
Share with a friendSign up for future issuesFor more information regarding performance and optimization choices in Intel® Software
Development Products, visit software.intel.com/en-us/articles/optimization-notice.

1The Parallel Universe

By Mikhail Brinskiy, Software Development Engineer, and Mark Lubin, Technical Consulting
Engineer, Intel Corporation

An Introduction to MPI-3 Shared
Memory Programming
An All-MPI Alternative to MPI/OpenMP* Programming Worth Considering

Abstract

The Message Passing Interface (MPI) standard is a widely used programming interface for
distributed memory systems. Hybrid parallel programming on many-core systems most often
combines MPI with OpenMP*. This MPI/OpenMP approach uses an MPI model for communicating
between nodes while utilizing groups of threads running on each computing node in order to
take advantage of multicore/many-core architectures such as Intel® Xeon® processors and Intel®
Xeon Phi™ coprocessors.

The MPI-3 standard introduces another approach to hybrid programming that uses the new MPI
Shared Memory (SHM) model.1 The MPI SHM model, supported by Intel® MPI Library Version
5.0.22 enables changes to existing MPI codes incrementally in order to accelerate communication
between processes on the shared-memory nodes.3

http://software.intel.com/en-us/articles/optimization-notice
http://intel.ly/R0bP4r
http://intel.ly/PsntXv
https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel%20Universe%20Magazine%20Issue%2020&utm_content=PUM_Footer_na&utm_campaign=Intel%20DPD%20Campaign

Share with a friendSign up for future issuesFor more information regarding performance and optimization choices in Intel® Software
Development Products, visit software.intel.com/en-us/articles/optimization-notice.

2The Parallel Universe

1-D Ring: From Standard MPI Point-to-Point to MPI SHM
We approach the semantics of the MPI SHM API by modifying a well-known 1-D ring
example, where each MPI rank can exchange MPI-1 nonblocking messages with its left
and right neighbors.4

We intend to run our code on multiple multicore nodes with all MPI ranks sharing memory
on each node. The function MPI_Comm_split_type enables programmers to determine
the maximum groups of MPI ranks that allow such memory sharing. This function has a
powerful capability to create “islands” of processes on each node that belong to the output
communicator shmcomm :

MPI_Irecv (&buf[0],…, prev,…, MPI_COMM_WORLD, &reqs[0]);

MPI_Irecv (&buf[1],…, next,…, MPI_COMM_WORLD, &reqs[1]);

MPI_Isend (&rank,…, prev,…, MPI_COMM_WORLD, &reqs[2]);

MPI_Isend (&rank,…, next,…, MPI_COMM_WORLD, &reqs[3]);

 {do some work}

MPI_Waitall (4, reqs, stats);

1 Figure 1. Nearest neighbor exchange in a 1-D ring topology and corresponding MPI-1 code

MPI_Comm shmcomm;

MPI_Comm_split_type (MPI_COMM_WORLD, MPI_COMM_TYPE_SHARED,0, MPI_INFO_NULL,
&shmcomm);

In this article, we present a tutorial on how to start using MPI SHM on multinode systems using
Intel Xeon with Intel Xeon Phi. The article uses a 1-D ring application as an example and includes
code snippets to describe how to transform common MPI send/receive patterns to utilize the MPI
SHM interface. The MPI functions that are necessary for internode and intranode communications
will be described. A modified MPPTEST benchmark has been used to illustrate performance of
the MPI SHM model with different synchronization mechanisms on Intel Xeon and Intel Xeon Phi
based clusters. With the help of Intel MPI Library Version 5.0.2, which implements the MPI-3
standard, we show that the shared memory approach produces significant performance
advantages compared to the MPI send/receive model.

http://software.intel.com/en-us/articles/optimization-notice
https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel%20Universe%20Magazine%20Issue%2020&utm_content=PUM_Footer_na&utm_campaign=Intel%20DPD%20Campaign

Share with a friendSign up for future issuesFor more information regarding performance and optimization choices in Intel® Software
Development Products, visit software.intel.com/en-us/articles/optimization-notice.

