

PCI Express* 3.0 438-Pin Riser Card Edge Connector

Specification

February 2014

Reference Number: 329988-001

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death. Should you purchase or use intel's products for any such mission critical application, you shall indemnify and hold intel and its subsidiaries, subcontractors and affiliates, and the directors, officers, and employees of each, harmless against all claims costs, damages, and expenses and reasonable attorneys' fees arising out of, directly or indirectly, any claim of product liability, personal injury, or death arising in any way out of such mission critical application, whether or not intel or its subcontractor was negligent in the design, manufacture, or warning of the intel product or any of its parts.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature may be obtained by calling 1-800-548-4725 or by visiting Intel's website at http://www.intel.com/design/literature.htm.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2014, Intel Corporation. All Rights Reserved.

Contents

1	Intro	duction7
	1.1	Purpose and Scope7
	1.2 1.3	Connector Overview
	1.3 1.4	Terms and Definitions 8 References 8
~		
2	Signa	Il Description and Pin Assignment
	2.1	Pin Assignments
3		ector Interface Definitions
3	3.1	Design Essentials
	3.2	PCIe* Riser Card Connector Dimensions
	3.3	PCIe Riser Connector Baseboard Footprint
	3.4	PCIe 3.0 Riser Card Dimensions
4	Electi	rical Specification
	4.1	DC Electrical Requirements
	4.2	AC Electrical Requirements
5	Mech	anical, Environmental, and Reliability Specification
	5.1	Mechanical Specifications
	5.2	Environmental Requirements
	5.3 5.4	Reliability Requirement 28 Riser Card Mechanical Requirements 30
,		
6	Supp	lier Contact Information 31 Supplier Contact and Part Number Information 31
_	•	
Α		Card Gold Finger Positional Tolerance
В		Card Installation
	B.1	Riser Card Installation Guide
	В.2 В.3	Riser Card Pre-alignment Mechanism
	В.4	Retention Mechanism
с	Shock	k and Vibration Test Methodology
C	C.1	Test Equipment
	C.2	Test Environment
	C.3	Test Conditions
	C.4	Test Fixture
	C.5	Post Test Verification
D		mbly/Rework Guidance
	D.1	Press Tool Loading
	D.2 D.3	Assembly
	0.5	1.EWULK

Figures

1-1	438-Pin PCIe* Riser Card Edge Connector	7
3-1	PCIe Riser Card Connector and Riser Card	17
3-2	PCIe Riser Card Connector Dimensions	18
3-3	PCIe Riser Connector Footprint (Top View)	19
3-4	System Board Keepout Zone for Assembly	20
3-5	System Board Keepout Zone for Rework	21
3-6	PCIe Riser Connector Breakout Routing	
3-7	PCIe Riser Connector Pin Baseboard Hole Specification	22
3-8	PCIe 3.0 Riser Card Dimensions	23
3-9	PCIe 3.0 Riser Card Dimensions (Detail A)	23
3-10	PCIe 3.0 Riser Card Dimensions (Detail B)	24
A-1	Gold Finger Size and Positional Tolerance	33
A-2	Gold Finger Location Tolerance	
B-1	Riser Card Notch to Connector Keying Alignment	35
B-2	Proper Alignment Between Riser Card Notch and Connector Keying	36
C-1	Riser Test Card Allowable Movement in Z-Axis	38
C-2	Riser Test Card Mass	38
6-1	Connector Assembly	41
D-1	Connector Insertion Tool	42
D-2	Quality Inspection After Assembly	43
D-3	Rework Tool Home Position	44
D-4	Rework Tool Placement	45
D-5	Removing Connector Housing	46
D-6	Example of Manual Pin Removal	47
D-7	Example of Board Inspection Post Connector Removal Process	48

Tables

2-1	PCIe* Riser Card Connector and Module Signal Descriptions	
2-2	Connector Pin Assignment Color Code	12
2-3	PCIe Riser Card Connector and Module Pin Assignment	12
4-1	DC Electrical Requirements	25
4-2	Connector Single-ended S-parameter Values	26
5-1	Mechanical Specifications	27
5-2	Material Requirements	28
5-3	Reliability Test Conditions	29
5-4	Riser Card Mechanical Requirements	30
6-1	Connector Part Number and Supplier Contact Information	31
A-1	Allowed Gold Finger Positional Tolerance	
D-1	Connector Pin Insertion Force	
D-2	Connector Pin Removal Force	45

Revision History

Document Number	Revision Number	Description	Date
329988	1.0	Initial Release	February 2014

1 Introduction

1.1 Purpose and Scope

This document provides specifications for the PCI Express* 3.0 438-pin riser card edge connector that interfaces with a riser card supporting up to 48 PCIe* lanes at 8 Gbps and power at 12 V, 5 V, and 3.3 V. It contains mechanical, electrical, and environmental requirements of the connector accepting 2.36 mm (0.093 in.) nominal thickness add-in card. The intent of this document is to enable connector, system designers and manufacturers to build, qualify, and use the PCIe riser card edge connectors as the standard interface between the PCIe riser card and the Intel server platform.

In this document the term 'connector' refers to the PCIe riser card edge connector, the term 'baseboard' refers to the motherboard (MB) or system board the connector is mounted onto, and the term 'riser card' refers to the PCIe riser card, whose gold finger edge is inserted vertically into the connector.

1.2 Connector Overview

The PCIe riser card connector is a single-piece 438-pin vertical press fit connector with 0.7 mm staggered contact pitch. It is defined for applications where a riser card of 2.36 mm (0.093 in.) nominal thickness vertically enters the connector, perpendicular to the system board.

The connector requires the use of mechanical alignment/insertion/retention/extraction mechanisms. The connector is designed for visual alignment of the add-in card and connector. Designs that prevent visual alignment (blind-mate) must use blind-mate alignment components such as guide pins and guide pin receptacles. (See Appendix B, "Riser Card Installation" for more details.)

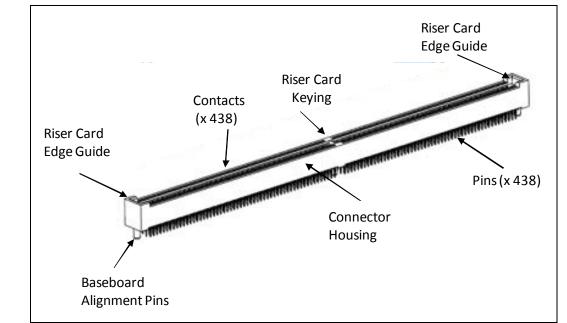


Figure 1-1. 438-Pin PCIe* Riser Card Edge Connector

1.3 Terms and Definitions

Term	Description
baseboard	Also known as motherboard or system board.
dB	Decibel: A unit for the measurement of the strength of a signal expressed in decibels relative to one watt given as function of volts, that is, 20log10(V1/V2).
DUT	Device Under Test
EIA	Electronic Industry Alliance
EOL	End of life
gap	Space between two traces
Gbps	Gigabytes per second
GD&T	Geometric Dimensioning and Tolerances
LLCR	Low Level Contact Resistance
module	Refers to the PCIe* riser card (also known as a riser card).
РСВ	Printed Circuit Board
riser card	Refers to the PCIe riser card (also known as a module).
SMA	Subminiature version A
staggered contact pitch	Refers to diagonal position of contacts with respect to one another.
system board	Printed circuit board on which the PCIe riser card connector is mounted.
TDR	Time Domain Reflectometry
TDT	Time Domain Transmission
tie bar	A physical part near the gold finger to allow electroplating of Ni and Au after etching.
TRL	Through, reflection, and line
TW	Trace width
vertical connector	A connector that accepts a module perpendicular to the system board.
VNA	Vector Network Analyzer

1.4 References

A 7-year life cycle test is applied for both the mechanical requirement and the environmental requirement, per EIA 364-1000. This specification requires references to other documents.

