
INTEL CORPORATION

Accelerating Financial Applications on

Intel® Architecture

Nimisha S Raut, Robert Geva, George Raskulinec

4/27/2015

1

Table of Contents

Introduction .. 2

QuantLib* Overview .. 3

Parallel Computing on Intel® Architecture ... 3

Vectorization / SIMD ... 4

Vector Loops in OpenMP* 4.0 .. 5

SIMD-Enabled Functions ... 6

Test Methodology .. 6

Stepwise Parallelization Framework ... 7

Black-Scholes*... 8

Intel® Architecture Optimizations.. 8

Reference Test Configuration Comparison ... 9

Test Modifications .. 9

Modified Test Configuration Comparison ... 10

Monte-Carlo* ... 12

Intel® Architecture Optimizations... 12

Reference Test Configuration Comparison .. 13

Test Modifications ... 13

Modified Test Configuration Comparison ... 13

Bonds ... 15

Intel® Architecture Optimizations... 15

Reference Test Configuration Comparison .. 16

Modified Test Configuration Comparison ... 16

Repo .. 17

Intel® Architecture Optimizations... 18

Reference Test Configuration Comparison .. 18

Modified Test Configuration Comparison ... 18

Conclusions ... 20

References ... 21

Performance Disclaimer: .. 22

2

Introduction

A paper titled Accelerating Financial Applications on the GPU,

http://dl.acm.org/citation.cfm?id=2458536 March, 2013 (referred to here as the “reference

paper”, and the original code referred to as the “reference code”), performed a GPU/CPU

comparison using four QuantLib*-based workloads:

• Black-Scholes

• Monte-Carlo

• Bonds

• Repo

In order to run on the GPU, high level C++ code abstraction was removed, i.e., flattened, and

translated into a set of lower-level structures and functions. The reference paper states “In order

to fairly compare the GPU implementations to a sequential CPU run, the same implementation

without the abstraction in QuantLib is written for the CPU.”

The reference paper compared parallel code, written in CUDA*, to both single and multi-

threaded C code. These account for at least 4 differences:

• Hardware (HW)

• Programming models

• Parallel code vs. serial code

• Different programming languages (and of course different compilers).

A less cautious reading may attribute the performance differences only to the hardware,

concluding that GPUs run the same algorithm faster than on Intel® Architecture (IA). In this

rebuttal paper, we show that the cause for the performance difference is the parallelization

approach, not the change in hardware. By effectively utilizing all of the parallel resources on IA;

we demonstrate that the performance of the parallel code running on the CPU matches or

exceeds that of the parallel code running on the GPU.

Depending on the workload and test configuration, the reference paper reports Nvidia Tesla*

K20 GPU speed-up of over 80X-1000X compared to sequential CPU code and over 6X-35X

compared to multi-threaded CPU code running on a dual socket Intel® Xeon® processor E5530-

based server (Table 1). Actual performance numbers were not provided in the reference paper.

Table 1: Accelerating Financial Applications on the GPU workload comparison between Tesla* K20 and Intel®

Architecture. (Source: Reference paper)

Workload Tesla* K20 Speed-

up over single-

threaded Intel®

Architecture Code

Tesla K20 Speed-

up over multi-

threaded Intel

Architecture Code

Comments

Black

Scholes*

>300x >35x When running more than 10,000 options

Monte

Carlo*

1000x >140x When running 50,000 samples. Multi-

threaded speed-up is based on graph

data.

3

Bonds >80x >5x When running more than 100,000 bonds.

Multi-threaded speed-up is based on

graph data.

Repo >80x >5x When running more than 50,000 repos.

Multi-threaded speed-up is based on

graph data.

To make a more meaningful comparison, this paper incorporates a comprehensive approach by:

• Utilizing all of the parallel IA resources

• Optimizing the data layout

• Applying libraries optimized for lA

• Re-running the tests using the latest Intel and Nvidia HW as of September 2014

Definitions used in this paper:

• Reference Paper - Accelerating Financial Applications on the GPU, March, 2013

• Reference Source Code – Original code mentioned/used in Accelerating Financial

Applications on the GPU, March, 2013.

• Optimized Code – Reference code that was optimized on Intel Architecture.

• Modified Code – Changes made to the reference code to extend test times, e.g. adding

additional options, loop iterations, and code restructuring.

QuantLib* Overview
Quantlib, http://quantlib.org/index.shtml, is a free full-featured open source financial library

written in C++. It consists of a number of modules with associated classes that enable users to

quickly analyze financial Instruments (bonds, options, swaps, stock, etc.) by applying popular

stochastic processes (Monte Carlo, Black-Scholes, Hull-White, Libor, etc.) and term structures

(zero curve, ForwardRate, yield term, etc.). Many financial organizations have a similar library that

provides an equivalent set of concepts and APIs that are used in their application code.

Parallel Computing on Intel® Architecture

The HW architecture support for parallel computing on Intel Architecture, as well as other CPUs,

is inherently different to that on the GPU and therefore requires different algorithm design and

different expression of the parallel constructs. The principles of parallel HW support are:

a. Multiple cores, supporting multiple execution threads

b. Vector units

c. Memory hierarchy, especially the cache architecture

4

An efficient parallel algorithm design takes these principles into account as the program is

mapped onto the parallelism in the HW. In addition they must:

• Be cache efficient

• Utilize the vector units

• Lay out the data efficiently for utilization of translation lookaside buffers(TLBs) , caches, and

enable efficient vector access

In general, these principles can be expressed independently of each other. In particular, it is

worthwhile to try to express thread-level parallelism and vector-level parallelism at different

levels. The key design principle in thread-level parallelism is to maximize the amount of parallel

work in order to amortize the run-time overhead of the scheduler. This calls for parallelization at

the outmost level possible. The key design principle in vector programming is to minimize the

amount of control flow divergence and memory access divergence, so that the vector units do

the same work as each other as much as possible. This calls for vectorizing at the innermost

level possible. Because the design goals are conflicting, it is useful to have syntax that allows the

programmer the flexibility to express thread-level parallelism and vector-level parallelism

separately or combined.