3The Parallel Universe

To execute MPI send/receive point-to-point operations between the nodes (as in the
original example) and execute MPI SHM functions within each node, we need a mechanism
to distinguish between ranks that fit into the same node versus ranks belonging to different
nodes. To accomplish this, we separate MPI groups from the global communicator and
shared memory communicator shmcomm:

Then we can map global rank numbers onto the shmcomm ranks numbers and store this
mapping into the partners_map array (Figure 2).

MPI_Comm_group (MPI_COMM_WORLD, &world_group);

MPI_Comm_group (shmcomm, &shared_group);

MPI_Group_translate_ranks (world_group, n_partners, partners, shared_group,
partners_map);

2 Mapping of global ranks to shmcomm ranks. If some of the neighboring ranks are residing on a different node,
their mapping in the resulting array partners_map will be a predefined constant, MPI_UNDEFINED.

The companion collective function then allocates MPI-3 remote memory access (RMA) type
memory windows on each node. They are called windows because MPI restricts what part of a
process’s memory will be made available to other processes:

MPI_Win_allocate_shared (alloc_length, 1,info, shmcomm, &mem, &win);

http://software.intel.com/en-us/articles/optimization-notice
https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel%20Universe%20Magazine%20Issue%2020&utm_content=PUM_Footer_na&utm_campaign=Intel%20DPD%20Campaign

Share with a friendSign up for future issuesFor more information regarding performance and optimization choices in Intel® Software
Development Products, visit software.intel.com/en-us/articles/optimization-notice.

4The Parallel Universe

for (j=0; j<n_partners; j++)

{

 if (partners_map[j] != MPI_UNDEFINED)

 MPI_Win_shared_query (win, partners_map[j],…, &partners_ptrs[j]);

}

Unlike the point-to-point message-passing model, the MPI SHM interface assumes explicit use of
synchronizations to ensure memory consistency and assumes that the changes in memory are
visible to the other processes. In some cases, it enables higher performance at the cost of more
complex code that each developer needs to understand and maintain. Therefore, in this article,
we focus on the semantics of these new synchronizations and their effect on performance.

3 MPI_Win_shared_query can return different process-local addresses for the same physical memory
on different processes

The MPI SHM model, supported by Intel® MPI Library Version
5.0.2, enables changes to existing MPI codes incrementally
in order to accelerate communication between processes on
the shared-memory nodes.

The so-called passive target MPI RMA synchronization, defined by the pair of MPI_Win_lock_
all and MPI_Win_unlock_all functions for all processes sharing an RMA window, was
chosen as one of the most performance-efficient.5 The term “lock” here does not have the
same connotation familiar to shared memory programmers such as with mutexes. The pair of
MPI_Win_lock_all and MPI_Win_unlock_all simply denotes the time interval, called
an RMA access epoch, when remote memory operations are allowed to occur. In this case,
the MPI_Win_sync function has to be used to ensure completion of memory updates and
MPI_Barrier to synchronize all processes on the node in time (Figure 4).

The MPI_Win_shared_query API can be used to find out the process-local addresses for
shared memory segments using a conditional test, partners_map[j]!= MPI_UNDEFINED,
which is true when the current rank and its communication partners reside on the same node
and therefore share common memory. The returned memory pointers array, partners_ptrs,
can be used for simple loads and stores, replacing costly MPI send/receive functions within the
shared memory domain (Figure 3).

http://software.intel.com/en-us/articles/optimization-notice
https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel%20Universe%20Magazine%20Issue%2020&utm_content=PUM_Footer_na&utm_campaign=Intel%20DPD%20Campaign

Share with a friendSign up for future issuesFor more information regarding performance and optimization choices in Intel® Software
Development Products, visit software.intel.com/en-us/articles/optimization-notice.

5The Parallel Universe

Calling MPI_Win_lock for each particular neighbor is a valid approach as well, and
sometimes it can provide performance advantages, but it requires more lines of code.
Alternatively, one could employ the active target MPI RMA communication mode that relies on
a pair of MPI_Win_fence operations surrounding memory updates. The MPI_Win_fence
method is less verbose compared to lock/unlock epochs since it already includes barrier
synchronizations, but it produced slower results in our experiments.

