
 Page 1 of 5 

Optimizing Applications for NUMA  
<keywords: NUMA, memory management, data affinity> 

Abstract 

NUMA, or Non-Uniform Memory Access, is a shared memory architecture that describes the 

placement of main memory modules with respect to processors in a multiprocessor system. Like 
most every other processor architectural feature, ignorance of NUMA can result in sub-par 

application memory performance. Fortunately, there are steps that can be taken to mitigate any 
NUMA-based performance issues or to even use NUMA architecture to the advantage of your 

parallel application. Such considerations include processor affinity, memory allocation using 

implicit operating system policies, and the use of the system APIs for assigning and migrating 
memory pages using explicit directives. 

This article is part of the larger series, "Intel Guide for Developing Multithreaded Applications," 
which provides guidelines for developing efficient multithreaded applications for Intel® platforms. 

Background 

Perhaps the best way to understand NUMA is to compare it with its cousin UMA, or Uniform 

Memory Access. In the UMA memory architecture, all processors access shared memory 
through a bus (or another type of interconnect) as seen in the following diagram: 

  

UMA gets its name from the fact that each processor must use the same shared bus to access 

memory, resulting in a memory access time that is uniform across all processors. Note that 

access time is also independent of data location within memory. That is, access time remains the 
same regardless of which shared memory module contains the data to be retrieved.  

In the NUMA shared memory architecture, each processor has its own local memory module that 
it can access directly with a distinctive performance advantage. At the same time, it can also 

access any memory module belonging to another processor using a shared bus (or some other 

type of interconnect) as seen in the diagram below: 

 



 Page 2 of 5 

 

 

What gives NUMA its name is that memory access time varies with the location of the data to be 

accessed. If data resides in local memory, access is fast. If data resides in remote memory, 
access is slower. The advantage of the NUMA architecture as a hierarchical shared memory 

scheme is its potential to improve average case access time through the introduction of fast, local 

memory. 

Modern multiprocessor systems mix these basic architectures as seen in the following diagram: 

 

In this complex hierarchical scheme, processors are grouped by their physical location on one or 
the other multi-core CPU package or “node.” Processors within a node share access to memory 

modules as per the UMA shared memory architecture. At the same time, they may also access 
memory from the remote node using a shared interconnect, but with slower performance as per 

the NUMA shared memory architecture. 

Advice 

Two key notions in managing performance within the NUMA shared memory architecture are 
processor affinity and data placement. 

Processor Affinity 

Today’s complex operating systems assign application threads to processor cores using a 

scheduler. A scheduler will take into account system state and various policy objectives (e.g., 

“balance load across cores” or “aggregate threads on a few cores and put remaining cores to 
sleep”), then match application threads to physical cores accordingly. A given thread will execute 

on its assigned core for some period of time before being swapped out of the core to wait, as 



 Page 3 of 5 

other threads are given the chance to execute. If another core becomes available, the scheduler 

may choose to migrate the thread to ensure timely execution and meet its policy objectives. 

Thread migration from one core to another poses a problem for the NUMA shared memory 

architecture because of the way it disassociates a thread from its local memory allocations. That 
is, a thread may allocate memory on node 1 at startup as it runs on a core within the node 1 

package. But when the thread is later migrated to a core on node 2, the data stored earlier 

becomes remote and memory access time significantly increases.  

Enter processor affinity. Processor affinity refers to the persistence of associating a 

thread/process with a particular processor resource instance, despite the availability of other 
instances. Using a system API, or by modifying an OS data structure (e.g., affinity mask), a 

specific core or set of cores can be associated with an application thread. The scheduler will then 
observe this affinity in its scheduling decisions for the lifetime of the thread. For example, a 

thread may be configured to run only on cores 0 through 3, all of which belong to quad core CPU 

package 0. The scheduler will choose among cores 0 through 3 without even considering 
migrating the thread to another package. 

Exercising processor affinity ensures that memory allocations remain local to the thread(s) that 
need them. Several downsides, however, should be noted. In general, processor affinity may 

significantly harm system performance by restricting scheduler options and creating resource 

contention when better resources management could have otherwise been used. Besides 
preventing the scheduler from assigning waiting threads to unutilized cores, processor affinity 

restrictions may hurt the application itself when additional execution time on another node would 
have more than compensated for a slower memory access time. 

Programmers must think carefully about whether processor affinity solutions are right for a 
particular application and shared system context. Note, finally, that processor affinity APIs 

offered by some systems support priority “hints” and affinity “suggestions” to the scheduler in 

addition to explicit directives. Using such suggestions, rather than forcing unequivocal structure 
on thread placement, may ensure optimal performance in the common case yet avoid 

constraining scheduling options during periods of high resource contention. 

Data Placement Using Implicit Memory Allocation Policies 

In the simple case, many operating systems transparently provide support for NUMA-friendly 

data placement. When a single-threaded application allocates memory, the processor will simply 
assign memory pages to the physical memory associated with the requesting thread’s node (CPU 

package), thus ensuring that it is local to the thread and access performance is optimal. 