There are multiple, well-known paradigms to express thread-level parallelism. For instance,

programmers can use native treads. The reference paper used OpenMP* [6]. Other alternatives

provide different tradeoffs. For example, Intel® Threading Building Blocks (Intel® TBB) [7] is

designed to provide better support for nested parallelism. For the purpose of the comparisons

presented in this paper, the tradeoffs don’t manifest; therefore, we continue to use OpenMP.

Explicit vector programming is relatively new and is a part of the OpenMP 4.0 standard.

Vectorization / SIMD

Vectorization is the process of transforming a sequence of scalar operations acting on single

data elements at a time (Single Instruction Single Data – SISD), to an operation acting on

multiple data elements at once (Single Instruction Multiple Data – SIMD). Every Intel® processor

core has a dedicated vector unit. Over the years Intel has continued to invest in both the size

and capabilities of the vector unit [8]. An example of the potential speed-up is shown in Figure 1.

5

Figure 1: Intel® Advanced Vector Extensions 2 vectorization example.

For Intel processors that support Intel® Advanced Vector Extensions 2 (Intel®AVX2), each core

has one 256-bit vector unit and supports floating point fused multiply-add (FMA) instructions.

Thus, each core can perform an addition and a multiplication on 8 single precision or 4 double

precision floating point operations in 1 instruction. Note that for the Intel® Xeon Phi™

coprocessor, the vector register is doubled to 512 bits and can perform 16 single and 8 double

precision operations per instruction.

Vector Loops in OpenMP* 4.0

The syntax #pragma omp simd can be applied to a for loop to indicate that the loop is

intended to execute in vectors. The #pragma omp simd syntax admits the following optional

clauses:

• Vectorlength: Determine the number of iterations that the compiler has to chunk together

and vectorize. Can be used to ensure that data dependencies are handled correctly or to

optimize for performance.

• Private, firstprivate, lastprivate: Same as the OpenMP definition and use of these clauses.

• Linear: Indicate that a variable is a linear induction variable. The variable has to be declared

outside the loop and be incremented by a loop- invariant amount in each loop iteration. The

compiler privatizes the variable and provides a distinct value for each iteration.

• Reduction: The reduction clause is similar to the one previously available in OpenMP for

parallel loops. It means that a pair, (operation, variable), are used as a reduction. The only

operation allowed on that variable is the one specified in the reduction clause. Unlike the

6

linear variable, the reduction does not have to execute in every loop iteration and the

increment amount does not have to be loop invariant. On the other hand, the value of the

reduction is not available during the loop, it is only available after the loop.

SIMD-Enabled Functions

SIMD-enabled functions add modularity to vector loops. When called from a vector loop,

multiple consecutive instances of the function execute in chunks, as if they were compiled as a

part of the body of the vector loop. The ability to write vector code outside of the scope of the

vector loops allows modular programming and independent deployment, such as in libraries

that are deployed in binary format, rather than in header files. The syntax #pragma declare

simd designates a function as a SIMD-enabled function. The attribute admits optional clauses:

• Vectorlength: Determine the vector length, which is the number of consecutive invocations of

the function that the compiler chunks together and vectorizes across.

• Uniform: Indicate that a formal parameter is uniform, meaning that it has the same value

within each vectorlength consecutive invocations of the function. Uniform arguments are

passed in scalar registers, whereas varying arguments (the default) are passed in vector

registers.

• Linear: Indicate that a variable has a linear increment from one invocation to the next, and

optionally indicate what that increment is. The default increment is one.

Multiple #pragma declare vector lines are possible for a single SIMD-enabled function. For each

vector attribute, the compiler generates one vector variant of the function. The vector attribute

and its associated clauses are considered part of the function signature. If the function

declaration is inconsistent with the function prototype with respect to these clauses, then the

behavior is undefined.

Test Methodology

All testing was performed on the latest available hardware as of September, 2014, shown in

Table 2. The software configuration is shown in Table 3.

Table 2: Hardware test configuration.

Platform Details

GPU: Tesla* K40c 2880 cores, 0.745 GHz, 12 GB GDDR5, Base Clock:

745 MHz

CPU: Intel® Xeon® processor E5-2697 v3 2.6 GHz, 2 Socket, 14 core/Socket, 30MB L3 Cache,

64 GB RAM. Intel® Turbo Boost Technology and

Intel® Hyper-Threading Technology were enabled.

This Intel Xeon processor supports 256-bit vector

length with Intel® AVX2 instructions.

Coprocessor: Intel® Xeon Phi™ coprocessor 7120P 61 cores, 1.238 GHz, 16GB ECC, Intel Turbo Boost

Technology was disabled

7

Supports 512-bit vector length. Instruction set

includes Fuse Multiply Add support.

Table 3: Software test configuration.

Software Details

Host OS Red Hat* Enterprise Linux* version 6.5, kernel

2.6.32-431

CUDA* 5.5

Intel® C++ Compiler CPU binaries built with 15.0.0

Phi binaries built with 14.0.2 20140120 (2013

sp1.2.144)

Coprocessor: Intel® Xeon Phi™ coprocessor 7120P Driver 6720-16, Flash 2.1.03.0383

Note: Intel® Xeon Phi™ coprocessor 7120P testing completed prior to Intel® C++ Compiler 15.0.0 availability.

The reference source code was downloaded from http://sourceforge.net/projects/quantlib-gpu/.

This paper compares the performance between the handwritten CUDA code and the multi-

threaded CPU code optimized for Intel hardware by applying the stepwise optimization

framework. All tests were run multiple times and the results were averaged.

Additional test details:

• The input data generation and data transfer between device and host were not included in

the test time measurements.

• All Intel Xeon Phi coprocessor tests were run natively.