With correct synchronizations in place, all processes can retrieve their neighbors’ information
either via shared memory or using standard point-to-point communications if neighbors are
on the different nodes (Figure 5).

for (j=0; j<n_partners; j++){

 if (partners_map[j] != MPI_UNDEFINED)

 {

 i0 = partners_ptrs[j][0]; //load ops from MPI SHM!

 i1 = partners_ptrs[j][1];

 i2 = partners_ptrs[j]+2;

 } else { // inter-node non-blocking MPI

 MPI_Irecv (&rbuf[j],…, partners[j], 1 , MPI_COMM_WORLD, rq++);

 MPI_Isend (&rank,…, partners[j], 1 , MPI_COMM_WORLD, rq++);

 }

}

5 Halo exchanges using MPI SHM on the node and standard nonblocking MPI send/receive for internode communications

//Start passive RMA epoch

MPI_Win_lock_all (MPI_MODE_NOCHECK, win);

// write into mem array hello_world info

mem[0] = rank;

mem[1] = numtasks;

memcpy(mem+2, name, namelen);

MPI_Win_sync (win); // memory fence - sync node exchanges

MPI_Barrier (shmcomm); //time barrier

4 Passive RMA synchronizations are needed for MPI SHM updates. The performance assertion MPI_MODE_NOCHECK
hints that the epoch can begin immediately at the target. Note that on some platforms one more MPI_Win_sync would
be needed after the MPI_Barrier to ensure memory consistency at the reader side.

http://software.intel.com/en-us/articles/optimization-notice
https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel%20Universe%20Magazine%20Issue%2020&utm_content=PUM_Footer_na&utm_campaign=Intel%20DPD%20Campaign

Share with a friendSign up for future issuesFor more information regarding performance and optimization choices in Intel® Software
Development Products, visit software.intel.com/en-us/articles/optimization-notice.

6The Parallel Universe

After completion of MPI SHM communications, we can close the access epoch using
MPI_Win_unlock_all. The internode communications are synced with MPI_Waitall
as usual.

The resulting code is available for download.

Modifying MPPTEST Halo Exchange to Include MPI SHM
To evaluate the performance of the MPI SHM available in Intel MPI Library Version 5.0.2 on
clusters based on Intel Xeon processors and Intel Xeon Phi coprocessors, we modified the halo
exchange algorithm from the MPPTEST benchmark6 using as a prototype the 1-D ring example.
Although the MPPTEST halo test does not have the computational kernels present in many real
applications, it provides an unhindered view of how different-order halo exchanges, message
sizes, and MPI synchronizations may affect performance.

It is known that the MPI SHM model provides performance benefits by avoiding regular
send/receive memory copy operations, MPI stack latencies, and tag matching.7 The replacement
of these traditional MPI mechanisms with fast intranode communications, such as memory
copy operations, exposes in turn the effect of the remaining major contribution to overall
intranode performance, the different available MPI SHM synchronizations briefly described in
the last section.

We implemented three new halo patterns for the MPPTEST suite—mpi3shm_lockall,
mpi3shm_lock, and mpi3shm_fence—that can be used as new MPPTEST configuration
parameters. All of them use the same MPI SHM communication scheme, but they employ
different shared memory synchronization primitives:

•	 mpi3shm_lockall. This relies on MPI_Win_lock_all and MPI_Win_unlock_all to open
and close an access epoch and relies on MPI_Barrier and MPI_Win_sync for process
synchronization (memory and time).

•	 mpi3shm_lock. This is the same as mp3shm_lockall but uses separate MPI_Win_lock
and MPI_Win_unlock calls for each neighbor in the halo exchange.

•	 mpi3shm_fence. A pair of successive MPI_Win_Fence calls ensures that any local stores to
the shared memory executed between them are consistent, and thus there is no need for any
other synchronization primitives.

To investigate different processes topologies in halo exchanges, we introduced a new
configuration parameter into the MPPTEST halo benchmarks: -dimension. This parameter
instructs MPPTEST to use one of two available process decompositions, 1-D or 2-D, with the
latter used by default. If the specified number of partners is more than enough for nearest

http://software.intel.com/en-us/articles/optimization-notice
https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel%20Universe%20Magazine%20Issue%2020&utm_content=PUM_Footer_na&utm_campaign=Intel%20DPD%20Campaign
http://tinyurl.com/MPI-SHM-example

Share with a friendSign up for future issuesFor more information regarding performance and optimization choices in Intel® Software
Development Products, visit software.intel.com/en-us/articles/optimization-notice.