- EIA-364-05: Contact Insertion, Release and Removal Force Test Procedure for Electrical Connectors
- EIA-364-13: Mating and Unmating Force Test Procedure for Electrical Connectors and Sockets
- EIA 364-23C Low Level Contact Resistance Test Procedures for Electrical Connectors and Sockets
- EIA 364-70B Temperature Rise Versus Current Test Procedure for Electrical Connectors and Sockets
- EIA364-09 Durability (preconditioning)
- EIA364-17 Temperature life
- EIA364-23 Low Level Contact Resistance
- EIA364-27 Mechanical Shock

- EIA364-28 Vibration
- EIA 364-29 Contact Retention Test Procedure for Electrical Connectors
- EIA364-31 Cyclic temperature & humidity
- EIA364-32 Thermal Shock
- EIA364-65 Mixed flowing gas
- EIA364-91 Dust
- Agilent Application Note, "Agilent Network Analysis Applying the 8510 TRL Calibration for Non-Coaxial Measurements", Product Note 8510-8A
- PCIe* Card Electromechanical Specification, Revision 1.0 July 21, 2013
- 325028-001 PCIe* Gen 3 Connector High Speed Electrical Test Procedure, Rev 1.0, Jan 2011

http://www.intel.com/content/www/us/en/io/pci-express/pci-expressarchitecture-devnet-resources.html

• EIA-364-1000 Environmental Test Methodology for Assessing the Performance of Electrical Connectors and Sockets used in Business Office Applications. www.eia.org

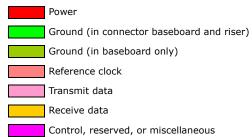
2 Signal Description and Pin Assignment

This section describes the signals included in the PCIe riser card connector, as well as the riser card and the connector pin assignments.

2.1 Signal Description

PCIe riser card connector signal groups, names, and number of assigned pins are provided in Table 2-1.

Signal group	Signal name	Pin Count	Notes
Transmit (Differential)	PETp*	48	Transmittar differential pair
Transmit (Differential)	PETn*	48	Transmitter differential pair
Passive (Differential)	PERP*	48	Receiver differential pair
Receive (Differential)	PERn*	48	Receiver differential pair
Reference Clack (Differential)	REFCLK+	5	Reference Clack (differential pair)
Reference Clock (Differential)	REFCLK-	5	Reference Clock (differential pair)
Reference Clock (single ended)	REFCLK	1	
Presence	PRSNT	5	Presence Detect
Reset	PERST	2	
3.3 V Data	3.3VDAT	3	
Reserved	RESV	4	Reserved
Miscellaneous	MISC	9	
3.3 V power	+3.3V	16	3.3 V Power
3.3 V aux power	+3.3Vaux	4	3.3 V auxiliary power
12 V power	+12V	30	12 V Power
Ground	GND	162	Signal and Power Reference VSS
Total		438	


Table 2-1. PCIe* Riser Card Connector and Module Signal Descriptions

2.2 Pin Assignments

PCIe riser Connectors pin assignment is listed in Table 2-3 show the typical pin-out for a 438-Pin PCIe riser connector and baseboard only (ground barrier via) assignments. Connector pins are grouped such that A1-A73 and B1-B73 are clocks, control, and ground signals; pins A74-A219 and B74-B219 are data pins. Ground barrier via are listed in columns C and D. Note the presents of ground barrier vias within the connector pin array adjacent to pins B70 and B74. Figure 3-3 and Figure 3-8 respectively illustrate pin 1 location on the connector and the riser card.

Table 2-2. Connector Pin Assignment Color Code

Table 2-3. PCIe Riser Card Connector and Module Pin Assignment (Sheet 1 of 4)

C	•		В			А			D
C1	B1			PERST_N	GND			A1	D1
C2	B2		GND			GND		A2	D2
C3	B3	P12V					P12V	A3	D3
C4	B4			P12V	P12V			A4	D4
C5	B5		P12V			P12V		A5	D5
C6	B6	P12V					P12V	A6	D6
C7	B7			P12V	P12V			A7	D7
C8	B8		P12V			P12V		A8	D8
C9	B9	P12V					P12V	A9	D9
C10	B10			P12V	P12V			A10	D10
C11	B11		P12V			P12V		A11	D11
C12	B12	P12V					P12V	A12	D12
C13	B13			P12V	P12V			A13	D13
C14	B14		P12V			P12V		A14	D14
C15	B15	P12V					P12V	A15	D15
C16	B16			P12V	P12V			A16	D16
C17	B17		P12V			P12V		A17	D17
C18	B18	GND					GND	A18	D18
C19	B19			GND	GND			A19	D19
C20	B20		GND			GND		A20	D20
C21	B21	GND					GND	A21	D21
C22	B22			GND	GND			A22	D22
C23	B23		GND			р3р3v		A23	D23
C24	B24	GND					р3р3v	A24	D24
C25	B25			p3p3v	р3р3v			A25	D25
C26	B26		p3p3v			р3р3v		A26	D26
C27	B27	p3p3v					рЗрЗv	A27	D27
C28	B28			p3p3v	p3p3v			A28	D28
C29	B29		p3p3v_aux			p3p3v		A29	D29
C30	B30	p3p3v					p3p3v	A30	D30
C31	B31			p3p3v	GND			A31	D31
C32	B32		p3p3v			p3p3v_aux		A32	D32
C33	B33	GND					p3p3v_aux	A33	D33
C34	B34			p3p3v_aux	GND			A34	D34
C35	B35		p3p3v_aux			PWRGOOD		A35	D35
C36	B36	GND					GND	A36	D36
C37	GND B37			PWRGOOD_p3p3v_N	PERST_N			A37	GNDD37
C38	B38		GND			GND		A38	D38
C39	B39	SMB_HOST_CLK					SMB_HOST_DATA		D39
C40	<mark>GND</mark> B40			GND	GND			A40	<mark>GND</mark> D40
C41	B41		SMB_VPP_CLK			SMB_VPP_DATA		A41	D41
C42	B42	GND					GND	A42	D42
C43	GND B43			p5p5v	AUX			A43	GNDD43
C44	B44		GND			GND		A44	D44
C45	B45	PRSNT_N					p5p5v	A45	D45

C	;		В			Α			D
C46	GND <mark>B46</mark>			GND	GND			A46	GND <mark>D46</mark>
C47	B47		PRSNT_N			PRSNT_N		A47	D47
C48	B48	GND					GND	A48	D48
C49	<mark>GND</mark> B49			AUX	PRSNT_N			A49	<mark>GND</mark> D49
C50	B50		GND			GND		A50	D50
C51	B51	AUX					RISID	A51	D51
C52	<mark>GND</mark> B52			GND	GND			A52	GND D52
C53	B53		AUXCLK			GND		A53	D53
C54	B54	GND					GND	A54	D54
	<mark>GND</mark> B55			WAKE_N	AUX			A55	<mark>GND</mark> D55
C56	B56		GND			GND		A56	D56
C57	B57	GND					PERST_N	A57	D57
	<mark>GND</mark> B58			REFCLK0+	GND			A58	<mark>GND</mark> D58
C59	B59		REFCLK0-			RESV		A59	D59
C60	B60	GND					GND	A60	D60
	<mark>GND</mark> B61			GND	GND			A61	<mark>GND</mark> D61
C62	B62		REFCLK1+			GND		A62	D62
C63	B63	REFCLK1-					GND	A63	D63
	<mark>GND</mark> B64			GND	GND			A64	<mark>GND</mark> D64
C65	B65		GND			GND		A65	D65
C66	B66	REFCLK2+					GND	A66	D66
	<mark>GND</mark> B67			REFCLK2-	GND			A67	GND D67
C68	B68		GND			GND		A68	D68
C69	B69	GND		GND			GND	A69	D69
	<mark>GND</mark> B70			REFCLK3+	GND			A70	GND D70
C71	B71		REFCLK3-			GND		A71	D71
C72	B72	GND					GND	A72	D72
	<mark>GND</mark> B73		GND	GND	GND			A73	GND D73
C74	B74		PETp0			PERp0		A74	D74
C75	B75	PETn0					PERn0	A75	D75
	<mark>GND</mark> B76			GND	GND			A76	<mark>GND</mark> D76
C77	B77		PETp1			PERp1		A77	D77
C78	B78	PETn1					PERn1	A78	D78
	GND B79			GND	GND			A79	<mark>GND</mark> D79
C80	B80		PETp2			PERp2		A80	D80
C81	B81	PETn2		0110			PERn2	A81	D81
	GND B82			GND	GND			A82	GND D82
C83	B83	DET: 2	PETp3			PERp3		A83	D83
C84	B84	PETn3		CND	CND		PERn3	A84	D84
	GND B85			GND	GND			A85	GND D85
C86 C87	B86 B87	PETn4	PETp4		┨ ┠────╄	PERp4	PERn4	A86 A87	D86 D87
	B87 GNDB88	PETI14		GND	GND		PEKI14		D87 GNDD88
C88 C89	B89		PETp5		GND	DEDAE		A88 A89	D89
C89 C90	B89 B90	PETn5	PEIDS		┨ ┣────╄	PERp5	PERn5	A89 A90	D89 D90
	GND B90	PLIIID	↓	GND	GND		PLRID	A90 A91	GNDD91
C91 C92	B91 B92		PETp6		GND	PERp6		A91 A92	D91 D92
C92 C93	B92 B93	PETn6	PLIPO		┨ ┣───┾	РЕКРО	PERn6	A92 A93	D92 D93
	GNDB94	I'LINO		GND	GND		FLICIU	A93 A94	GNDD94
C94 C95	B95		PETp7	OND	GNU	PERp7		A94 A95	D94
C95	B95 B96	PETn7	i Lip/		┨ ┠────┼		PERn7	A95 A96	D93
	GND B97	1 - 117		GND	GND			A90 A97	GND D97
C98	B98		PETp8	OND		PERp8		A98	D98
C98	B98	PETn8	1 Lipo		┨ ┠────┼	- Licho	PERn8	A90 A99	D 98
	GNDB100		∖	GND	GND				GND D100
C100	B101		PETp9			PERp9		A100	D100 D101
C101	B101	PETn9	i Lips		┨ ┠────┼		PERn9	A101	D101
	GNDB102		∖	GND	GND				GND D102
C103			PETp10		SIVE	PERp10		A103	
C104	D104	I	i Lipito			1 LICPIO		A104	0104