• All tests should complete in the seconds range for accurate/repeatable results and to

amortize the PCI Express* transfer times of the coprocessor and accelerator cards, which

were not included in these results. All workloads that complete in less than 1 second were

extended by adding additional options, test iterations, or code restructuring. These details are

discussed below in the appropriate sections.

Stepwise Parallelization Framework

The following parallelization methodology for Intel Architecture was applied to all workloads [5].

1. Leverage optimized tools and libraries: Profile the workload using Intel® VTune™ Amplifier to

identify hotspots. Use Intel C++ compiler to generate optimal code and apply optimized

libraries such as Intel® Math Kernel Library (Intel® MKL), Intel TBB, and OpenMP when

appropriate.

2. Scalar, serial optimization: Maintain the proper precision, type constants, and use

appropriate functions and precision flags.

3. Vectorization[8]: Utilize SIMD features in conjunction with data layout optimizations Apply

cache-aligned data structures, convert from arrays of structures to structure of arrays, and

minimize conditional logic.

4. Thread Parallelization: Profile thread scaling and affinitize threads to cores. Scaling issues

typically are a result of thread synchronization or inefficient memory utilization.

8

5. Scale from Intel Xeon processor to Intel Xeon Phi coprocessor: Apply optimized Extended

Math Unit(EMU) functions and additional memory optimizations including data blocking.

Black-Scholes*

Black-Scholes is a closed-form financial derivative used for European option pricing valuation.

The Black-Scholes model was developed in 1973 by Fisher Black, Robert Merton, and Myron

Scholes and is still widely used today in quantitative finance. Robert Merton was the first one to

publish a closed-form solution to the Black-Scholes Equation and for European options, also

known as the Black-Scholes-Merton Formula. As mentioned in the reference paper, this

application is from the European Option test in the QuantLib test suite. European options can be

exercised only on the expiration date. This version is a single-precision 32-bit floating point

implementation.

Intel® Architecture Optimizations

The reference OpenMP version was threaded, but no additional optimizations were made. Thus,

many of the performance resources on the Intel Architecture were not utilized. By applying the

stepwise parallelization methodology the following key optimizations were applied.

1. Vectorization: As mentioned earlier, the vector unit can provide significant performance

speed-up by operating on multiple vector operands in a single instruction. The critical loop in

the reference code would not vectorize primarily due to the use of a switch statement and

data dependencies. The switch statement was converted to an if/else and #pragma omp simd

was applied to the critical loop.

2. Data layout: Convert array of structures to structures of arrays. Provides excellent cache

locality, alignment, and unit stride access for the critical vector loop.

Utilize Intel TBB memory allocator for memory allocation. The benefits are two–fold: memory

is allocated on cache-aligned boundaries and each thread has its own memory pool, which

removes reliance on the global heap and improved NUMA locality.

Note: From a performance perspective, steps 1 and 2 are tightly coupled.

3. Precision consistency: Use precision-appropriate transcendental functions and constants. For

example, expf() is used for single precision and exp is used for double precision scenario. Also,

constants are defined with suffix “f” (example; 0.1f) for single precision workloads.

4. EMU functions[4]: Used the single precision math function, exp2f(), implemented in the Intel

Xeon Phi coprocessor hardware. The exp2f() function requires a conversion to base 2 by

multiplying by a constant M_LOG2E.

5. Makefile precision flags. Applied the following flags: -fno-alias, -fimf-precision=low, -fimf-

domain-exclusion=31, -fimf-accuracy-bits=11, -no-prec-div and -no-prec-sqrt. Validation

code was added to compare reference code results with precision results within a small error

tolerance, 9^-5. Note that all performance data was collected with and without the precision

flags and the results are included in the graphs.

9

Table 4 compares single-threaded reference performance and the optimized results on Intel

Architecture. As you can see, by using the Intel compiler and applying the optimizations listed

above, the single-threaded code performance improved a minimum of 19.68X1 compared to the

un-optimized reference code.

Table 41: Single-threaded reference performance results vs. optimized results.

Options,

Iterations

Reference Intel® Xeon®

processor E5-2697 v3 Intel®

Architecture code (1 thread)

(Sec)

Optimized Intel Xeon processor E5-

2697 v3 Intel Architecture code

without precision flags (1 thread)

(Sec)

Speed-Up1111

5M, 1 Iteration 1.063 0.054 19.68X

10M, 1 Iteration 2.137 0.104 20.55X

50M, 1 Iteration 21.28 0.938 22.69X

All time in seconds. (Source: Intel Measured)

Reference Test Configuration Comparison

The reference paper test code computed 5 million options, and the authors state that the

speed-up for all K20 implementations is greater than 35X vs. the OpenMP implementation

when running more than 10,000 options. Table 5 presents the kernel run-time values of the

reference CUDA code and optimized Intel Architecture version for 5 million options. The original

CUDA code takes 3.7 mSec. Optimal performance was achieved on Intel Xeon processor E5-

2697 v3 when running 20 threads. Because Intel® Turbo Boost technology [1] is enabled, the

active core frequency automatically increased from 2.6 GHz to 2.9 GHz providing optimal

performance. The Intel Xeon Phi coprocessor takes 6.9 mSec. SW stack initialization times, for

example, for OpenMP initialization, take longer on Intel Xeon Phi coprocessors which, to a large

extent, explain its performance numbers.

Table 51: Reference CUDA* results vs. optimized Intel® Architecture results for 5 million options, 1 iteration.

Options Reference

Tesla*

K40

(mSec)

Optimized Intel®

Xeon® processor

E5-2697 v3 (20

threads) with

precision flags

(mSec)

Optimized Intel

Xeon processor

E5-2697 v3 (20

threads) without

precision flags

(mSec)

Optimized Intel®

Xeon Phi™

coprocessor

7120P (244

threads) with

precision flags

(mSec)

Optimized

Intel Xeon Phi

coprocessor 7120P

(244 threads)

without precision

flags

(mSec)

5M 3.7 4.9 5.3 6.9 21.83

 (Source: Intel Measured)

Test Modifications

The runtimes presented in Table 5 include only the computation time but do not include

initialization time and transfer times (host to device and device to host). The runtimes indicate

10

that the performance on the host, which has no transfer time penalty, is equivalent to the GPU

performance.

