
Confidential

Mark Mitchell
mark@codesourcery.com

Building Embedded Intel Applications With
Open-Source Tools

Introduction

Apr-12-10 Confidential 2

Which Embedded Architectures Are You Using?

Intel

ARM

ColdFire

MIPS

Power

SuperH

Other

Apr-12-10 Confidential 3

Which Embedded Operating Systems?

Apr-12-10 Confidential 4

BSD FreeRTOS GNU/Linux QNX ThreadX vxWorks None

Embedded Systems Are Different

Apr-12-10 Confidential 5

Fewer Programming Languages

Apr-12-10 Confidential 6

C

C++

Assembly

Python

Perl

Java

Ruby

C#
Visual Basic

Fortran

LISP

Haskell

CAML

Fewer Programming Languages

Apr-12-10 Confidential 7

C

C++

Assembly

Different Goals

•  Battery lifetime is critical for portable devices
•  Performance is often about getting back to sleep
•  Even fixed devices often have strict power requirements
•  Heat generation is a function of power consumption

Minimize power usage

•  RAM is expensive
•  Flash is very expensive
•  Disks? What disks would those be?

Minimize footprint

•  Algorithms must have predictable worst-case performance
•  Code must be interruptible

Meet real-time requirements

Apr-12-10 Confidential 8

Weird Hardware Stuff

•  Program code must go here …
•  … while data must go there …
•  … and peripherals are over here …

Memory maps

•  Analog inputs and outputs
•  Real-time requirements
•  Fault-tolerance requirements

Peripherals

•  Editing the program requires reflashing the system
•  Debugging requires connecting a JTAG probe to the system
•  Debugging the application often changes how it behaves

Complex debug cycle

Apr-12-10 Confidential 9

Open-Source Tools

Apr-12-10 Confidential 10

GNU Toolchain

Apr-12-10 Confidential 11

C/C++
GNU C/C++

Compiler
(GCC)

Assembly GNU Assembler
(GAS)

Object

Executable GNU Linker
 (GLD)

C/C++
GNU C/C++

Compiler
(GCC)

Assembly GNU Assembler
(GAS)

Object

Libraries

• Inline assembly
• Intrinsics
• Generic vectors

• Section placement
• Initialization support

• Configurable features
• Replaceable system calls

Host
System

Target
System

GNU Debug Architecture

Apr-12-10 © CodeSourcery, Inc. 12

Stub CPU

Debugger

RSP

JTAG

GDB
Server

Application

OS

print x

get
*0x12345678

wiggle,
shift

Eclipse

Apr-12-10 Confidential 13

• Register display
• Hardware breakpoints
• Hardware watchpoints

• Disassembly view
• Hardware single-step

Analysis Tools
oprofile

•  System-wide profiler
–  Kernel driver
–  Daemon for collecting data
–  Post-processing tools

•  Leverages Intel hardware
performance counters
–  Low overhead (1%-8%)

valgrind
•  Debugging tool

–  Memory bugs
–  Threading bugs
–  Pluggable interface for building

new tools
•  Dynamically modifies running

programs
–  Inserts instrumentation code
–  Collects data as program runs

Apr-12-10 Confidential 14

Advantages of Open-Source Tools

•  Tools work on non-Intel architectures too
•  Easier to leverage investment in skills or software

Portability across architectures

•  Silicon companies
•  Software developers
•  University researchers

Improvements from many sources

•  Possible to change the tools

Great for research!

Apr-12-10 Confidential 15

CodeSourcery & Intel

Apr-12-10 Confidential 16

Activities for Intel CPUs

Apr-12-10 Confidential 17

•  Instruction selection
•  Instruction scheduling

Performance Optimization

•  “Bare-metal” toolchains
•  JTAG debug for Atom

Embedded Functionality

•  For GNU/Linux and bare-metal/RTOS platforms
•  Zero-cost command-line tools
•  Commercial packages available

Regular High-Quality Releases

Sourcery G++ Editions

Lite Edition

Personal
Edition

Standard
Edition

Professional
Edition

Confidential 18

Personal Edition

•  Full IDE (Eclipse)
•  GNU/Linux prelinker
•  Library optimizer
•  Application simulator
•  30 days support
•  $399/user

Lite Edition

•  Core command-line tools
•  No support
•  Zero-cost solution

Standard Edition

•  Personal Edition plus…
•  Optimized run-time libraries
•  Debuggable libraries
•  Unlimited support
•  $1599/user

Professional Edition

• Standard Edition plus…
• Priority defect resolution
• Floating license option
• Long-term support option
• $2799/user

Future Directions I: Optimization

Apr-12-10 Confidential 19

Optimization Opportunities

• Loop optimizations
• Instruction scheduling
• SIMD auto-vectorization

Traditional optimizations

• Overcome limitations of separate compilation
• Propagate link-time constants
• Inline across modules
• Align data on cache lines

Link-time optimization

• Learn from program execution
• Optimize hot code for speed; cold code for space
• Layout program images to maximize cache performance
• Optimize for expected data values

Profile-directed feedback

• GNU tools are blissfully unaware of power impact
• Choose low-power instructions
• Provide expected power consumption information

Power optimization

Apr-12-10 Confidential 20

Future Directions II: Analysis

Apr-12-10 Confidential 21

Compilers Are Black Boxes

Apr-12-10 Confidential 22

C/C++
GNU C/C++ Compiler

(GCC) Assembly

What’s going on in here?

Compilers Should Be White Boxes

Apr-12-10 Confidential 23

C/C++
GNU C/C++ Compiler

(GCC) Assembly

Abstract Syntax
Tree

Parsed
Representation

Control Flow
Graph

Loop Nests Program
Invariants

Performance
Estimates

Data Flow
Graph

Footprint
Estimates

Guidance

Reports &
Analysis

Questions

Apr-12-10 Confidential 24

Confidential

Mark Mitchell
mark@codesourcery.com

Building Embedded Intel Applications With
Open-Source Tools