Table 2-3. PCIe Riser Card Connector and Module Pin Assignment (Sheet 2 of 4)

С			В				Α			D
C105	B105	PETn10			-			PERn10	A105	D105
C106	GND B106			GND		GND			A106 <mark>G</mark>	NDD106
C107	B107		PETp11				PERp11		A107	D107
C108	B108	PETn11						PERn11	A108	D108
C109	GND B109			GND		GND			A109 <mark>G</mark>	NDD109
C110	B110		PETp12				PERp12		A110	D110
C111	B111	PETn12						PERn12	A111	D111
	<mark>GND</mark> B112			GND		GND				NDD112
C113	B113		PETp13				PERp13		A113	D113
C114	B114	PETn13						PERn13	A114	D114
	GND B115			GND		GND				NDD115
C116	B116		PETp14				PERp14		A116	D116
C117	B117	PETn14						PERn14	A117	D117
	KEY	KEY	KEY	KEY	KEY	KEY	KEY	KEY	KEY	
C118	B118	GND						GND	A118	D118
	GND B119			GND		GND				NDD119
C120	B120		PETp15				PERp15		A120	D120
C121	B121	PETn15						PERn15	A121	D121
	GND B122			GND		GND				NDD122
C123	B123		PETp16				PERp16		A123	D123
C124	B124	PETn16						PERn16	A124	D124
	GND B125			GND		GND				NDD125
C126	B126		PETp17				PERp17		A126	D126
C127	B127	PETn17						PERn17	A127	D127
	GND B128			GND		GND				NDD128
C129	B129		PETp18				PERp18		A129	D129
C130	B130	PETn18						PERn18	A130	D130
	GND B131			GND		GND				NDD131
C132	B132		PETp19				PERp19		A132	D132
C133	B133	PETn19						PERn19	A133	D133
	GND B134			GND		GND				NDD134
C135	B135		PETp20		_		PERp20		A135	D135
C136	B136	PETn20						PERn20	A136	D136
	GND B137			GND		GND				NDD137
C138	B138		PETp21				PERp21		A138	D138
C139	B139	PETn21						PERn21	A139	D139
	GND B140			GND		GND				NDD140
C141	B141		PETp22				PERp22		A141	D141
C142	B142	PETn22						PERn22	A142	D142
	GND B143			GND		GND				NDD143
C144	B144		PETp23				PERp23	050-22	A144	D144
C145	B145	PETn23	ļ			CNIC		PERn23	A145	D145
	GND B146			GND		GND				NDD146
C147	B147		PETp24				PERp24		A147	D147
C148	B148	PETn24						PERn24	A148	D148
	GND B149			GND		GND				ND D149
C150	B150		PETp25				PERp25		A150	D150
C151	B151	PETn25	ļ			CNIC		PERn25	A151	D151
	GND B152		DET-26	GND		GND				NDD152
C153	B153 B154	DET	PETp26				PERp26	DEDrade	A153	D153
C154		PETn26	ļ	CND		CND		PERn26	A154	D154
	GND B155		DET: 07	GND		GND				ND D155
C156	B156	DET	PETp27				PERp27	DED = 27	A156	D156
C157	B157	PETn27	ļ	CND		CND		PERn27	A157	D157
	<mark>GND</mark> B158 B159		DETrado	GND		GND	DEDra20			NDD158
C159		DET-20	PETp28				PERp28	DED = 20	A159	D159
C160	B160 GND B161	PETn28	ļ	CND		CND		PERn28	A160	D160
			DETraco	GND		GND	DEDra20			NDD161
C162	B162		PETp29				PERp29		A162	D162

Table 2-3. PCLe Riser Card Connector and Module Pin Assignment (Sheet 3 of 4)

С			В			Α			D
C163	B163	PETn29					PERn29	A163	D163
C164GNE	B164			GND	GND			A164	GND D164
C165	B165		PETp30			PERp30		A165	D165
C166	B166	PETn30					PERn30	A166	D166
C167GNE	B167			GND	GND			A167	GNDD167
C168	B168		PETp31			PERp31		A168	D168
C169	B169	PETn31					PERn31	A169	D169
C170GNE				GND	GND				GNDD170
C171	B171		PETp32			PERp32		A171	D171
C172	B172	PETn32					PERn32	A172	D172
C173GNE		1211132		GND	GND		T EIKIIGE		GNDD173
C174	B174		PETp33	UND	GND	PERp33		A174	D174
C175	B175	PETn33	121055			ТЕКРЭЭ	PERn33	A175	D175
C176GNE		FLIIIJJ		GND	GND		FERIIJJ		GNDD176
C170 GINL	B170		PETp34		GND	PERp34		A170 A177	D170 D177
C177			PETP34			РЕКР34			
	B178	PETn34		CND	CND		PERn34	A178	D178
C179 <mark>GNE</mark>				GND	GND			A179	
C180	B180		PETp35			PERp35		A180	D180
C181	B181	PETn35					PERn35	A181	D181
C182 <mark>GNE</mark>				GND	GND			A182	
C183	B183		PETp36			PERp36		A183	D183
C184	B184	PETn36					PERn36	A184	D184
C185 <mark>GNE</mark>				GND	GND				<mark>GND</mark> D185
C186	B186		PETp37			PERp37		A186	D186
C187	B187	PETn37					PERn37	A187	D187
C188 <mark>GNE</mark>				GND	GND			A188	
C189	B189		PETp38			PERp38		A189	D189
C190	B190	PETn38					PERn38	A190	D190
C191 <mark>GNE</mark>	B191			GND	GND			A191	<mark>GND</mark> D191
C192	B192		PETp39			PERp39		A192	D192
C193	B193	PETn39					PERn39	A193	D193
C194 <mark>GN</mark> E	B194			GND	GND			A194	GND D194
C195	B195		PETp40			PERp40		A195	D195
C196	B196	PETn40					PERn40	A196	D196
C197 <mark>GNE</mark>	B197			GND	GND			A197	GND D197
C198	B198		PETp41			PERp41		A198	D198
C199	B199	PETn41					PERn41	A199	D199
C200GNE	B200			GND	GND			A200	GNDD200
C201	B201		PETp42			PERp42		A201	D201
C202	B202	PETn42					PERn42	A202	D202
C203GNE				GND	GND			A203	
C204	B204		PETp43			PERp43		A204	D204
C205	B205	PETn43					PERn43	A205	
C206GNE				GND	GND				GND D206
C207	B207		PETp44			PERp44		A207	D207
C208	B208	PETn44	p				PERn44	A208	D208
C209GNE		1 2 1 11 1 1		GND	GND				GND D209
C210	B210		PETp45		SIL	PERp45		A200	D203
C210	B210	PETn45	121045				PERn45	A210	D210
C211 C212 GNE		1 LINTS		GND	GND				GND D211
C212 GINL C213	B212		PETp46		GNU	PERp46		A212 A213	D212 D213
C213	B213	PETn46	1 21 040			т скрчо	PERn46	A213	D213
C214 C215 <mark>GNE</mark>		FLIN40		GND	GND		FLKII40		GNDD214
C215 GNL C216	B215 B216		PETp47		GND	PERp47		A215 A216	D216
		DET 47	PEIP47			ΡΕΚΡ47			
C217	B217	PETn47	ļ	CND			PERn47	A217	D217
C218 GNE			DECV	GND	GND				GNDD218
C219	B219		RESV			RESV		A219	D219

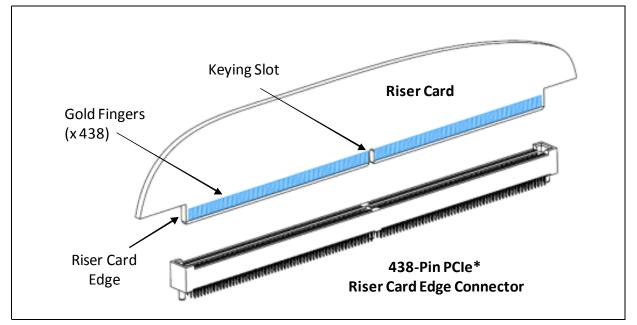
Table 2-3. PCIe Riser Card Connector and Module Pin Assignment (Sheet 4 of 4)

Signal Description and Pin Assignment

3 Connector Interface Definitions

This section defines PCIe riser connector and riser card mechanical interfaces to ensure form, fit, and function.