Running tests that complete in 5 mSec could easily be performed on the host CPU, eliminating

additional programming techniques, proprietary libraries, and additional HW resources, i.e., a co-

processor or accelerator.

To amortize the transfer time overhead and to focus exclusively on algorithmic-scaling

comparisons, the test times were extended beyond 1 second by increasing the number of

options from 5 million to 15 million. Adding additional options was limited by the memory

configurations on the Tesla K40 and Intel Xeon Phi coprocessor. Additionally, an iteration loop

was added to call the same test multiple times with the same input data. Identical changes were

implemented in the CUDA version.

Modified Test Configuration Comparison

Table 6 shows the results for the CUDA version and the optimized Intel Architecture version for

multiple options and multiple iterations. Different combinations of options and iterations were

executed to study the performance behavior of both CUDA and Intel Architecture versions and

to ensure test input data did not favor one platform over the other.

Table 61: CUDA* results vs. optimized Intel® Architecture results for multiple options and iterations.

Test

Number

Options Iterations Modified

Tesla*

K40

(Sec)

Optimized

Intel®

Xeon®

processor

E5-2697

v3 1T

without

precision

flags

(Sec)

Optimized

Intel Xeon

processor

E5-2697

v3

56T with

precision

flags

(Sec)

Optimized

Intel Xeon

processor

E5-2697

v3 56T

without

Precision

flags

(Sec)

Optimized

Intel® Xeon

Phi™

coprocessor

7120P 244T

with

precision

flags

(Sec)

Optimized

Intel Xeon

Phi

coprocessor

7120P 244T

without

precision

flags

(Sec)

1 5 M 1024 3.22 46.064 2.29 2.33 1.32 1.623

2 5 M 2048 6.42 89.530 4.39 4.591 2.63 3.240

3 10 M 1024 6.40 90.431 4.95 5.583 2.603 3.161

4 10 M 2048 12.80 178.821 9.84 10.521 5.22 6.378

5 15 M 512 4.79 67.567 3.39 3.716 1.94 2.399

6 15 M 1024 9.60 91.500 6.51 6.708 3.88 4.694

7 15 M 2048 19.18 182.867 12.72 14.577 7.75 9.509

All times are in seconds. (Source: Intel Measured)

11

Graph 11: Speed-up compared to single-threaded performance on the Intel® Xeon® processor E5-2697 v3. (Source:

Intel Measured)

Graph 21: Speed-up compared to single-threaded performance on the Intel® Xeon® processor E5-2697 v3. (Source:

Intel Measured)

Graphs 1 and 2 show the speed-up on the Tesla K40, the Intel Xeon processor E5-2697 v3, and

the Intel Xeon Phi coprocessor 7120P compared to the single-thread performance on the Intel

Xeon processor E5-2697 v3. The results of the Intel Xeon processor E5-2697 v3 and the Intel

Xeon Phi coprocessor 7120P as compared to the Nvidia Tesla K40 remain consistent regardless

of the test option/iteration count. With precision flags, the Intel Xeon processor E5-2697 v3

outperforms K40 by a minimum of 1.29X1 and the Intel Xeon Phi coprocessor 7120P

outperforms K40 by a minimum of 2.44X1. Without precision flags, the Intel Xeon processor E5-

2697 v3 outperforms K40 by a minimum of 1.22X1 and the Intel Xeon Phi coprocessor 7120P

outperforms K40 by a minimum of 1.98X1.

14.3 13.9 14.1 14.0 14.1
9.5 9.5

20.1 20.4
18.3 18.2 19.9

14.1 14.4

34.9 34.0 34.7 34.3 34.8

23.6 23.6

0

10

20

30

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7

Black-Scholes* Speedup

with Precision Flags

Tesla* K40 Intel® Xeon® processor E5-2697 v3 Intel® Xeon Phi™ coprocessor 7120P

14.3 13.9 14.1 14.0 14.1

9.5 9.5

19.8 19.5
16.2 17.0 18.2

13.6 12.5

28.4 27.6 28.6 28.0 28.2

19.5 19.2

0

10

20

30

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7

Black-Scholes* Speedup

without Precision Flags

Tesla* K40 Intel® Xeon® processor E5-2697 v3 Intel® Xeon Phi™ coprocessor 7120P

Higher is Better

Higher is Better

12

Monte-Carlo*

Monte Carlo is a popular simulation mathematical model used to evaluate complex instruments,

portfolios, and investments by applying statistical computing to model the uncertainty of

underlying stock variable changes. The reference code uses single-precision, floating-point

results to price a single option with 250 time steps.

Intel® Architecture Optimizations

Similar to Black-Scholes, the reference version of Monte-Carlo was threaded without any further

Intel Architecture optimizations underutilizing the available Intel Architecture parallel resources.

The additional key optimizations were made:

1. Vectorization: The inner loop used the path value of the previous iteration to compute the

current path value in the current iteration. This is referred to as a “read-after-write”

dependency and may lead to incorrect results. This loop type cannot be vectorized. Upon

further inspection, it became clear that this dependency could be removed by introducing a

scalar to store intermediate results and then assigning the final value to the path variable.

After making this change and applying #pragma omp simd, the loop successfully

vectorized.

2. Intel Intel Intel Intel MKL:MKL:MKL:MKL: Used this library to generate a vector of random numbers in a single API call [2].

3. Data Data Data Data bbbblockinglockinglockinglocking:::: Random numbers are generated once and shared across all options. Due to

the size of random numbers, they cannot all be processed simultaneously and fit in the data

cache. Instead, a data blocking technique was implemented to process blocks of random

numbers, filling the cache one block at a time, across all options.