7The Parallel Universe

neighbors’ exchanges, the decomposition with deeper density is used. An example based on nine
processes and four partners is shown in Figure 6. In the case of 1-D decomposition, the rank 4
partners are ranks 2, 3, 5 and 6, while in the 2-D case its neighbors are ranks 1, 3, 5 and 7.

(b)(a)

0 1 42 3 5 6 7 8

0 1 2

43 5

6 7 8

6 Process decomposition: (a) 1-D with four neighbors; (b) 2-D with four neighbors

mpirun -n 64 -machinefile hostfile ./mpptest -halo -waitall -logscale -n_avg
1000 -npartner 8 -dimension 2

where the argument after –halo specifies the particular communication pattern for ghost cell
exchanges (i.e., –waitall is used in the case of point-to-point messages; –logscale indicates

In our experiments, 1-D process decompositions produced up to a 20 percent advantage
using MPI SHM versus point-to-point communications, depending on message size.

Finally, we modified the reported timing by adjusting it to the timing for a process with the
biggest execution time. The current MPPTEST approach reports overall timing as a timing of
a Rank 0, which might not be representative, especially in nonperiodic cases where Rank 0
typically has fewer neighbors than other processes.

Evaluation Environment and Results
In our performance studies, we used the Intel® Endeavor cluster, in which each node is equipped
with dual Intel® Xeon® E5-2697 processors, one Intel® Xeon Phi™ 7120P-C0 coprocessor, and
one Mellanox Connectx-3 InfiniBand* adapter connected to the same socket. The cluster was
running Red Hat 6.5 Linux* OS, Intel® MPSS 3.3.30726, and OFED* 1.5.4.1. We used Intel MPI
Library Version 5.0.2, Intel® C++ Compiler Version 15.0.1, and the MPPTEST benchmark with the
modifications described in the previous section.

The following command line was used to obtain the performance data:

http://software.intel.com/en-us/articles/optimization-notice
https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel%20Universe%20Magazine%20Issue%2020&utm_content=PUM_Footer_na&utm_campaign=Intel%20DPD%20Campaign

Share with a friendSign up for future issuesFor more information regarding performance and optimization choices in Intel® Software
Development Products, visit software.intel.com/en-us/articles/optimization-notice.

8The Parallel Universe

that we want to run the powers of two message sizes tests, starting from 4 bytes up to 128KB;
–n_avg specifies the number of iterations to be used; and –npartner determines the number
of neighbors per process). As described in the previous section, we introduced three new
parameters corresponding to our new benchmarks (–mpi3shm_lock, –mpi3shm_lockall
and –mpi3shm_fence) that can be used in place of –waitall. The –dimension parameter is
optional (the default dimension is 2); this was also described in the last section.

Figure 7 shows the results obtained on one coprocessor with 32 processes and eight partners.
In this case, the MPI SHM feature noticeably outperforms the regular point-to-point pattern
regardless of synchronization type (please note the logarithmic scale of the y-axis). However,
we should note that with a relatively small amount of updates (i.e., iterations in MPPTEST) the
synchronization overhead based on locks might become crucial. This is because we do locking
once per test, thus its contribution to the overall time is inverse to the number of iterations.
Another observation is that using separate locks provides better performance than locking all
the processes. This may become especially significant when the number of node neighbors to
exchange the data with is significantly less than the number of processes bound to the interested
window (thus, calling MPI_Win_lock_all/MPI_Win_unlock_all may lead to unnecessary
communication with all the processes rather than to the neighbors only). Also, we see that using
MPI_Win_fence gives the worst result of the sync primitives selected for this comparison.

7 Different halo patterns on one coprocessor with 32 processes and eight partners

http://software.intel.com/en-us/articles/optimization-notice
https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel%20Universe%20Magazine%20Issue%2020&utm_content=PUM_Footer_na&utm_campaign=Intel%20DPD%20Campaign

Share with a friendSign up for future issuesFor more information regarding performance and optimization choices in Intel® Software
Development Products, visit software.intel.com/en-us/articles/optimization-notice.