3.1 Design Essentials


The following notes apply for all drawings in this section:

- 1. Critical dimensions and tolerances are identified with the symbol \bigcirc , and are required to meet Cpk \geq 1.00.
- 2. Dimensions and tolerances conform to ASME Y14.5-2009.
- 3. All dimensions are in millimeters (mm) unless identified otherwise.
- 4. All dimension tolerances are ± 0.15 mm unless specified otherwise.

3.2 PCIe* Riser Card Connector Dimensions

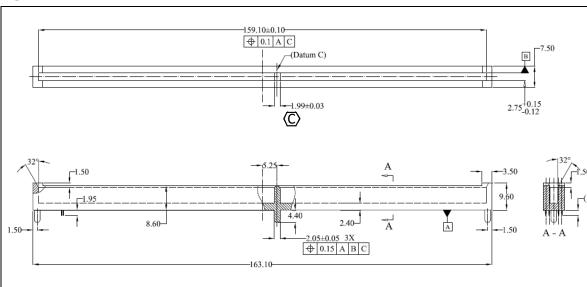
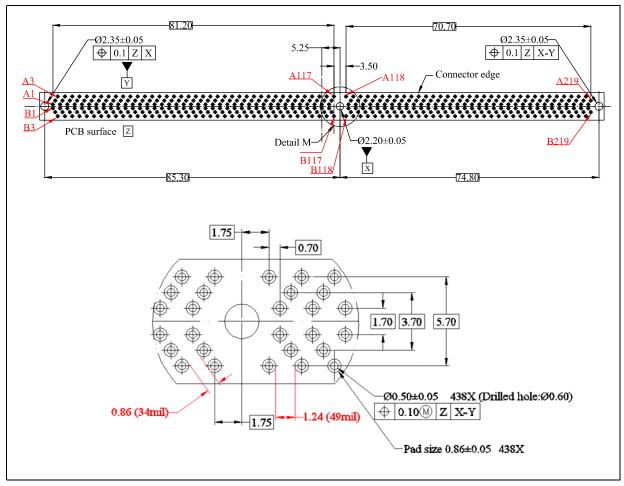

The PCIe riser card connector is defined for applications that require a vertical entry of a riser card into the connector. Figure 3-1 illustrates a 3-dimensional image of such a connector. Figure 3-2 shows connector outline.

Figure 3-1. PCI e Riser Card Connector and Riser Card

95)

Figure 3-2. PCI e Riser Card Connector Dimensions


The outer locus of the PCIe riser connector contact at interface with the riser card should be ≤ 0.38 mm to prevent any shorts during the riser card insertion into the connector. Contact outer locus at the riser card interface is the maximum zone where contact could locate, which is controlled by housing cavity size, pin size, and housing cavity position tolerance referenced to datum key.

3.3 PCI e Riser Connector Baseboard Footprint

As a press-fit type connector, the PCIe riser connector relies on a mechanical interference fit between the pin on the connector and the plated through-hole (PTH) in the board to ensure electrical connection between the connector and board is made. Board finish can affect both mechanical and electrical performance of the connector.

Connector footprint and board hole details are shown in Figure 3-3. Additional board space is needed for the connector installation and removal tool. The recommended baseboard keepout zones are shown in Figure 3-4 and Figure 3-5.

Figure 3-3. PCI e Riser Connector Footprint (Top View)

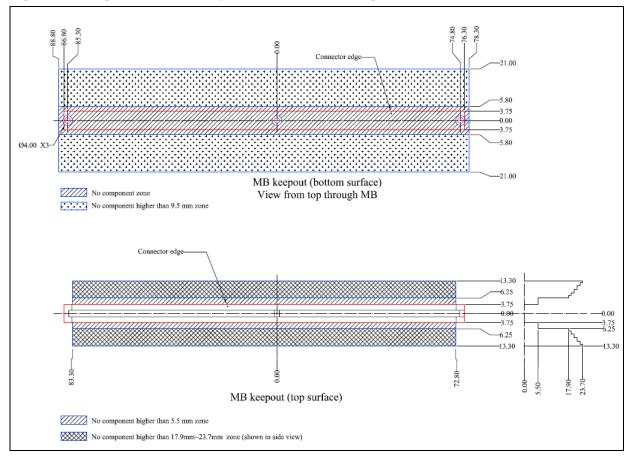
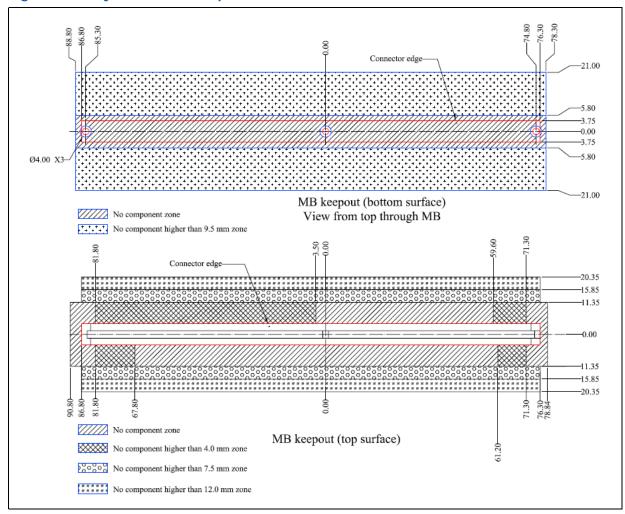



Figure 3-4. System Board Keepout Zone for Assembly

The PCIe riser connector relies on specific pad sizes and plating types to achieve reliable solder joints between the connector and the baseboard. See the manufacturer's drawings for specific through-hole drill/pad/antipad sizes and board finish types. Figure 3-6 illustrates a 438-pin PCIe riser card breakout routing on 5 mil lines with 7 mil spacing.

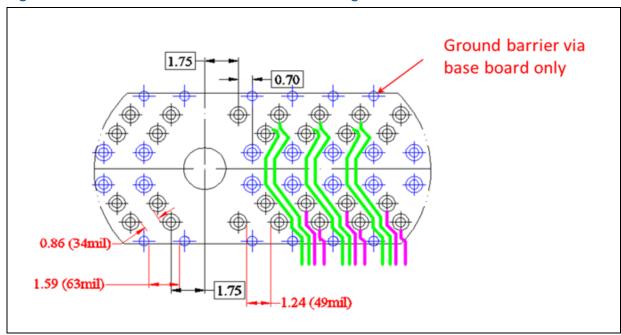
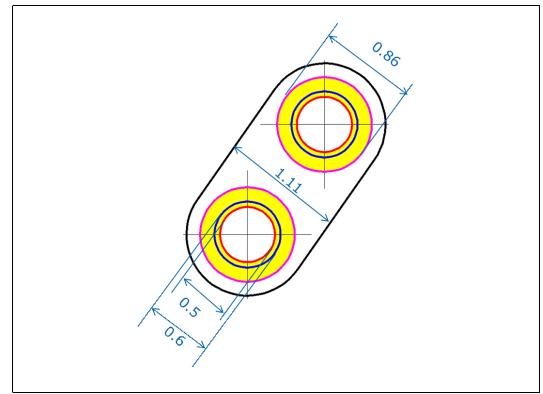
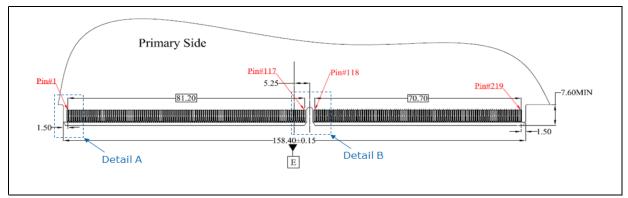
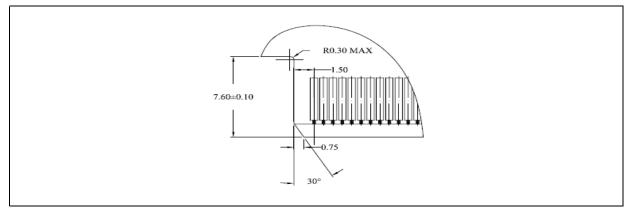



Figure 3-6. PCI e Riser Connector Breakout Routing

Figure 3-7 illustrates hole dimensions for a 438-pin PCIe riser connector pin with 0.5 mm finished hole diameter, 0.6 mm drill diameter, 0.86 mm pad diameter, and 1.11 mm paired antipad dimensions used on p-n differential pairs.