4. Precision Precision Precision Precision cccconsistency:onsistency:onsistency:onsistency: Applied precision-appropriate transcendental functions and defined

constants as single precision.

5. EMU EMU EMU EMU ffffunctions:unctions:unctions:unctions: The Intel Xeon Phi coprocessor also has a set of single-precision math

functions implemented in the hardware. The exp2f() function was used where appropriate.

6. DDDData ata ata ata llllayoutayoutayoutayout: Use cache-aligned arrays.

7. Makefile precision flags. Applied the following flags: -fno-alias, -fimf-precision=low, -fimf-

domain-exclusion=31, -fimf-accuracy-bits=11, -no-prec-div and -no-prec-sqrt. Note that all

performance data was collected with and without the precision flags and included in Graphs

3 and 4.

Table 7 compares single-threaded reference performance and the optimized results on Intel

Architecture. By using the Intel compiler and applying the optimizations listed above, the single-

threaded performance improved a minimum of 13.4X1 compared to the reference code.

Table 71: Reference Intel® Architecture results vs. optimized Intel Architecture results.

Paths, Options Reference Intel® Architecture code;

Intel® Xeon® processor E5-2697 v3 (1

thread)

(Sec)

Optimized Intel Architecture

code without precision flags;

Intel Xeon processor E5-2697 v3

(1 thread)

(Sec)

Speed-

Up1

13

50k, 1 Option 2.077 0.155 13.4X

500k, 1 Option 20.704 1.022 15.05X

All times in seconds. (Source: Intel Measured)

Reference Test Configuration Comparison

The reference paper stated all Tesla K20-accelerated results using at least 2,000 samples show

a speed-up of at least 18X over the multi-core CPU implementation. Table 8 presents test times

using 50,000 samples and single option. The reference CUDA code takes 46.9 mSec. The Intel

Xeon processor E5-2697 v3 outperforms the GPU by a minimum of 1.82X1 when running 16

threads. Intel Turbo Boost Technology increases the CPU core frequency to 2.9 GHz.

Table 81: Reference CUDA* results vs. optimized Intel® Architecture code for a single option.

Options Samples Reference

Tesla*

K40

(mSec)

Optimized Intel®

Xeon® processor

E5-2697 v3 (16

threads) with

precision flags

(mSec)

Optimized Intel

Xeon processor

E5-2697 v3 (16

threads) without

precision flags

(mSec)

Optimized

Intel® Xeon Phi™

coprocessor

(244 threads)

with precision

flags

(mSec)

Optimized Intel

Xeon Phi

coprocessor

(244 threads)

without

precision flags

(mSec)

1 50,000 46.9 17.83 25.77 2300 2225

(Source: Intel Measured)

Test Modifications

Test times <100 mSec, excluding transfer times, can easily be computed on the host. Also, to

gain a better understanding of the scaling properties of the Monte-Carlo algorithm, the

reference code was modified to support multiple options. Code changes were required in both

the Intel Architecture and GPU versions to run multiple options. Intel Architecture changes

included adding an options loop over existing paths loop. The reference paper mentions: “An

extension of this implementation allows the parallel pricing of multiple options. This is

particularly useful when there are not enough samples in each option to fully take advantage

of the massive parallelism available on the GPU.”

However, the reference CUDA code device kernel does not include any code for multiple options

implementation. To implement a multiple options version using CUDA, the MonteCarloMultiGPU

example provided in the CUDA SDK 5.5 was used. In this version, each thread block in CUDA

computes one option for multiple paths using 256 threads. Shared memory in CUDA is on-chip

memory and hence faster to access. Additionally, all threads in a thread block can synchronize

using shared memory, which was used to store intermediate results and accumulated at the end

to calculate the option price.

Modified Test Configuration Comparison

Table 9 presents the multiple option results using the modified CUDA and optimized Intel

Architecture versions. The reference paper claimed that the best GPU speed-up is achieved at

50k samples. Thus, tests were run from 50k up to 262k samples while varying the option count.

The test configuration used in CUDA’s 5.5 SDK, 262k samples and 512 options, was also

14

included. As Table 9 shows, Intel Xeon processor E5-2697 v3 outperforms K40 by a minimum

of 1.4X1 and the Intel Xeon Phi coprocessor 7120P outperforms K40 by 2.0X1 minimum.

Table 91: CUDA* results vs. optimized Intel® Architecture results for multiple options and paths.

Test

Number

Samples Options Modif

ied

Tesla*

K40

(Sec)

Optimized

Intel®

Xeon®

processor

E5-2697 v3

1T without

precision

flags

(Sec)

Optimized

Intel Xeon

processor

E5-2697

v3 56T

with

precision

flags

(Sec)

Optimized

Intel Xeon

processor

E5-2697

v3 56T

without

precision

flags

(Sec)

Optimized

Intel® Xeon

Phi™

coprocessor

7120P 244T

with

precision

flags

(Sec)

Optimized

Intel Xeon

Phi

coprocess

or 7120P

244T

without

precision

flags

(Sec)

1 50 K 256 3.94 25.394 1.518 2.388 0.55 1.675

2 50 K 512 6.38 50.775 3.070 4.187 0.714 2.241

3 50 K 1024 11.49 101.521 6.125 7.238 0.965 3.630

4 100 K 256 6.94 50.772 3.470 4.025 1.152 3.288

5 100 K 512 11.44 101.546 5.815 7.649 1.406 4.517

6 100 K 1024 21.49 203.051 10.677 15.799 1.887 7.262

7 262144 256 16.604 133.029 8.955 11.335 2.987 8.348

8 262144 512 28.120 266.077 16.660 20.522 3.643 12.198

9 262144 1024 53.308 532.054 29.895 37.577 5.079 19.058

All time in seconds. (Source: Intel Measured)

Graph 31 Speed-up compared to the single threaded performance on the Intel Xeon processor E5-2697 v3. (Source:

Intel Measured)

