
A Basic Sample of OpenCL™ Host Code

By Tom Craver (Intel Corporation Software Applications Engineer)

Contents
Introduction .. 3

About the Sample .. 3

OpenCL Implementation .. 3

Limitations .. 4

OpenCL Application Basics .. 4

Project Structure .. 7

OpenCL APIs Used ... 8

Controlling the Sample ... 9

References .. 9

Legal Information ... 10

Introduction

Programmers new to OpenCL may find that the most complete documentation—the Khronos

OpenCL specification—is not the best guide to getting started programming for OpenCL. The

specification describes many options and alternatives, which can be confusing at first. Other

code samples written for OpenCL may focus on the device kernel code, or may use host code

written with an OpenCL “wrapper” library that hides the details of how to directly use the

standard OpenCL host API.

The SampleOCL sample code described in this document aims to provide a clear and

readable representation of the basic elements of a non-trivial OpenCL program. The focus of

the sample code is the OpenCL™ code for the host (CPU), rather than kernel coding or

performance. It demonstrates the basics of constructing a fairly simple OpenCL application,

using the OpenCL v1.2 specification.[1] Similarly, this document focuses on the structure of

the host code and the OpenCL APIs used by that code.

About the Sample
This code sample uses the same OpenCL kernel as the ToneMapping sample (see reference

below), previously published for the Intel® SDK for OpenCL Applications [2]. This simple

kernel attempts to make visible features of an image that would otherwise be too dark or too

bright to distinguish. It reads pixels from an input buffer, modifies them, and writes them out

to the same position of an output buffer. For more information on how this kernel works, see

the document High Dynamic Range Tone Mapping Post Processing Effect [3].

OpenCL Implementation
The SampleOCL sample application is not intended to “wrap” OpenCL; that is, it does not try

to replace OpenCL APIs with a “higher level” API. Generally I have found that such wrappers

are not much simpler or cleaner than using the OpenCL API directly and, while the original

programmer of a wrapper may find the wrapper easier to work with, the wrapper will impose a

burden on any OpenCL programmer called upon to maintain the code. The OpenCL APIs are a

standard. To wrap them in a proprietary “improved” API is to throw away much of the value of

having that standard.

With that said, the SampleOCL implementation does make use of a few C++ classes and

associated methods to separate the use of OpenCL APIs into a few groups. The application is

broken into two main classes to separate generic application elements from elements related

to OpenCL. The former is C_SampleOCLApp; the latter is C_OCL.

https://software.intel.com/sites/default/files/managed/9e/75/SampleOCL.zip

Limitations
This sample code focuses only on the basics of an OpenCL application, as specified in version

1.2. It provides no insight into differences from other revisions, though most of the

information should still be relevant for newer revisions.

The host side application code of this sample is not intended to demonstrate the most

optimal performance. For simplicity, several obvious optimizations have been left out.

OpenCL Application Basics
What follows is a fairly complete explanation of a basic OpenCL application program

sequence. The emphasis is on “basic,” as many options are not covered. More information can

be found in the OpenCL specification [1].

An OpenCL application should be able to execute with substantial parallelism on a variety of

processing devices such as multi-core CPUs with SIMD instruction support and Graphics

Processing Units (GPUs), either discrete or integrated into a CPU. As such, one of the first

things an OpenCL application must do is determine what devices are available and select the

device or devices that will be used. A single platform might support more than one type of

device, such as a CPU that has an integrated GPU, and more than one platform may be

available to the application.

Each platform available to the OpenCL application will have an associated name, vendor, etc.

That information can be obtained using the OpenCL APIs clGetPlatformIDs() followed by

clGetPlatformInfo() and can be used to select a desired platform.

Once a platform is selected, a context must be created to encompass the OpenCL devices,

memory, and other resources needed by an application. With the selected platform ID and a

specification of the desired device type (CPU, GPU, etc.), an application can call

clCreateContextFromType() and then use clGetContextInfo() to obtain the device IDs.

Or, it can directly request device IDs for a given platform ID and device type using

clGetDeviceIDs() and then use clCreateContext() with those device IDs to create the

context. This sample uses the latter approach to create a context with a single GPU device.

With the desired device ID(s) and context, one can create a command queue for each device to

be used using clCreateCommandQueue(). The command queue is used to “enqueue”

operations from the host application to the GPU or other device, for example, requesting that

a particular OpenCL kernel be executed. This sample code creates a single command queue

for a GPU device.