3.4 PCIe 3.0 Riser Card Dimensions

The gold finger0 positional tolerance is identified as a critical riser card dimension. Gold finger position in relation to riser card edges is critical to ensure each connector contact is properly lined up with its gold finger. The PCIe riser card mechanical dimensions are shown in Figure 3-8, Figure 3-9, and Figure 3-10. The detailed explanation of the gold finger positional tolerance is provided in Appendix A.


An external tie bar will be needed on the riser card's top/bottom layer; an inner tie bar is not allowed for gold plating.

Minimum required gold finger plating is 30 μ in of gold over 100 μ in of nickel. Connector and riser card are to be tested per industry standard EIA 364-1000.

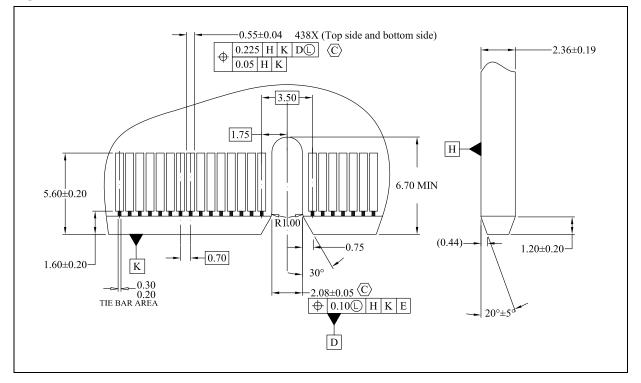

Figure 3-8. PCIe 3.0 Riser Card Dimensions

Figure 3-9. PCI e 3.0 Riser Card Dimensions (Detail A)

4 Electrical Specification

A common electrical test fixture is specified in the PCIe 3.0 connector signal integrity PCIe 3.0 Connector High-Speed Electrical Test Procedure. This fixture is used for evaluating the connector compliance to the DC and AC electrical requirements specified in this section.

This section specifies the PCIe riser connector electrical requirements including connector impedance, contact resistance, current carrying capacity, and the parasitic requirements.

4.1 DC Electrical Requirements

Table 4-1 outlines the signal integrity parameters, requirements, and test procedures in qualifying the PCIe riser connector DC electrical requirements.

Table 4-1. DC Electrical Requirements	Table 4-1.	DC Electrical	Requirements
---------------------------------------	------------	----------------------	---------------------

Parameter	Requirements	Procedure
Low level contact resistance (LLCR)	Initial: 20 milliohms max for a mated connector The resistance change, which is defined as the change in LLCR between the reading after stress and the initial reading, shall not exceed 10 milliohms.	EIA 364- 23B Subject mated contacts assembled in housing to 20 mV max open circuit at 100 mA max
Current rating	 1.1 A per contact minimum. The temperature rise above ambient shall not exceed 30°C. The ambient condition is still air at 25°C. With pin-out as shown in Table 2-3 	 EIA 364-70 method 2 Test the mated connector: The sample size is a minimum of three mated connectors. The sample shall be press-fit on a PC board with the appropriate footprint. Wire all the power and all the ground pins in a series circuit. A thermocouple of 30 AWG or less shall be placed as close to the mating contact as possible. Conduct a temperature rise versus current test.
Withstand voltage	500 V min	EIA364-20
Insulation resistance	1-Mohm min	EIA364-21
Intra-pair skew	≤5 ps	Refer to PCIe* Gen 3 Connector High-Speed Electrical Test Procedure, Intel document #325028.

AC Electrical Requirements 4.2

Table 4-2 lists the AC electrical requirements for the PCIe riser connector. For measurement methodology, see Intel reference document PCIe* Gen 3 Connector High-Speed Electrical Test Procedure.

Table 4-2.	Connector Single-ended S-parameter Values
------------	---

S-Parameter	Procedures	Requirement
Differential insertion loss (DDS21) ³	Notes: 1, 2, and 3	$\geq -0.5 \text{ dB 0 GHz} < f < 2.5 \text{ GHz}; \\ \geq -[0.8*(f-2.5)+0.5] 2.5 \text{ GHz} < f < 5 \text{ GHz}; \\ \geq -[3.0*(f-5)+2.5] \text{ dB for 5 GHz} < f < 12 \text{ GHz}.$
Differential return loss (DDS21) ³	Notes: 1, 2, and 3	$\leq -15 \text{ dB} \text{ up to } 3.0 \text{ GHz}; \\ \leq 5*f - 30 \text{ dB for } 3.0 \text{ GHz} < f \le 5 \text{ GHz}; \\ \leq -1 \text{ dB for } 5.0 \text{ GHz} < f \le 12 \text{ GHz}.$
Cross-talk multiple aggressor pairs (Next_ma) ³	Notes: 1, 2, 3, and 4	$\leq -32 \text{ dB up to } 2.5 \text{ GHz}; \\ \leq -20 \text{ dB for } 5.0 \text{ GHz} < f \leq 10 \text{ GHz}; \\ < -10 \text{ dB for } 10 \text{ GHz} < f \leq 12 \text{ GHz}.$

Notes:

1.

A common test fixture for connector characterization shall be used. Effects of the baseboard through-hole via and module gold edge finger are included. 2.

3.

Specification presumes the data is normalized to 42.5 ohm (85 ohm differential). The crosstalk requirement includes contributions from all adjacent differential pairs. 4.

5 Mechanical, Environmental, and Reliability Specification

This section specifies the riser card connector's mechanical and environmental requirements. A 7-year life cycle test is applied for both the mechanical requirement and the environmental requirement, per EIA 364-1000.

5.1 Mechanical Specifications

The PCIe riser card connector mechanical requirements include the riser card mating force and durability. The PCIe riser card connector must comply with the mechanical requirements listed in Table 5-1.

Note: The sample size shall follow the requirements in Section 2.2.1 of EIA-364-1000.

Table 5-1. Mechanical Specifications

Parameter	Value	Notes
Volumetric and mechanical dimensions	For mechanical dimensions see Section 3 and drawings.	Visual and dimensional inspection, Procedure EIA364-18 visual, dimensional per applicable quality inspection plan, Requirement: meets drawing
Insertion force (riser card to connector)	30 kgf max	Test per EIA 364-13 Measure the force necessary to mate the connector assemblies at a maximum rate of 2.54 cm per minute Riser card gauge thickness 2.58 mm ±0.02
Normal force per contact	50 gf min (EOL)	Test per EIA 364-04
Retention force – terminal pin	300 gf min per pin	Test per EIA 364-29 No movement of contact greater than 0.38 mm
Unmate force (riser card removal from connector)	2 kgf (~min)	Test per EIA 364-13 Measure the force necessary to unmate the connector assemblies at a maximum rate of 2.54 cm/minute
Durability	30 cycles over connector life time	Use one riser card and one connector

Additionally, the PCIe riser card connector must meet the material requirements listed in Table 5-2 to ensure compliance with industry standards and regulations.

Table 5-2.Material Requirements

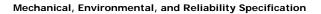
Parameter	Requirement	Notes
Marking	Connector marking must contain: Manufacturer's insignia Part number Date code All markings must withstand typical environmental, mechanical, and reliability tests. All markings must be visible after mounting.	
Flammability	UL 94 V-0	Material certification or certification of compliance is required with each lot to satisfy the Underwriters Laboratories follow-up service requirements.
RoHS compliant	RoHS compliant per IEC 62474	RoHS Directive (2011/65/EU)
Low halogen	1000 ppm max Cl when used in a flame retardant. 1000 ppm max Br when used in a flame retardant. Per JS-709A Standard - Clause 4.	Sample combustion followed by ion chromatography as specified by: British Standard Methods BS EN 14582:2007, Characterization of waste – Halogen and sulfur content – Oxygen combustion in closed systems and determination methods OR US EPA-5050 (BOM Preparation Method for Solid Waste).

5.2 Environmental Requirements

Connector environmental tests shall follow EIA-364-1000, Groups 1 through 6 Environmental Test Methodology for Assessing the Performance of Electrical Connectors and Sockets Used in Business Office Applications. The test groups/sequences and durations shall be derived from the following application requirements:

- Field temperatures of 65°C
- Field life of 7 years
- Operating temperature range of -55°C to +85°C
- Storage temperature range of 15°C to 28°C RH at 65%.

Both the plating thickness and the baseboard thickness shall be recorded in the environmental test report.