Alternatively, some operating systems will wait for the first memory access before committing on 

memory page assignment. To understand the advantage here, consider a multithreaded 

application with a start-up sequence that includes memory allocations by a main control thread, 
followed by the creation of various worker threads, followed by a long period of application 

processing or service. While it may seem reasonable to place memory pages local to the 
allocating thread, in fact, they are more effectively placed local to the worker threads that will 

access the data. As such, the operating system will observe the first access request and commit 
page assignments based on the requester’s node location. 

These two policies (local to first access and local to first request) together illustrate the 

importance of an application programmer being aware of the NUMA context of the program’s 
deployment. If the page placement policy is based on first access, the programmer can exploit 

this fact by including a carefully designed data access sequence at startup that will generate 



 Page 4 of 5 

“hints” to the operating system on optimal memory placement. If the page placement policy is 

based on requester location, the programmer should ensure that memory allocations are made 
by the thread that will subsequently access the data and not by an initialization or control thread 

designed to act as a provisioning agent. 

Multiple threads accessing the same data are best co-located on the same node so that the 

memory allocations of one, placed local to the node, can benefit all. This may, for example, be 

used by prefetching schemes designed to improve application performance by generating data 
requests in advance of actual need. Such threads must generate data placement that is local to 

the actual consumer threads for the NUMA architecture to provide its characteristic performance 
speedup. 

It should be noted that when an operating system has fully consumed the physical memory 
resources of one node, memory requests coming from threads on the same node will typically be 

fulfilled by sub-optimal allocations made on a remote node. The implication for memory-hungry 

applications is to correctly size the memory needs of a particular thread and to ensure local 
placement with respect to the accessing thread.  

For situations where a large number of threads will randomly share the same pool of data from 
all nodes, the recommendation is to stripe the data evenly across all nodes. Doing so spreads the 

memory access load and avoids bottleneck access patterns on a single node within the system.  

Data Placement Using Explicit Memory Allocation Directives 

Another approach to data placement in NUMA-based systems is to make use of system APIs that 

explicitly configure the location of memory page allocations. An example of such APIs is the 

libnuma library for Linux.  

Using the API, a programmer may be able to associate virtual memory address ranges with 
particular nodes, or simply to indicate the desired node within the memory allocation system call 

itself. With this capability, an application programmer can ensure the placement of a particular 
data set regardless of which thread allocates it or which thread accesses it first. This may be 

useful, for example, in schemes where complex applications make use of a memory management 

thread acting on behalf of worker threads. Or, it may prove useful for applications that create 
many short-lived threads, each of which have predictable data requirements. Pre-fetching 

schemes are another area that could benefit considerably from such control. 

The downside of this scheme, of course, is the management burden placed on the application 

programmer in handling memory allocations and data placement. Misplaced data may cause 

performance that is significantly worse than default system behavior. Explicit memory 
management also presupposes fine-grained control over processor affinity throughout application 

use. 

Another capability available to the application programmer through NUMA-based memory 

management APIs is memory page migration. In general, migration of memory pages from one 
node to another is an expensive operation and something to be avoided. Having said this, given 

an application that is both long-lived and memory intensive, migrating memory pages to re-

establish a NUMA-friendly configuration may be worth the price.3 Consider, for example, a long-
lived application with various threads that have terminated and new threads that have been 

created but reside on another node. Data is now no longer local to the threads that need it and 
sub-optimal access requests now dominate. Application-specific knowledge of a thread’s lifetime 

and data needs can be used to determine whether an explicit migration is in order.  



 Page 5 of 5 

Usage Guidelines 

The key issue in determining whether the performance benefits of the NUMA architecture can be 

realized is data placement. The more often that data can effectively be placed in memory local 
to the processor that needs it, the more overall access time will benefit from the architecture. By 

providing each node with its own local memory, memory accesses can avoid throughput 
limitations and contention issues associated with a shared memory bus. In fact, memory 

constrained systems can theoretically improve their performance by up to the number of nodes 

on the system by virtue of accessing memory in a fully parallelized manner.  

Conversely, the more data fails to be local to the node that will access it, the more memory 

performance will suffer from the architecture. In the NUMA model, the time required to retrieve 
data from an adjacent node within the NUMA model will be significantly higher than that required 

to access local memory. In general, as the distance from a processor increases, the cost of 

accessing memory increases.  

Additional Resources 

Intel® Software Network Parallel Programming Community 

Drepper, Ulrich. “What Every Programmer Should Know About Memory”. November 2007. 

Intel® 64 and IA-32 Architectures Optimization Reference Manual. See Section 8.8 on “Affinities 

and Managing Shared Platform Resources”. March 2009. 

Lameter, Christoph. “Local and Remote Memory: Memory in a Linux/NUMA System”. June 2006. 

http://software.intel.com/en-us/parallel/