9The Parallel Universe

Then we analyzed how the number of neighbors in halo exchanges impacts overall performance.
Figure 8 shows the speedup of MPI SHM with lock synchronization in comparison to the
common MPI_Isend/MPI_Irecv approach. We see that the performance advantage of our
approach grows with the number of processes partners. This is expected because the relative
cost of MPI SHM synchronizations stays the same regardless of the number of partners, while the
performance advantage of simple memory copies compared to point-to-point operations grows
with every other exchange. With 12 partners per process, we get up to 2.6x improvement with
small message sizes and as much as 4.9x with relatively large message sizes.

We repeated the measurements on two Intel Xeon Phi coprocessors connected to different
nodes. We used 64 processes, 32 per coprocessor. The results depicted in Figure 9 show lesser
speedup than we observed on a single node. This is because some exchanges are done via
the network, and the cost of intranode communication is just a part of the overall cost. We see
that a personal lock-based shared memory approach is the best for almost all message sizes

8 Speedup of MPI SHM approach compared to the point-to-point based (measured on one coprocessor with 32 processes)

http://software.intel.com/en-us/articles/optimization-notice
https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel%20Universe%20Magazine%20Issue%2020&utm_content=PUM_Footer_na&utm_campaign=Intel%20DPD%20Campaign

Share with a friendSign up for future issuesFor more information regarding performance and optimization choices in Intel® Software
Development Products, visit software.intel.com/en-us/articles/optimization-notice.

10The Parallel Universe

The speedup of the lock-based approach compared to the reference point-to-point one
with different numbers of neighbors is shown in Figure 10. We see that with four partners,
our approach is beneficial only above medium-sized messages. However, as it was with the
one-node case, the performance benefit becomes more significant with a growing number of
neighbors. With eight and 12 partners’ processes, we get up to 1.2x improvement on small
message sizes and 1.8x on big ones.

The preliminary studies with four and eight nodes using both Intel Xeon processors and Intel
Xeon Phi coprocessors have shown similar results. Scaling with higher numbers of nodes and
comparing hybrid MPI and OpenMP codes are left for future studies.

9 Different halo patterns on two Intel® Xeon Phi™ coprocessors with 64 processes (32 per card) and eight partners

except very small messages, where the standard point-to-point scheme performs better. The
experiments described so far have been done with default 2-D neighbors’ topology. Using 1-D
process topology, the personal locks-based MPI SHM approach also outperforms all other
approaches at small message sizes. Also, starting from 4KiB messages, all shared memory-bound
patterns outperform the point-to-point based ones.

http://software.intel.com/en-us/articles/optimization-notice
https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel%20Universe%20Magazine%20Issue%2020&utm_content=PUM_Footer_na&utm_campaign=Intel%20DPD%20Campaign

Share with a friendSign up for future issuesFor more information regarding performance and optimization choices in Intel® Software
Development Products, visit software.intel.com/en-us/articles/optimization-notice.

11The Parallel Universe

Conclusion
In this article, we described the shared memory capabilities introduced in the MPI-3 standard.
Because using this feature requires application modification, we demonstrated how to cope with
it based on a simple 1-D ring “Hello World” example and extended it for several node runs. Using
a modified MPPTEST benchmark, we managed to get up to 4.7x improvement over a standard
point-to-point approach on one Intel Xeon Phi coprocessor. Moreover, we showed that the
proposed approach may benefit halo exchanges even for multinode cases, and we obtained up
to 1.8x improvement with two Intel Xeon Phi coprocessors.

Finally, our analysis indicates that it might be beneficial to use MPI SHM for ghost cell exchange-
based applications, especially when there are larger numbers of halo exchange neighbors.

10 Speedup of MPI SHM approach compared to the point-to-point based ones
(measured on two coprocessors with 64 processes)

http://software.intel.com/en-us/articles/optimization-notice
https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel%20Universe%20Magazine%20Issue%2020&utm_content=PUM_Footer_na&utm_campaign=Intel%20DPD%20Campaign

Share with a friendSign up for future issuesFor more information regarding performance and optimization choices in Intel® Software
Development Products, visit software.intel.com/en-us/articles/optimization-notice.