5.3 Reliability Requirement

The PCIe riser card connector reliability test conditions — used in the completion of ANSI/EIA-364-1000 test groups 1 through 5 — are described in Table 5-3. After reliability testing, the connector under test must meet electrical, mechanical, and environmental criteria.

Table 5-3. Reliability Test Conditions

Test Description	Test Condition	Notes
Durability	Test per ANSI/EIA-364-09 precondition 5 plug/unplug cycles	No evidence of physical damage.
Temperature life	ANSI/EIA-364-17, Method A (without electrical load) Test: 105°C, 120 hrs Precondition: 105°C, 72 hrs perform in mated condition	
Low-level contact resistance (LLCR)	ANSI/EIA-364-23 Option 1, 4-wire method.	Termination of connector to board carrier shall be included in the measurement.
Physical shock	ANSI/EIA-364-27, Test Condition A, Half Sine, duration 11 ms, 100 mA load, 3 drops each axis normal and reversed directions, perform in mated condition.	
Vibration	ANSI/EIA-364-28 Test Condition D 5 Hz @ $0.02 g^2$ /Hz to 20 Hz @ $0.02 g^2$ /Hz (slope up) 20 Hz to 500 Hz @ $0.02 g^2$ /HZ (flat) Input acceleration is 3.10 g RMS. Both halves rigidly fixed. 15 Minutes per axis on all 3 axes (X, Y, Z). Random control limit tolerance is ± 1.5 dB. Continuity check: Electrical load 100 milliamperes for all contacts.	No discontinuities of ≥1 microsecond.
Cyclic temperature and humidity	ANSI/EIA-364-31B, Method III without conditioning, initial measurements, cold shock, and vibration. Ramp times should be 0.5 hour and dwell times should be 1.0 hour. Dwell times start when the temperature and humidity have stabilized within specified levels, perform 10 cycles in mated condition.	
Thermal shock	ANSI/EIA-364-32, Method A, Table2, Test Condition 1, -55°C to +85°C, perform 5 cycles in mated condition.	
Thermal disturbance	ANSI/EIA-364-1000 Cycle the connector between $15 \pm 3^{\circ}$ C and $85 \pm 3^{\circ}$ C, as measured on the part. Ramps should be a minimum of 2° /minute. Dwell times should ensure that the contacts reach the temperature extremes (a minimum of 5 minutes), humidity is not controlled, perform 10 cycles in mated condition.	
Thermal cycle	ANSI/EIA-364-1000 Cycle the connector between 15 \pm 3°C and 85 \pm 3°C, as measured on the part. Ramps should be a minimum of 2°C/minute. And dwell times should ensure that the contacts reach the temperature extremes (a minimum of 5 minutes), humidity is not controlled, perform 500 cycles in mated condition.	
Mixed flowing gas	ANSI/EIA-364-65, class IIA, Option 4, perform in mated condition, duration 7 days.	
Dust	ANSI/EIA-364-91 Condition: Unmated Dust Composition: #1 Test Duration: 1 hr 15 minutes Test per group D (LLCR)	This test applies to connectors having lubricated contacts. Use testing of non-lubricated connectors as control mechanism.

5.4 Riser Card Mechanical Requirements

The connector will not provide structural support for the riser card or cards that plug into the riser card. The system/chassis must provide structural support.

Table 5-4. Riser Card Mechanical Requirements

Description	Requirement	Test Procedure
Riser card insertion/ extraction/retention	Must be used in any use condition. Chassis/system must provide general alignment of riser card to connector, but riser slot to connector key interface must be allowed to provide final riser card position reference.	EIA 364-27, EIA364-28 Appropriate conditions to model use condition and system configuration.
Riser card mass limit	2.9 lb max	Card and all components, including thermal solutions.
Riser card keepouts	Meet applicable inspection plan.	EIA 364-18 Visual, dimensional per applicable quality inspection plan.

6 Supplier Contact Information

6.1 Supplier Contact and Part Number Information

Third-party supplier has been enabled to ensure the PCIe riser card connector is available.

Note:

- 1. Supplier listing is provided by Intel as a convenience to its customers. Intel does not make any representations or warranties whatsoever regarding the quality, reliability, functionality, or compatibility of the connector.
- 2. All part numbers listed are subject to change.
- 3. Supplier information provided in the table was accurate at the time of release of this document.
- 4. Customers planning to use the PCIe riser card connector should contact the supplier for the latest information on their products.
- 5. Customers must evaluate the connector performance against their own product requirements.

Table 6-1. Connector Part Number and Supplier Contact Information

Component	Part Nu	mber	
	Description	Lotes	Intel
Connector	30 u" min Gold, with Lube, Metal Key	APCI0011-P006C01	G57033-003
	30 u" min Gold, Metal Key	APCI0011-P004C01	G57033-002
	30 u" min Gold, Plastic Key	APCI0011-P002C01	G57033-001
Assembly Tool	Lotes part number:	G02-001-765	
Rework Tool	Lotes part number:	G02-001-766	

Note: Connector contact gold plating thickness, use of the metal key vs Plastic key, and applying lubrication to the contacts have shown to improve mechanical reliability of the connector. It is at the discretion of the customer to identify, select, and verify which version of the connector is best-suited for use in their application.

Supplier Contact:

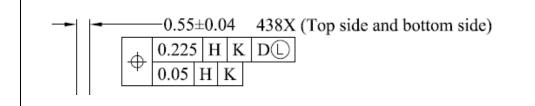
Cathy Yang

Address: No. 526 North of Jinling Road, Nansha District, Guangzhou Guangdong Province, China 511458

Phone: 86-20-84686519

Supplier Contact Information

Δ



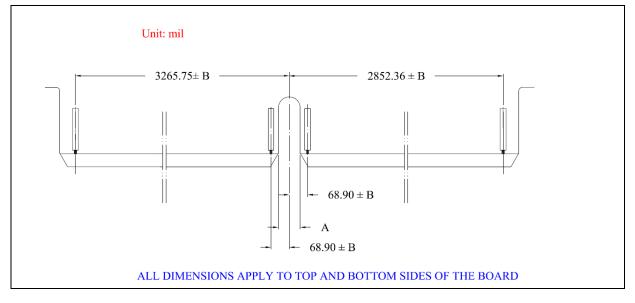
Riser Card Gold Finger Positional Tolerance

Dimensions of the PCIe riser card edge are provided in Section 3.4. Detailed gold finger positional tolerance is shown in Figure A-1 and Figure A-2. Least material condition (LMC) is applied to Datum D, which will introduce bonus tolerance on gold finger positional tolerance. The dimensioning is for use only as reference by the board manufacturers since it is not in compliance with geometric dimensioning and tolerances (GD&T).

In situations where the riser card notch is at LMC and where the notch width is 2.13 mm, the allowed gold finger positional tolerance is 0.225 mm (or ± 0.113 mm). When the riser card notch is at nominal dimension (2.08 mm), the allowed positional tolerance is 0.275 mm (or ± 0.137 mm). In situations where the riser card notch is at maximum material condition and where the notch width is 2.03 mm, the allowed positional tolerance is 0.325 mm (or ± 0.162 mm). As a reference, Table A-1 lists the allowed gold finger positional tolerances (B) with respect to the riser card notch width dimension (A).

Figure A-1. Gold Finger Size and Positional Tolerance

Where:


Datum H is riser card surface

Datum K is riser card bottom edge

Datum D is riser card notch center line

Table A-1. Allowed Gold Finger Positional Tolerance

Notch width (A)		Allowed B		Note
mil	mm	mil	mm	Note
83.86	2.13	4.43	0.113	Maximum notch width
83.66	2.13	4.53	0.115	
83.46	2.12	4.63	0.118	
83.27	2.12	4.72	0.120	
83.07	2.11	4.82	0.123	
82.87	2.11	4.92	0.125	
82.68	2.10	5.02	0.128	
82.48	2.10	5.12	0.130	
82.28	2.09	5.22	0.133	
82.09	2.09	5.31	0.135	
81.89	2.08	5.41	0.137	Nonimal notch width
81.69	2.08	5.51	0.140	
81.50	2.07	5.61	0.142	
81.30	2.07	5.71	0.145	
81.10	2.06	5.81	0.147	
80.91	2.06	5.91	0.150	
80.71	2.05	6.00	0.152	
80.51	2.05	6.10	0.155	
80.31	2.04	6.20	0.157	
80.12	2.04	6.30	0.160	
79.92	2.03	6.40	0.162	Minimum notch width

B Riser Card Installation

B.1 Riser Card Installation Guide

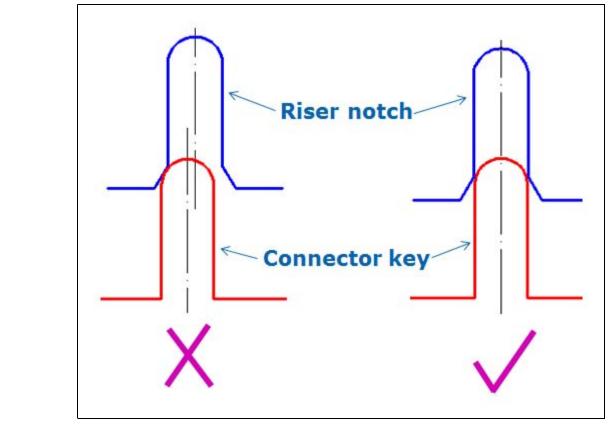
There are different alignment orders to guide the riser card into PCIe riser card connector, and to support the riser card during the shock and vibration conditions.