With that initialization work done, a common next step is to create one or more OpenCL

program objects using clCreateProgramWithSource(). Once the program is created, it

must still be built (essentially compiled and linked) using clBuildProgram(). That API allows

setting options to the compiler, such as #defines to modify the program source.

Finally, with the program created and built, kernel objects that link to the functions in that

program can be created, calling clCreateKernel() for each kernel function name.

Prior to executing an OpenCL kernel, set up the data to be processed—usually done by

creating linear memory buffers using the clCreateBuffer() API function. (An Image is

another OpenCL memory object type not used in this sample.) The clCreateBuffer function

can allocate memory for a buffer of a given size and optionally copy data from host memory,

or it can set up the buffer to directly use space already allocated by the host code. (The latter

can avoid copying from host memory to the OpenCL buffer, which is a common performance

optimization.)

Typically, a kernel will need at least one input and one output buffer as well as other

arguments. The arguments need to be set up one at a time for the kernel to access at

execution time by calling the clSetKernelArg() function for each argument. The function is

called with a number indexing a particular argument in the kernel function argument list. The

first argument is passed with index 0, the second with index 1, etc.

With the arguments set, call the function clEnqueueNDRangeKernel() with the kernel

object and a command queue to request that the kernel be executed. Once the kernel is

enqueued, the host code can do other things, or it can wait for the kernel (and everything

previously enqueued) to finish by calling the clFinish() function. This sample calls

clFinish(), as it includes code to time the total kernel execution (including any enqueue

overhead) in a loop needs to wait for each execution to finish before recording the final or

contribution to the average time.

That’s the bulk of what goes into an OpenCL application. There are some clean-up operations,

such as calling clReleaseKernel, clReleaseMemObject, clReleaseProgram, etc. These

are included in the sample, even though OpenCL should automatically release all resources

when the program exits. A more complex program might wish to release resources in a timely

fashion to avoid memory leaks.

A final word of caution: while this sample does not use “events,” they can be very useful for

more complex applications that wish, for example, to overlap CPU and GPU processing.

However, it is very important to note that any clEnqueueXXXXX() function (where "XXXXX" is

replaced with the name for one of many possible functions) that is passed a pointer to an

event will allocate an event, and the calling application code is then responsible for calling

clReleaseEvent() with a pointer to that event at some point. If this is not done, the program

will experience a memory leak as events accumulate.

A common mistake is to use the clCreateUserEvent() function to allocate an event to

pass to any clEnqueueXXXX function, thinking that OpenCL will signal that event when it

completes. OpenCL will not use that event, and the clEnqueueXXXX will return a new event,

overwriting the contents of the event variable passed by pointer. This is an easy way to create

a memory leak. User events have a different purpose, beyond the scope of this sample. For

more details on OpenCL events, please see the OpenCL specification.[1]

Project Structure

_tmain(argc, argv) - Main entry point function in the Main.cpp file.

 Creates an instance of class C_SampleOCLApp.

Calls C_SampleOCLApp::Run() to start application.

That’s all it does! See the C_MainApp and C_SampleApp classes below for more details.

class C_MainApp - Generic OpenCL application super-class in the C_MainApp.h file.

 On construction, creates instance of OpenCL class C_OCL.

Defines a generic application “run” function:

Run() Run() is a good starting point for reading the code to

understand how an OpenCL application is initialized, run, and

cleaned up.

Run() calls virtual functions (see below) in a simple

representative application sequence.

Declares virtual functions to be defined by C_SampleOCLApp (below):

AppParseArgs () Parse command line options

AppUsage () Print usage instructions

AppSetup () Application set up, including OpenCL set up

AppRun () Application specific operations

AppCleanup () Application clean up

class C_SampleOCLApp - Derived from C_MainApp, defines functions specific to this sample.

Implements application specific code for the C_MainApp virtual functions in the SampleApp.cpp

and SampleApp.h files. (See class C_MainApp (above) for the virtual functions implemented.)

Defines “ToneMap” OpenCL kernel setup and execution functions in the ToneMap_OCL.cpp file:

RunOclToneMap () Does one-time set up for ToneMap, then calls ToneMap().

ToneMap () Sets ToneMapping kernel arguments and executes the kernel.

class C_OCL - Most of the host side OpenCL API set up and clean up code.

On construction, initializes OpenCL. On destruction, cleans up after OpenCL.

Defines OpenCL service functions in the C_OCL.cpp and C_OCL.h files:

Start () Sets up OpenCL device for Intel® Iris™ graphics for proper

platform.

ReadAllPlatforms () Obtains all available OpenCL platforms, saving their

names.