12The Parallel Universe

Acknowledgments
Thanks to Charles Archer for contributing a solution on how to apply MPI Groups to the
multinode MPI SHM code, to Jim Dinan for many useful discussions, and to Robert Reed
and Steve Healey for reviewing a draft of this article.

Modernizing your code on Intel® architecture
can help you achieve breakthrough performance
for highly parallel applications. Take advantage
of a special offer on the latest Intel® Xeon Phi™
coprocessors, plus a free 12-month trial of Intel®
Parallel Studio XE Cluster Edition.

Get started >

Unlock your code’s potential

Copyright © 2015, Intel Corporation. All rights reserved. Intel, the Intel logo, and Intel Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the property of others.

Intel is committed to protecting your privacy. For more information about Intel’s privacy practices, please visit www.intel.com/privacy or write to Intel Corporation, ATTN Privacy, Mailstop RNB4-145, 2200 Mission College Blvd., Santa
Clara, CA 95054 USA.

Intel®
Parallel Studio XE

http://software.intel.com/en-us/articles/optimization-notice
https://software.intel.com/en-us/articles/intel-code-modernization-enablement-program
http://www.intel.com/privacy
https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel%20Universe%20Magazine%20Issue%2020&utm_content=PUM_Footer_na&utm_campaign=Intel%20DPD%20Campaign

Share with a friendSign up for future issuesFor more information regarding performance and optimization choices in Intel® Software
Development Products, visit software.intel.com/en-us/articles/optimization-notice.

13The Parallel Universe

References
1.	 T. Hoefler et al., “Leveraging MPI’s One-Sided Communication Interface for Shared-		

Memory Programming: Recent Advances in the Message Passing Interface,” Proceedings of
the 19th European MPI Users’ Group Meeting (EuroMPI 2012), Vienna, Austria, Vol. 7490,
Sept. 23–26, 2012.

2.	 T. Hoefler et al., “MPI+MPI: A New Hybrid Approach to Parallel Programming with MPI
Plus Shared Memory,” Computing (2013), Vol. 95, No. 12, p. 1,121.

3.	 M. Brinskiy et al., “Mastering Performance Challenges with the new MPI-3 Standard,”
Parallel Universe Magazine Issue 18

4.	 B. Barney, “Message Passing Interface Tutorial: Non-Blocking Message
Passing Routines.”

5.	 W. D. Gropp et al., “Using Advanced MPI. Modern features of the Message-Passing Interface,”
MIT Press, November 2014.

6.	 W. D. Gropp and Rajeev Thakur, “Revealing the Performance of MPI RMA Implementations,
PVM/MPI’07,” Proceedings of the 14th European Conference on Recent Advances in Parallel
Virtual Machine and Message Passing Interface, pp. 272‒280.

7.	 Message Passing Interface Forum, MPI: A Message-Passing Interface Standard Version 3.0,
University of Tennessee (Knoxville), Sept. 21, 2012.

For more information regarding performance and optimization choices in Intel® Software Products,
visit http://software.intel.com/en-us/articles/optimization-notice.

Try the Intel® MPI Library
Download now for a 30-day evaluation >

Also available as part of Intel® Parallel Studio XE Cluster Edition >

http://software.intel.com/en-us/articles/optimization-notice
https://swdevtoolsmag.makebettercode.com/?utm_source=Parallel%20Universe%20Magazine%20Issue%2020&utm_content=PUM_Footer_na&utm_campaign=Intel%20DPD%20Campaign
http://goparallel.sourceforge.net/wp-content/uploads/2014/07/PUM18_Mastering_Performance_with_MPI3.pdf
https://computing.llnl.gov/tutorials/mpi/#Non-Blocking_Message_Passing_Routines
https://computing.llnl.gov/tutorials/mpi/#Non-Blocking_Message_Passing_Routines
http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
http://software.intel.com/en-us/articles/optimization-notice
https://software.intel.com/en-us/intel-mpi-library-evaluation-options/
http://makebettercode.com/parallelstudioxe2015/en