Note:

Blind mating of riser card to the connector requires alignment features.

- 1. Chassis will have to provide the first order of guidance for the riser card to ensure it is properly oriented and aligned to the connector.
- 2. The second order of guidance is provided by the connector end towers with riser card edge chamfers. Chassis guides and insertion features must allow the riser card to freely move into its correct position with respect to the connector open slot.
- 3. Connector key to riser card slot provides the final, third order, guidance. Once the riser card notch locates to the key, the center of the riser card should be properly aligned with the center of the connector. This is considered the "SET" position before full engagement, as shown in Figure B-2. This step is critical and needs additional caution by the installer to ensure proper engagement is made before the load is applied.
- 4. Apply uniform load to fully engage the riser card to the connector.
- 5. Secure the riser card assembly in the final fully seated position.

B.2 Riser Card Pre-alignment Mechanism


Guide features are required for the riser card to align the card slot to the connector keying feature before insertion load is applied.

Dimensions and tolerances of the chassis guide features must be such that at the worst case condition the offset between the board slot in middle of the riser card and the center of connector key is less than 1.5 mm, as shown in Figure B-1. Any offset >1.5 mm will require the position of the rise card be adjusted manually to align with the connector before applying insertion load. All allowed positions of the card guide must enable the slot on the riser card and connector key to fully align without interference (overconstraint).

Riser Card Connector

Figure B-1. Riser Card Notch to Connector Keying Alignment

Figure B-2. Proper Alignment Between Riser Card Notch and Connector Keying

B.3 Insertion/Extraction Mechanism

Because of the connector high pin count, the insertion/extraction forces exceed the ergonomic limits for a manual installation operation. Additionally, manual insertion/ extraction has high possibility of rocking the riser card, which may damage the connector contacts or gold fingers, and possibly cause misalignment risk.

A mechanically assisted insertion/extraction mechanism is recommended in all use conditions. The mechanism should provide mechanical advantage to bring loads within the required ergonomic limits. The mechanism should also be designed such that it does not introduce lateral force on the connector.

Additional caution is required to ensure the riser card is uniformly inserted into the connector during insertion/extraction such that all connector contacts simultaneously engage with gold fingers.

B.4 Retention Mechanism

Retention mechanism from the chassis (system) is required to provide the riser card with mechanical structural support. The retention mechanism will reduce the shock and vibration risks by securing the riser card to the chassis.

C Shock and Vibration Test Methodology

This section describes the applied physical shock and vibration (S&V) test methodology to applied to verify the connector compliance with its environmental specification.

C.1 Test Equipment

- 1. Vibration Machine
- 2. S&V Test Fixture
- 3. Riser Test board with appropriate dimensions and mass representing the riser card mechanical specifications. Figure C-2 illustrates a block of aluminum attached to the a PCB representing a typical mass of component on the riser card.

Riser test board dimensions: Length: 225 mm width: 160 mm Riser test board Mass: 1.32 kg

4. Connector Test Board with a connector

C.2 Test Environment

Temperature: Room temperature (21 to 24 °C)

Relative Humidity: 60-65 % RH (recommended)

C.3 Test Conditions

See connector Physical Shock and Vibration testing requirements specified in the reliability requirement section of this document and ANSI/EIA-364 test procedures.

C.4 Test Fixture

A test fixture is required to support and constrain the riser card movement with respect to the connector mounted on a base board. The fixture shall mimic the riser card support structure and tolerances. Figure C-1 illustrates a fully constrained riser card movement in X, Y, and Z axis. A gap of approximately 1mm is provided in the PCB slot to ensure the riser card is fully seated in the connector.

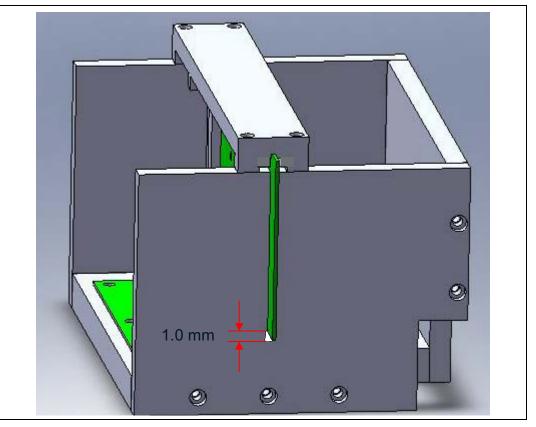
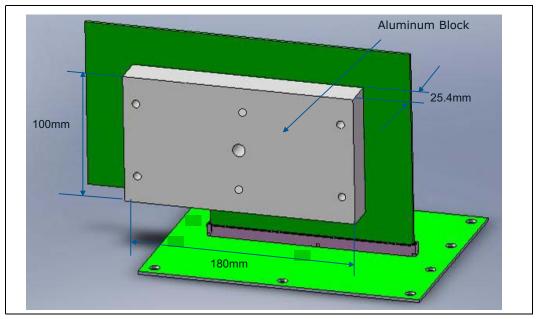



Figure C-1. Riser Test Card Allowable Movement in Z-Axis

C.5 Post Test Verification

Post shock and vibration tests inspect the riser test board and the connector for physical wear and damages. Inspection shall include but not limited to the riser card gold fingers.

§

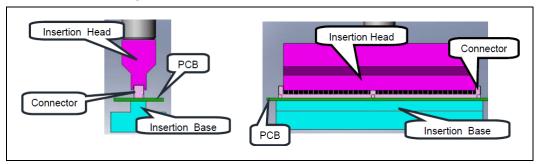
Shock and Vibration Test Methodology

D Assembly/Rework Guidance

D.1 Press Tool Loading

1. Press System Requirements

- The press tool should have the capability to slow to 1.27 \pm 0.25 mm/sec while applying the appropriate force.
- The majority of qualification, testing, and characterization of the final product to be performed at the final insertion rate of 1.27 mm/sec.
- The PCIe riser card connector requires a maximum force of 1.63 kgf/pin to fully seat into the baseboard.
- *Note:* To prevent damaging the baseboard or the connector, do not exceed the maximum allowable connector pin insertion force.
 - The press tool should have z-axis control capability to within 0.125 mm.
 - The press tool should have a press bed flatness adequate to ensure the application tooling properly engages the connector pressing surfaces. The face of the application press should be parallel with the PCB surface to within 0.125 mm, and should have a z-axis stroke of 25 mm or greater.
 - Pressing mechanism must restrict side-to-side movement during press cycle.

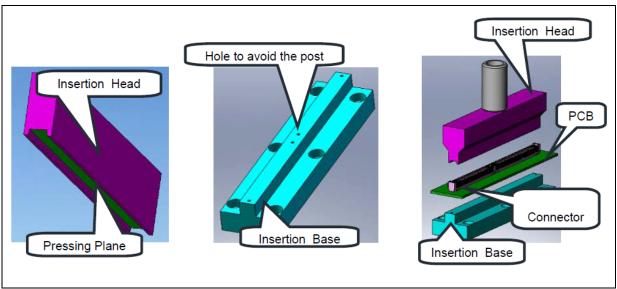

2. Alignment of the PCB and Connector

• The application tool (insertion head) can be manually placed on the mating side of the connector or attached to the press ram. The alignment of the PCB in the press is such that the press ram is approximately centered (within a diameter of 12.7 mm) above the insertion head.

3. Press

The application tool (insertion head) is designed to conform to the mating end geometry of the connector. Ensure the connector is properly preloaded, place the PCB into the press, and place the insertion head on the connector, as shown in Figure 6-1.

Figure 6-1. Connector Assembly


Table D-1. Connector Pin Insertion Force

Press Force	Value	Notes
Preload force	0.125 Kgf/pin	Force adequate to insert the connector pins into the baseboard holes. This is an approximation value.
Preseating force	0.25 Kgf/pin	Force adequate to ensure the connector does not become dislodged. This is an approximation value.
Insertion force	1.63 kgf/pin max	Force necessary to fully insert the connector pins into the baseboard holes.