MatchPlatformName () Helper function, chooses a platform by name.

GetDeviceType () Helper function – is device type GPU or CPU?

CheckExtension () Checks if a particular OpenCL extension is supported on

the current device.

ReadExtensions () Obtains a string listing all OpenCL extensions for the

current device.

SetCurrentDeviceType () Sets desired device type and creates OpenCL context and

command queue.

CreateProgramFromFile

()

Loads a file containing OpenCL kernels, creates an OpenCL

program, and builds it.

ReadSourceFile () Reads OpenCL kernel source file into a string, ready to

build as a program.

CreateKernelFromProgram

()

Creates an OpenCL kernel from a previously built program.

GetDeviceInfo () Two helper functions to get device specific information:

one allocates memory to receive and return results, the

other returns results via a pointer to memory provided by

the caller.

ClearAllPlatforms () Releases everything associated with a previously selected

platform.

ClearAllPrograms () Releases all currently existing OpenCL programs.

ClearAllKernels () Releases all currently existing OpenCL kernels.

OpenCL APIs Used

clBuildProgram clCreateBuffer

clCreateCommandQueue clCreateContext

clCreateKernel clCreateProgramWithSource

clEnqueueMapBuffer clEnqueueNDRangeKernel

clEnqueueUnmapMemObject clFinish

clGetDeviceIDs clGetDeviceInfo

clGetPlatformIDs clGetPlatformInfo

clReleaseCommandQueue clReleaseContext

clReleaseDevice clReleaseDevice

clReleaseKernel clReleaseMemObject

clReleaseProgram clSetKernelArg

Controlling the Sample
This sample is run from a Microsoft Windows* command line console. It supports the following

command line and optional parameters:

ToneMapping.exe [? | --h] [-c|-g] [-list] [-p "platformName] [-i "full image filename"]

? OR --h Prints this help message

-c Runs OpenCL on CPU

-g Runs OpenCL on GPU - default

-list Displays list of platform name strings

-p "platformName" Supplies a platform name (in quotes if it has spaces) to check

for and use.

-i "full image filename" Supplies an image file name (in quotes if it has spaces) to

process.

References
1. OpenCL Specifications from Khronos.org:

http://www.khronos.org/registry/cl/

2. Intel® SDK for OpenCL™ Applications: http://software.intel.com/en-

us/vcsource/tools/opencl-sdk

3. High Dynamic Range Tone Mapping Post Processing Effect:

http://software.intel.com/en-us/vcsource/samples/hdr-tone-mapping

http://www.khronos.org/registry/cl/
http://software.intel.com/en-us/vcsource/tools/opencl-sdk
http://software.intel.com/en-us/vcsource/tools/opencl-sdk
http://software.intel.com/en-us/vcsource/samples/hdr-tone-mapping

Legal Information
Information in this document is provided in connection with intel products. No license, express or implied, by

estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in intel's

terms and conditions of sale for such products, intel assumes no liability whatsoever, and intel disclaims any

express or implied warranty, relating to sale and/or use of intel products including liability or warranties relating to

fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual

property right.

A "mission critical application" is any application in which failure of the intel product could result, directly or

indirectly, in personal injury or death. Should you purchase or use intel's products for any such mission critical

application, you shall indemnify and hold intel and its subsidiaries, subcontractors and affiliates, and the directors,

officers, and employees of each, harmless against all claims costs, damages, and expenses and reasonable

attorneys' fees arising out of, directly or indirectly, any claim of product liability, personal injury, or death arising in

any way out of such mission critical application, whether or not intel or its subcontractor was negligent in the

design, manufacture, or warning of the intel product or any of its parts.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not

rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." intel

reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities

arising from future changes to them. The information here is subject to change without notice. Do not finalize a

design with this information.

The products described in this document may contain design defects or errors known as errata which may cause

the product to deviate from published specifications. Current characterized errata are available on request. Contact

your local Intel sales office or your distributor to obtain the latest specifications and before placing your product

order.

Copies of documents that have an order number and are referenced in this document, or other Intel literature, may

be obtained by calling 1-800-548-4725 or by visiting http://www.intel.com/design/literature.htm

For beta and pre-release product versions: This document contains information on products in the design phase of

development.

Intel, the Intel logo, and Iris are trademarks of Intel Corporation in the U.S. and other countries.

* Other names and brands may be claimed as the property of others.

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission from Khronos.

Copyright © 2014, Intel Corporation. All rights reserved.

http://www.intel.com/design/literature.htm