6.4 8.0 8.8 7.3 8.9 9.4 8.0 9.5 10.0
16.7 16.5 16.6 14.6 17.5 19.0 14.9 16.0 17.8

46.2

71.1

105.2

44.1

72.2

107.6

44.5

73.0

104.8

0

20

40

60

80

100

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Test 9

Monte-Carlo* Speedup

with Precision Flags

Tesla K40* Intel® Xeon® processor E5-2697 v3 Intel® Xeon Phi™ coprocessor 7120P

Higher is Better

15

Graph 41 Speed-up compared to single threaded performance on the Intel Xeon processor E5-2697 v3. (Source: Intel

Measured)

Graphs 3 and 4 show the speed-up of the Tesla K40, the Intel Xeon processor E5-2697 v3, and

the Intel Xeon Phi coprocessor 7120P compared to the single thread performance on the Intel

Xeon processor E5-2697 v3. The Intel Xeon processor E5-2697 v3 and the Intel Xeon Phi

coprocessor 7120P consistently outperform the K40 regardless of the test option/iteration

count. With precision flags, the Intel Xeon processor E5-2697 v3 outperforms K40 by a

minimum of 1.69X1 and the Intel Xeon Phi coprocessor outperforms K40 by a minimum of

5.56X1 . Without precision flags, the Intel Xeon processor E5-2697 v3 outperforms K40 by a

minimum of 1.37X1 and the Intel Xeon Phi coprocessor 7120P outperforms K40 by a minimum

of 1.99X1.

Bonds

A bond is a form of loan between an issuer, such as a corporation or a government, and a holder

or investor for a pre-determined period of time at a fixed interest rate. The bond issuer is

obligated to pay the holder interest at specified intervals and/or pay back the principle at the

maturity date. The bonds workload uses double-precision, floating-point results. The reference

paper claims a significant speed-up over the OpenMP implementation. As the reference paper

does not mention any test times, the graph data was interpreted to get the speed-up. The graph

data shows that the K20 speed-up over the OpenMP implementation is greater than 5X for

more than 500,000 bonds.

Intel® Architecture Optimizations

The bonds scenario is a complex workload presenting little vectorization benefit. Some of the

vectorization challenges:

• Switch cases and if-else statements lead to vector inefficiencies.

• if-else statement execution does not follow a pattern that would provide hints to the

compiler to generate optimal code.

6.4
8.0 8.8

7.3
8.9 9.4 8.0 9.5 10.010.6

12.1
14.0 12.6 13.3 12.9 11.7 13.0 14.215.2

22.7

28.0

15.4

22.5

28.0

15.9

21.8

27.9

0

5

10

15

20

25

30

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Test 9

Monte-Carlo* Speedup

without Precision Flags

Tesla* K40 Intel® Xeon® processor E5-2697 v3 Intel® Xeon Phi™ coprocessor 7120P

Higher is Better

16

• Critical loop counts are low (<10).

• Data access could not be aligned due to nested structures.

The following optimizations were successfully applied:

1. Data layout: The Intel TBB memory allocator was used for memory allocation.

2. Existing arrays were defined as static and cache aligned.

Reference Test Configuration Comparison

Table 10 presents test times using 1 million bonds. The reference CUDA code takes 826 mSec.

The Intel Xeon processor E5-2697 v3 outperforms the GPU by up to 1.4X1. The Intel Xeon Phi

coprocessor 7120P takes 1265 mSec.

Table 101: Reference CUDA* results vs. optimized Intel® Architecture code for 1 million bonds.

Bonds Reference

Tesla*

K40

(mSec)

Optimized Intel®

Xeon® processor

E5-2697 v3 (56

threads) with

precision flags

(mSec)

Optimized Intel

Xeon processor E5-

2697 v3 (56

threads) without

precision flags

(mSec)

Optimized Intel®

Xeon Phi™

coprocessor

7120P (244

threads) with

precision flags

(mSec)

Optimized Intel

Xeon Phi

coprocessor 7120P

(244 threads)

without precision

flags

(mSec)

1 Million 826 585 609 1105 1265

(Source: Intel Measured)

Modified Test Configuration Comparison

The reference code executes up to 1 million bonds, but the test times are below the one second

range. To profile algorithmic scaling, test times were extended to the seconds range by

increasing the number of bonds to 15 million. The only modification to the reference CUDA

code was to increase the number of bonds. Table 11 shows the results.

Table 111: Modified CUDA* results vs. optimized Intel® Architecture code.

Test

Number

Bonds Modified

Tesla*

K40

(Sec)

Optimized

Intel® Xeon®

processor

E5-2697 v3

1T without

precision

flags

(Sec)

Optimized

Intel Xeon

processor E5-

2697 v3 56T

with precision

flags

(Sec)

Optimized

Intel Xeon

processor

E5-2697 v3

56T without

precision

flags

(Sec)

Optimized

Intel® Xeon

Phi™

coprocessor

244T with

precision

flags

(Sec)

Optimized

Intel Xeon

Phi

coprocessor

244T without

precision

flags

(Sec)

1 2 M 1.646 20.218 1.135 1.165 2.161 2.544

2 5 M 4.102 50.694 2.483 2.426 5.172 6.129

3 8 M 6.561 81.666 3.346 3.493 8.474 9.625

4 10 M 8.187 101.423 4.230 4.252 10.430 12.059

5 12 M 9.833 121.265 4.827 4.802 12.500 14.484

6 15 M 12.294 151.577 6.318 6.277 15.477 18.133

All time in seconds. (Source: Intel Measured)

17

Graph 51: Speed-up compared to single threaded performance on the Intel® Xeon® processor E5-2697 v3. (Source:

Intel Measured)

Graph 61: Speed-up compared to single threaded performance on the Intel® Xeon® processor E5-2697 v3. (Source:

Intel Measured)

Graphs 5 and 6 show the speed-up of the Tesla K40, the Intel Xeon processor E5-2697 v3, and

the Intel Xeon Phi coprocessor 7120P compared to the single thread performance on the Intel

Xeon processor E5-2697 v3. As mentioned earlier, the Bonds scenario presents fewer

opportunities to utilize the vector units. Despite this, the Intel Xeon processor E5-2697 v3

outperforms the K40 by as much as 1.8X1. Conversely, the K40 outperforms the Intel Xeon Phi

coprocessor 7120P by up to 1.4X1, primarily due to the lack of vectorization benefit on the Intel

Xeon Phi coprocessor.