D.2 Assembly

A press tool is required to aid in inserting PCIe riser card connector pins into the baseboard. The press tooling consists of an insertion head and an insertion base, as shown in Figure D-1. The following steps provide general instructions on using the tool to complete the connector installation onto a baseboard.

Step 1: Inspect the connector pin tips for bends or damages

Use an approved pin gauge to inspect the connector pin positions. This step is to ensure pin tip positional accuracy was not compromised during packaging, shipping, or handling prior to installation. An out-of-position pin could result in bent and/or folded pins and severe board damage.

Step 2: Inspect the plated through-hole on the PCB

Inspect all PCIe riser card connector holes in the baseboard for damage, blockage, or obstruction before performing the pressing operation. This can be done using optical or mechanical inspection tools. During any mechanical or inspection operation requiring physical contact with the baseboard, use caution to prevent damaging the inside of the PTHs.

Step 3: Align the baseboard and the connector to the press tool

Ensure that the entire assembly is aligned and located in reference to the press and the base tool, baseboard, and the connector orientation.

Step 4: Partially insert the connector pins into the baseboard holes

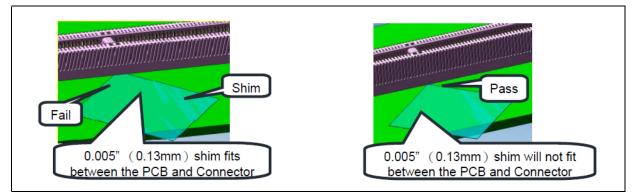
- 1. Under preload, insert the connector pins into the baseboard hole pattern.
- 2. Ensure that the connector is properly oriented or the connector will not function properly from a mechanical or electrical standpoint. See customer drawings for the position of "Pin A1" reference location.
- 3. Ensure that all pins are aligned with their respective PTHs and the tip of all connector to baseboard keying pins are below the top surface plane of the PCB.
- 4. Apply a preseating force adequate to ensure the connector does not become dislodged during any slight board movement.
- 5. Visually inspect each connector before actuating the press to ensure all pins have remained properly positioned inside the PTH.

Step 5: Press in the connector

• Lower the press head until it reaches the top surface (riser card side) of the connector. Continue lowering the press until the connector is seated flush on the PCB surface.

Step 6: Inspection

1. Connector Position:


Verify the PCIe riser card connector is seated flush on the baseboard. The gap between the connector and the baseboard must be less than 0.13 mm (0.005 in.). A gap of 0.13 mm (0.005 in.) or greater between the PCB and connector is NOT acceptable.

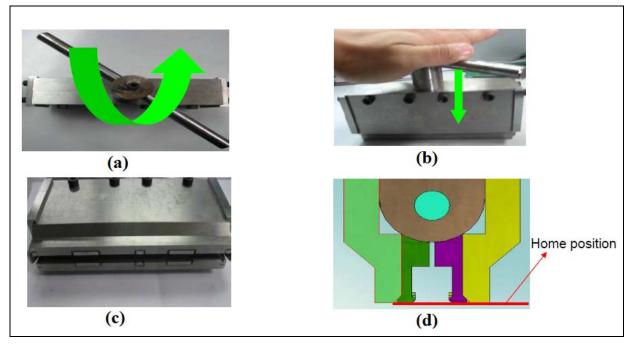
Verify the final seating depth of the connector using a 0.13 mm (0.005 in.) shim. The shim should not fit between the surface of the PCB and the plastic insulator on the connector, as shown in Figure D-2.

2. Quality:

Verify there are no cracks or deformities in the connector plastic. If possible, view all pins from the backside of the board. Each pin's end must be visible and pressedin to the same height.

Figure D-2. Quality Inspection After Assembly

D.3 Rework

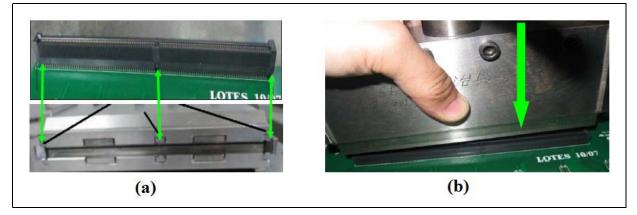

The connector rework tooling is used to remove the PCIe riser card connector from baseboard. It consists of a handle, shaft, left support, right support, screw, puller, left clamp, right clamp, front guide, and back guide.

The following steps provide general instructions on using the rework tool to complete the connector removal from the baseboard.

Step 1: Verify the removal tool is in the home position

Open the removal tool by turning the handle counterclockwise as shown in Figure D-3 picture (a). At the same time push the handle downwards as shown in picture (b) until the movable parts are in the home position as shown in pictures (c) and (d).

Figure D-3. Rework Tool Home Position

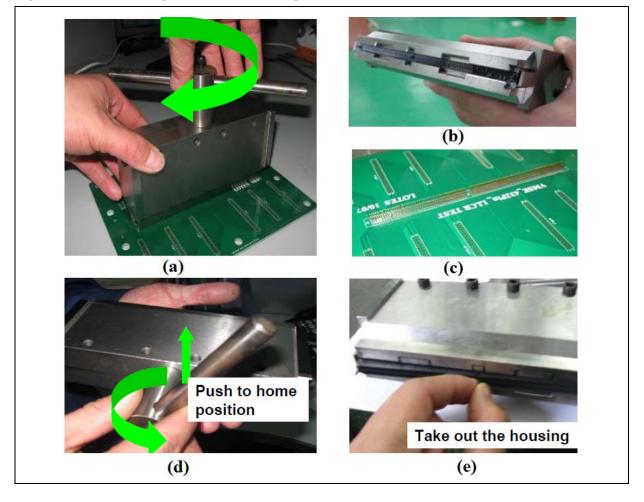


Step 2: Place the rework tool over the connector

- 1. Locate the defective connector that needs to be removed from the board.
- Align and position the hook of the tool next to the notch of the connector as shown in Figure D-4 (a).
- 3. Place the removal tool flat on the surface of the board and align with the defective connector as shown in Figure D-4 (b).

Figure D-4. Rework Tool Placement

Step 3: Remove the connector plastic housing using the removal tool.


Table D-2. Connector Pin Removal Force

Press Force	Value	Notes
Removal force	0.49 kgf/pin min	Force necessary to remove the connector pins from baseboard holes.

- 1. Hold the removal tool down tightly against the surface of the board with one hand. Slowly turn the handle clockwise with the other hand until the handle starts to tighten and the connector housing begins to lift out of the board. See Figure D-5 picture (a).
- 2. Continue to turn the handle until the connector housing is completely removed from the board.
- 3. Lift the removal tool and the connector plastic housing away from the board.
- Remove the connector plastic housing from the tool by turning the handle counterclockwise, and push the movable part to return to its home position as shown in Figure D-5 (d).
- 5. Take out the housing as shown in Figure D-5 (e).

Figure D-5. Removing Connector Housing

Step 4: Manually remove the remaining connector pins.

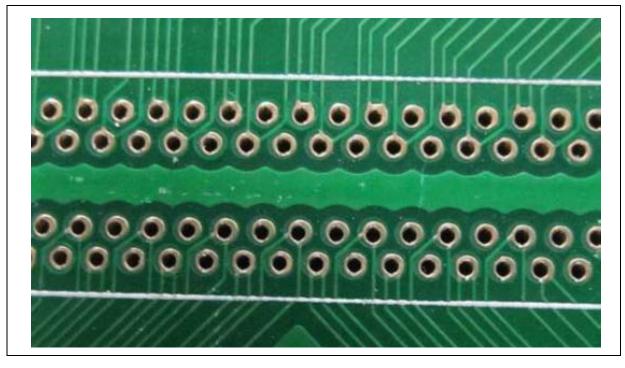
Some pins may remain in the board after the plastic housing and plastic insert are removed. These pins must be manually removed with needle-nose pliers to complete the removal process.

Use a pair of fine-tipped needle-nose pliers to extract the remaining pins one at a time.

Caution: Do not attempt to remove more than one pin at a time. Removing more than one pin at a time might damage the baseboard.

Grasp the pin firmly and pull straight up as shown in Figure D-6. Check the pin and plated through-hole to ensure the pin is fully removed and the hole is clear.

Figure D-6. Example of Manual Pin Removal



Step 5: Final inspection

After removing all pins, use an optical magnifier to visually inspect the plated throughholes for damage and/or material left behind from the extraction process. See Figure D-7.

Figure D-7. Example of Board Inspection Post Connector Removal Process

§