation

Printed in USA XXXX/XXX/XXX/XX/XX Please Recycle XXXXXX-001US

http://www.intel.com/design/literature.htm
http://software.intel.com/en-us/articles/intel-sample-source-code-license-agreement/