Repo

A repo is a form of short-term borrowing. Government securities are sold to investors and are

repurchased by the seller within a short time at a greater price. The price difference can be

12.28 12.36 12.45 12.39 12.33 12.33

17.81
20.42

24.41 23.98 25.12 23.99

9.36 9.80 9.64 9.72 9.70 9.79

0

5

10

15

20

25

30

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6

Bonds Speedup

with Precision Flags

Tesla K40* Intel® Xeon® processor E5-2697 v3 Intel® Xeon Phi™ coprocessor 7120P

12.28 12.36 12.45 12.39 12.33 12.33

17.35
20.90

23.38 23.85 25.25 24.15

7.95 8.27 8.48 8.41 8.37 8.36

0

10

20

30

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6

Bonds Speedup
without Precision Flags

Tesla* K40 Intel® Xeon® processor E5-2697 v3 Intel® Xeon Phi™ coprocessor 7120P

Higher is Better

Higher is Better

18

viewed as interest and is called the “repo rate.” The experiments compare the results of varying

the repo purchase date, repo sale date, the repo rate, underlying fixed-rate bond rate, and

underlying fixed-rate bond date. These variables affect whether or not the buyer and/or seller

gains or loses money as a result of the agreement. Repo is a double-precision scenario. The

reference paper claims a significant speed-up over the OpenMP implementation. Because the

reference paper does not mention any test times, the graph data was interpreted to get the

speed-up. The graph data shows that the K20 speed-up compared to the OpenMP

implementation is over 6X for more than 100,000 repos.

Intel® Architecture Optimizations

The repo code is similar to the bond code and presents similar vectorization challenges, as listed

below:

• Switch cases and if-else statements lead to vector dependence.

• if-else statement execution does not follow a pattern that would provide hints to the

compiler to generate optimal code.

• Critical loop counts are low (<10).

• Data is not aligned due to nested structures.

The following optimizations were successfully applied:

1. Data layout: The Intel TBB memory allocator was used for memory allocation.

2. Existing arrays were defined as static and cache aligned.

Reference Test Configuration Comparison

The reference paper runs up to 2 million repos. Table 12 presents test times using 2 million

repos. The original CUDA code takes 876 mSec and the Intel Xeon processor E5-2697 v3 takes

1027 mSec. The K40 outperforms the Intel Xeon processor E5-2697 v3 by 1.18X. Without

vectorization, the Intel Xeon Phi coprocessor 7120P takes 1801 mSec.

Table 121: Reference CUDA* results vs. optimized Intel® Architecture code for 2 million repos.

Repos Reference

Tesla*

K40

(mSec)

Intel® Xeon®

processor E5-2697

v3 (56 threads)

with precision

flags

(mSec)

Intel Xeon

processor E5-

2697 v3 (56

threads) without

precision flags

(mSec)

Intel® Xeon Phi™

coprocessor

7120P (244

threads) with

precision flags

(mSec)

Intel Xeon Phi

coprocessor

7120P (244

threads) without

precision flags

(mSec)

2 Million 867 1064 1027 1489 1801

(Source: Intel Measured)

Modified Test Configuration Comparison

Table 13 presents the results for the CUDA version and optimized Intel Architecture version for

varying number of repos. To extend the test times beyond 1 second additional repos were

19

added by changing the #define. K40* could run a limit of 10 million repos without generating

an error.

Table 131: Modified CUDA* results vs. optimized Intel® Architecture code.

Test

Number

Repos Modified

Tesla*

K40

(Sec)

Optimized

Intel® Xeon®

processor E5-

2697 v3 1T

without

precision flags

(Sec)

Optimized Intel

Xeon processor

E5-2697 v3 56T

with precision

flags

(Sec)

Optimized Intel

Xeon processor

E5-2697 v3 56T

without

precision flags

(Sec)

Optimized

Intel® Xeon

Phi™

coprocessor

7120P 244T

with precision

flags

(Sec)

Optimized

Intel Xeon Phi

coprocessor

7120P 244T

without

precision flags

(Sec)

1 3 M 1.299 26.926 1.413 1.430 2.198 2.672

2 4 M 1.729 36.090 1.873 1.917 2.903 3.546

3 5 M 2.155 42.974 2.272 2.335 3.614 4.440

4 6 M 2.587 54.450 2.514 2.561 4.392 5.320

5 8 M 3.463 68.089 2.730 2.982 5.420 7.086

All times in seconds. (Source: Intel Measured)

Graph 7

1
: Speed-up compared to single-threaded performance on the Intel® Xeon® processor E5-2697 v3. (Source:

Intel Measured)

20.7 20.9 19.9 21.0
19.719.1 19.3 18.9

21.7

24.9

12.3 12.4 11.9 12.4 12.6

0

5

10

15

20

25

Test 1 Test 2 Test 3 Test 4 Test 5

Repo Speedup

with Precision Flags

Tesla* K40 Intel® Xeon® processor E5-2697 v3 Intel® Xeon Phi™ coprocessor 7120P

Higher is Better

20

Graph 8

1
: Speed-up compared to single-threaded performance on the Intel® Xeon® processor E5-2697 v3. (Source:

Intel Measured)

Graphs 7 and 8 show the speed-up of the Tesla K40, the Intel Xeon processor E5-2697 v3, and

the Intel Xeon Phi coprocessor 7120P compared to the single-thread performance on the Intel

Xeon processor E5-2697 v3. Although there are challenges in vectorizing this workload on Intel

Architecture, the Intel Xeon processor E5-2697 v3 performance is equivalent to the Tesla K40—

in some cases slightly ahead and others slightly behind. The Tesla K40 outperforms Intel Xeon

Phi coprocessor 7120P by up to 2X1, due to the lack of vectorization.

Conclusions

The reference paper compared GPU/CPU performance on four Quantlib-based financial

workloads. The reference paper GPU performance claims and the optimized Intel Architecture

vs. K40 performance are presented in Table 14.

Table 14: Comparison between the reference paper claims to the modified test results discussed in this document.

Workload Reference paper

claim: Tesla*

K20 performance

gains vs. multi-

threaded Intel®

Architecture code

Actual results1:

Intel® Xeon® processor

E5-2697 v3 vs. Tesla*

K40

Actual results1:

Intel® Xeon Phi™

coprocessor 7120P

vs. K40

Comments:

Key IA performance

optimizations

Black-

Scholes*

>35X Intel Xeon processor

E5-2697 v3

outperforms K40 by a

minimum of 1.15X

Intel Xeon Phi

coprocessor 7120P

outperforms K40 by

1.98X minimum.

Utilize vector units,

proper data

alignment and cache

locality.

Monte-

Carlo*

>140X Intel Xeon processor

E5-2697 v3

outperforms K40 by a

minimum of 1.37X

Intel Xeon Phi

coprocessor 7120P

outperforms K40 by

1.99X minimum.

Utilize vector units,

Intel® MKL for RND

generation, proper

data alignment and

cache locality.

Bonds >5X Intel Xeon processor K40 outperforms Intel Proper data

20.7 20.9 19.9 21.0
19.718.8 18.8 18.4

21.3
22.8

10.1 10.2 9.7 10.2 9.6

0

5

10

15

20

25

Test 1 Test 2 Test 3 Test 4 Test 5

Repo Speedup

without Precision Flags

Tesla K40* Intel® Xeon® processor E5-2697 v3 Intel® Xeon Phi™ coprocessor 7120P

Higher is Better

21

E5-2697 v3

outperforms K40 by a

minimum of 1.4X

Xeon Phi coprocessor

7120P by up to 1.55X.

alignment and cache

locality.

Repo >5X Equivalent K40 outperforms Intel

Xeon Phi coprocessor

7120P by up to 2.04X

Proper data

alignment and cache

locality.

 (Source: Intel Measured)

None of the reference paper performance speedups can be substantiated. Utilizing both thread

and data parallel resources combined with efficient memory utilization provided significant

speedup over the reference IA code.

Since the Intel Xeon processor and the Intel Xeon Phi coprocessor use the same programming

model, most of the optimizations made for the processor are applicable on the coprocessor,

thereby achieving significant performance improvement for both the architectures.

By applying the stepwise parallelization methodology to utilize all of the parallel resources on

Intel Architecture, both the Intel Xeon processor E5-2697 v3 and/or the Intel Xeon Phi

coprocessor 7120P outperform the Tesla K40 for a majority of the workloads. For workloads

that cannot utilize all of the parallel resources, the Intel Xeon processor E5-2697 v3

performance exceeds or is comparable to K40 demonstrating the flexibility of Intel Architecture.

References

1. Intel® Turbo Boost Technology:

http://www.intel.com/content/www/us/en/architecture-and-technology/turbo-

boost/turbo-boost-technology.html

2. Intel® MKL User Guide:

https://software.intel.com/sites/default/files/managed/4a/d6/mkl_11.2.1_lnx_userguide.

pdf

3. Intel C++ Compiler version 15:

 https://software.intel.com/en-us/compiler_15.0_ug_c

4. Intel® Xeon Phi™ Coprocessor Vector Microarchitecture

https://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-vector-

microarchitecture

5. IA programming model:

https://software.intel.com/en-us/articles/case-study-achieving-high-performance-on-

monte-carlo-european-option-using-stepwise

6. OpenMP* 4.0 :

http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf

7. Intel® Threading Building Blocks:

http://www2.thu.edu.tw/~emtools/VMC/Intel%20Threading%20Building%20Blocks.pdf

https://software.intel.com/en-us/tbb_4.3_U2_doc

22

8. A Guide to Vectorization with Intel® C++ Compilers :

https://software.intel.com/sites/default/files/8c/a9/CompilerAutovectorizationGuide.pdf

9. Reference paper:

 http://dl.acm.org/citation.cfm?id=2458536

Performance Disclaimer:
1Software and workloads used in performance tests may have been optimized for performance only on

Intel microprocessors. Performance tests, such as SYSmark* and MobileMark*, are measured using

specific computer systems, components, software, operations and functions. Any change to any of those

factors may cause the results to vary. You should consult other information and performance tests to

assist you in fully evaluating your contemplated purchases, including the performance of that product

when combined with other products. For more information go to For more information go to For more information go to For more information go to http://www.intel.com/performancehttp://www.intel.com/performancehttp://www.intel.com/performancehttp://www.intel.com/performance

NoticesNoticesNoticesNotices

Intel technologies may require enabled hardware, specific software, or services activation.

Performance varies depending on system configuration. Check with your system manufacturer

or retailer.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is

granted by this document.

Intel disclaims all express and implied warranties, including without limitation, the implied

warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as

any warranty arising from course of performance, course of dealing, or usage in trade.

This document contains information on products, services and/or processes in development. All

information provided here is subject to change without notice. Contact your Intel representative

to obtain the latest forecast, schedule, specifications and roadmaps.

The products and services described may contain defects or errors known as errata which may

cause deviations from published specifications. Current characterized errata are available on

request.

Copies of documents which have an order number and are referenced in this document may be

obtained by calling 1-800-548-4725 or by visiting www.intel.com/design/literature.htm.

Intel, the Intel logo, Intel Xeon, Intel Xeon Phi, and VTune are trademarks of Intel Corporation in

the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others

© 2015 Intel Corporation.

